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Using the density-matrix renormalization group, we determine the different topological phases and low-energy
excitations of a time-reversal invariant topological superconducting (TRITOPS) wire with extended s-wave
superconductivity, Rashba spin-orbit coupling (SOC) and on-site repulsion U , under an externally applied
Zeeman field J . For the case in which J is perpendicular to the SOC, the model describes a chain of Shiba
impurities on top of a superconductor with extended superconductor pairing. We identify the different topological
phases of the model at temperature T = 0, and in particular we study the stability of the TRITOPS phase against
the Zeeman field J and the chemical potential μ, for different values of U . In the case where the magnetic
field J is perpendicular to the SOC axis, the pair of Kramers degenerate Majorana zero modes at the edges of
the system that exist for J = 0, remain degenerate until a critical value of the magnetic field is reached. For J
parallel to the SOC and up to moderate values of U , the fractional spin projection 〈Sy〉 = 1/4 at the ends, found
for noninteracting wires at U = 0, is recovered. In addition, the analytic expression that relates 〈Sy〉 with J for
finite noninteracting chains is shown to be universal up to moderate values of U .
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I. INTRODUCTION

The quest for topological phases of matter and, in partic-
ular, topological superconductors (TOPS) has been a major
pursuit in condensed matter physics for the last 20 years [1].
TOPS phases hosting elusive Majorana zero modes (MZMs)
have attracted a lot of interest both from the fundamental
point of view, as well as for potential uses in fault-tolerant
quantum computation due to their exotic non-Abelian anyonic
statistics [2].

Although much of the progress in this area has been
achieved within a framework of noninteracting electrons (i.e.,
the topological classification of TOPS phases according to
their symmetries and the identification of possible topolog-
ical invariants), the effects of interactions still remains as
a conceptually important open question. Moreover, many
of the technologically relevant applications might involve
low-dimensional TOPS systems, for which the effects of
interactions are enhanced [3]. Therefore, the study of inter-
action effects on TOPS is also relevant from the technological
perspective.

Up to now, a variety of different physical systems
have been proposed to realize TOPS phases hosting MZM
states: ν = 5/2 fractional quantum Hall state [4], superfluid
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He-3 [5], proximitized topological insulator-superconductor
structures [6], superconducting heterostructures combining
proximity-induced superconductivity, semiconductors with
strong Rashba spin-orbit interaction and Zeeman fields [7–9],
etc. All these systems are potential realizations of TOPS
phases, which break time-reversal symmetry (“class D” TOPS
in the Altland-Zirnbauer classification [10,11]).

A different class, the time-reversal invariant TOPS (TRI-
TOPS) or DIII class TOPS originally proposed by Qi et al.
[12,13], has been predicted by Zhang, Kane, and Mele (ZKM)
to arise in 1D or 2D geometries by combining semiconductors
with strong Rashba spin-orbit coupling (SOC) (i.e., nanowires
or films) proximitized with extended s-wave superconductors
[14]. The TRITOPS have been recently the subject of intense
theoretical research [12–29]. For 1D TRITOPS, a key feature
is the existence of Kramers pairs of MZMs at the edges of the
system. Another peculiar feature is that the spin projection at
the ends in the direction of the SOC is ±1/4 [12,21,25]. For
a TRITOPS wire of length L, MZMs are well defined as long
as L � ξ , with ξ the MZM localization length. Under these
conditions, an external magnetic field applied to one-half of
the wire in the direction of the SOC produces a Zeeman-split
pair of low-energy MZMs with total spin projection at the end
equal to 1/4 or –1/4, depending on the sign of the magnetic
field [21,25].

The effect of repulsive interactions in 1D TOPS and
TRITOPS has been studied in previous works using e.g.,
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mean-field approaches [30], density-matrix renormalization
group (DMRG) [18,27,28], the Abelian bosonization
framework [31], and numerical renormalization group for two
sites [32]. While for 1D TOPS interactions tend to weaken
the superconducting correlations, therefore weakening
the TOPS phase [33,34], it was suggested that repulsive
interactions in a 1D system stabilizes the TRITOPS phase.
The basic stabilization mechanism consists in local repulsive
interactions, which penalize the proximity-induced singlet
pairing with respect to the proximity-induced triplet pairing
[31,35]. In addition, although it is not the scope of the present
paper, we mention in passing that the effect of attractive
interactions on TRITOPS has also been studied [36].

In this article we explore the effects of on-site repulsive
interaction U on the ZKM model in the presence of a mag-
netic field J . For J perpendicular to the SOC, the model
describes hybrid magnet-superconductor systems with TOPS
and TRITOPS phases, in particular magnetic adatoms (i.e.,
Fe, Co, or Mn atoms) deposited on top of a superconductor,
a system usually known as a “Shiba chain”. Recent experi-
mental progress in these type of hybrid nanostructures have
shown preliminary evidence of MZMs in the dI/dV STM
signal [37–43], drawing a lot of interest. However, the small
size of the parent superconductor gap (typically Pb) imposes
practical difficulties in all type of proximity-induced TOPS,
such as, e.g., stringent low-temperature requirements and lim-
ited spectral resolution of the experiments. For this reason,
recent theoretical proposals have put forward the possibility
to observe both TOPS and TRITOPS in nanostructures made
of magnetic impurities deposited at the surface of unconven-
tional high-Tc superconductors, generating renewed interest
on these hybrid structures [44].

In this paper, using the density-matrix renormalization
group (DMRG) method, we study the topological phase di-
agram of the system for finite magnetic field perpendicular to
the SOC and for different values of U . We also explore the
response of the MZMs to the presence of a magnetic field
applied to one half of the chain. Such a magnetic probe can
help to detect and identify the topological phase of the chain.
In particular, we show that the fractional spin 1/4 excitations
at each end of the wire, predicted to emerge in noninteracting
models for magnetic field parallel to the SOC [12,21,25], are
robust to the presence of strong interactions.

The paper is organized as follows. In Sec. II we explain our
model. Section III contains the main results and Sec. IV is a
summary and discussion.

II. THEORETICAL MODEL AND METHODS

We consider the following discrete Hamiltonian encoding
the minimal ingredients leading to a TRITOPS phase (in close
analogy to the ZKM model in the continuum), with additional
Zeeman and an on-site repulsion terms,

H =
∑

j

[(
tc†

j c j+1 −
(

μ

2
+ U

4

)
c†

j c j + �c†
j,↑c†

j+1,↓

+ iαRc†
jσyc j+1 + H.c.

)
− Jc†

jσβc j + Unj,↑n j,↓

]
(1)

where c†
j = (c†

j,↑, c†
j,↓) is a spinor containing both fermionic

creation operators at site j with spin projections {↑,↓},
σα (with α = {x, y, z}) are the 2×2 Pauli matrices, t is
the nearest-neighbor-hopping amplitude, μ is the chemical
potential, αR is the Rashba SOC in the y direction, � is
the extended s-wave amplitude of the superconducting
first-neighbor pairing correlations, and U is the on-site
electron-electron repulsion. This particular form of Eq. (1)
ensures that for any value of U , μ = 0 corresponds to the
particle-hole symmetric point.

While the presence of a nearby bulk superconductor
usually screens the electron-electron interaction, in low-
dimensional nanostructures of reduced dimensions, local
repulsion terms of this type might be relevant, and in fact (as
we show below) this is the case for the ground-state phase
diagram of this system. In the above model, the Zeeman
parameter J can either represent the effect of an external
magnetic field (J = μBB), where μB is the Bohr magneton,
applied along the β direction, or (in the case of atomic Shiba
chains) the effect of a local exchange field originated in a mi-
croscopic s-d exchange interaction Isd (J = 2Isd S j

z ) between
the conduction states and the magnetic impurities S j

z assumed
ferromagnetically aligned along z at each site j of the chain.
In this case, β = z and the effect is similar to a magnetic field
perpendicular to the SOC. We will also consider the case when
J is parallel to the SOC (β = y).

All the numerical results presented in this paper have been
obtained by the means of DMRG computations, implemented
using the ITensor software library [45]. We have implemented
the necessary maximum bond dimension (400 in the worst
case), which allowed us to keep the truncation error cutoff of
10−10 throughout.

III. RESULTS

A. Topological phase diagram

We now focus on the ground-state properties of the system
and study the topological phase diagram as a function of the
chemical potential μ and the Zeeman field J perpendicular
to the SOC, for different values of the interaction parameter
U (see Fig. 1). The other parameters of the model are fixed
throughout the rest of the paper to the values � = 1.2, αR =
0.8 (here the hopping amplitude t = 1 has been chosen as the
unit of energy). This particular parameter set has been chosen
to coincide with those used in Ref. [44].

While topological invariants of strongly correlated sys-
tems have been calculated using Green’s functions [46,47],
or extensions of the Zak’s Berry phase [48], they present
serious difficulties to be implemented with DMRG. Therefore,
we determine the topological nature of the ground state by
analyzing the degeneracy of the reduced density-matrix en-
tanglement spectrum [49,50]. Given a quantum system, which
can be divided into two subsystems A and B, the entanglement
spectrum is the spectrum of eigenvalues of the reduced density
matrix ρA (ρB), obtained after tracing out the B (A) degrees
of freedom. The change of degeneracies in the entanglement
spectrum is indicative of topological quantum phase transi-
tions occurring in the ground state of the whole system, and is
related to the degeneracy of the ground state and the number
of MZMs per end of the chain [49,50].
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FIG. 1. Topological phase diagram as a function of chemical po-
tential and magnetic field perpendicular to the SOC. Red (black) dots
correspond to fourfold (twofold) degeneracy of the entanglement
spectrum. Parameters are � = 1.2 and α = 0.8, and the length of
the chain is L = 400 sites.

Generically speaking, starting from a parameter regime,
which realizes a time-reversal symmetric superconductor
[J = 0 in our model Eq. (1)] and for low or moderate values of

μ, we obtain a fourfold degenerate ground state indicative of a
TRITOPS phase (red dots in Fig. 1). Interestingly, we see that
this phase is robust against the effect of a uniform magnetic
field perpendicular to the SOC, and only for quite large values
of J beyond a critical line Jc(μ) the system becomes a DIII
TOPS with a twofold degenerate ground state (see black dots).
Additionally, for extremely low (large) values of μ, the bands
can be completely depleted (filled) and the system becomes
a trivial insulator with a nondegenerate ground state (white
region in Fig. 1).

The aforementioned robustness of the fourfold ground-
state multiplet is quite surprising given the fact that time-
reversal symmetry no longer protects the TRITOPS phase.
In the noninteracting case, this is related to the presence of
an additional chiral symmetry, implemented by the operator
S = σyτy (where the Pauli matrices τα operate on the Nambu
space), which anticommutes with H . Indeed, for U = 0, and
taking periodic boundary conditions in Eq. (1), the Hamil-
tonian matrix of the system takes the compact form in k
space Hk = (εk − μ)σ0τz + ασyτz + �kσ0τx + Jσβτ0, where
the Nambu basis �k = (ck↑, cc,↓, c†

−k↓,−c†
−k↑)T has been

used, and where εk = 2t cos(k) and �k = � cos(k). It is easy
to see that when β = z the chiral operator S anticommutes
with Hk , and generates a chiral symmetry, which is additional
to the time-reversal symmetry occurring for J = 0. This ad-
ditional symmetry allows to compute a Z invariant, which
counts the number of MZMs at each end of the wire [51].

On the other hand, as can be seen in Fig. 1, the presence
of a local on-site interaction Hubbard U term has an im-
portant effect on the topological phase diagram, as it tends
to weaken the TRITOPS phase with respect to the magnetic
field. This effect can be qualitatively understood in terms of
an effective noninteracting model with a smaller renormalized
superconducting bulk gap due to the repulsive interaction. In
the following we denote this gap excluding the low-energy ex-
citations related with the MZMs as �s. This gap is calculated
as follows. The one-particle excitations energies are defined
as the different energies in the subspace with odd number
of particles minus the ground-state energy (which lies in the
subspace with even number of particles)

En = E (odd)
n − E (even)

g , (2)

where the subscript g denotes the ground state. Among these
En, in the topologically nontrivial regions, there is a low-lying
subset, which correspond to the MZMs, with a small expo-
nential splitting ∼e−L/ξ for a finite chain, due to the mixing of
the MZMs between both ends. The corresponding excitation
energies of this subset behave as En → 0 for L → ∞, and
can be easily identified with a finite-size scaling analysis. The
next excitation energy above this multiplet defines �s, which
can be identified with bulk excitations. In Fig. 2, we show �s

as a function of on-site repulsion. One can clearly see that
the value of �s decreases by nearly a factor 2 as U increases
from 2 to 6. The detrimental effects of the repulsive interac-
tions on �s allows to qualitatively understand the topological
phase diagram on Fig. 1. In the inset of Fig. 2, we show the
aforementioned low-lying mulltiplet of MZMs, and the bulk-
excitation gap �s (for which no appreciable dependence of
�s ∼ 0.58 on the length of the chain L is observed), computed
for the particular value U = 6.
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FIG. 2. Superconducting single-particle excitation gap �s (de-
fined in the main text) computed for several values of U , and for
μ = J = 0. (Inset) Finite-size scaling showing the first excitations in
the odd-parity subspace for U = 6.

This renormalization of �s due to the repulsion U has
detrimental effects on the stability of the TRITOPS phase,
in particular when J is increased (see Fig. 1). Note, how-
ever, that increasing U also strengthens the TRITOPS phase
with respect to the chemical potential μ. An intuitive way
to understand this effect is obtained using the framework of
the mean-field approximation: Decoupling the interaction in
the density-density channel, i.e.: Unj,↑n j,↓ → U [n j,↑〈n j,↓〉 +
〈n j,↑〉n j,↓ − 〈n j,↑〉〈n j,↓〉] has the effect of renormalizing the
single-particle spectrum to εk → ε̃k = εk + U (〈n〉 − 1)/2,
where we have reasonably assumed an homogeneous and
paramagnetic solution 〈nj,↑〉 = 〈n j,↓〉 = 〈n〉/2, and where εk

is the noninteracting dispersion. Then, for μ > 0 when the
total occupation per site is 〈n〉 > 1, a larger value of μ is nec-
essary to compensate for the interaction-induced depletion of
the renormalized band and, therefore, to obtain the same value
of the 1D TRITOP topological invariant (see e.g., Ref. [12]) as
compared to the noninteracting case. The opposite occurs for
μ < 0, and a lower value of μ is necessary. This effectively
extends the stability region of the TRITOPS phase near the
line J = 0 with respect to μ, a fact that could be beneficial
to stabilize TRITOPS phases in potential implementations in
devices. Indeed, by changing the parameters of the model, we
can go from either a TRITOPS with fourfold degeneracy of
the ground state, to a D-class topological phase with twofold
degeneracy, to a trivial superconducting phase with a nonde-
generate ground state.

As a way to characterize the different phases of the model,
in the next sections we consider an inhomogeneous Zeeman
term applied to one half of the system (i.e., the left half). The
introduction of a time-reversal symmetry-breaking interaction
to only one end of the system allows to phenomenologically
characterize the behavior of the MZMs arising in TRITOPS.

B. Magnetic field at the end perpendicular to the SOC

In this section we explore the fate of the MZMs in the
TRITOPS phase when a magnetic field perpendicular to the
SOC is applied to the left part of the chain [Eq. (1) with a
term −J

∑L/2
j=1 c†

jσzc j]. To that end we begin with the study

FIG. 3. Magnetization at the left side of the noninteracting
(U = 0) chain as a function of magnetic field applied to the left half
of the chain. The different data sets represent different lengths L. The
parameters set is t = 1, � = 1.2, α = 0.8. and μ = U = 0.

of the noninteracting case U = 0, where exact calculations
independent of the DMRG procedure are available, and
compute the magnetization of the left half of the chain
Sz

l = ∑L/2
j=1 Sz

i .
In the topological phases and for low values of J , one ex-

pects the magnetization to be dominated by the MZMs, which
are localized near both ends of the chain. For this reason, the
spatial extension of the magnetic field is not important as long
as it is longer than the MZM localization length ξ . However,
rather surprisingly, for a magnetic field perpendicular to the
SOC, the Kramers-degenerate MZMs of the TRITOPS are
not mixed by the magnetic field [21]. This is related to the
additional chiral symmetry S = σyτy mentioned above. The
leading correction to the ground-state energy becomes of sec-
ond order in J (i.e., quasiparticles are excited into the bulk and
then return to the ground state), leading to a linear dependence
of 〈Sz

l 〉 with J . This is in fact the behavior observed for small J ,
displayed in Fig. 3. The slope is a fraction of J/�s, where �s

is the superconducting gap, as expected for bulk excitations.
For U = 0, the model can be solved exactly without using
DMRG and we used these calculations to check our DMRG
results. Note that all the plots eventually saturate at the value
1/2, corresponding to the completely polarized ground state,
as is physically expected for very large values of the magnetic
field.

In Fig. 4 we show the changes introduced by a variation
of the chemical potential. For μ � 2 the system enters the
trivial phase and the MZMs disappear. Therefore, the effect
of the magnetic field is much weaker for small J . However,
for large μ, increasing J the system enters the topological
phase with one MZM at each end (black dots in Fig. 1) and
〈Sz

l 〉 increases in that region (for example for 2.6 < J/t < 9.4
for μ = 2.5) before reentering the trivial phase for large J ,
where 〈Sz

l 〉 saturates at the value 1/2. We think that the change
in slope of the curve for μ = |t | at Jz ∼ 4|t | is related to the
TOPS-trivial transition, while the corresponding changes for
μ > 2|t | are related to the opposite transition (see Fig. 1).

Finally, in Fig. 5 we explore the effect of a finite U . As
discussed in Sec. I, the gap �s decreases with increasing U
and therefore the slope of 〈Sz

l 〉 for small J , which is expected
to be inversely proportional to �s increases. This behavior
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FIG. 4. Magnetization of the left half of the chain for L = 32
sites and several values of μ. Other parameters as in Fig. 3.

confirms our interpretation of a strongly interacting TRITOPS
chain in terms of an effectively noninteracting TRITOPS with
a renormalized parameter �s.

C. Magnetic field at the end parallel to the SOC

For a very long chain in the regime L � ξ , and magnetic
field parallel to the SOC, the system effectively behaves as
if free fractionalized spins 1/4 existed at each end. This
picture is based on the fact that an infinitesimally small J
generates a magnetization 〈Sy

l 〉 = 1/4, where Sy
l = ∑L/2

i=1 Sy
i

under a magnetic field −J
∑L/2

j=1 c†
jσyc j applied to the left

half of the chain [12,21,25]. On the other hand, for a finite
noninteracting chain, due to the mixing of MZMs at the ends,
the lowest-lying Kramers-degenerate one-particle excitations
have a small but finite energy E (0) for J = 0, which decays
exponentially with the length of the chain. For a finite Zeeman
energy J , the Kramers degeneracy is broken and E (J ), which
corresponds to E1 in Eq. (2), decreases. E (J ) has been calcu-
lated analytically in Ref. [21], and the expectation value of the
spin projection is described by the simple expression [21]

〈
Sy

l

〉 = 2Jy

4
√

(2Jy)2 + 16E (0)2
. (3)

Therefore, the magnetization increases and saturates to the
value 1/4 with an applied field, which is orders of magnitude

FIG. 5. Magnetization of the left half of the chain for L = 20
sites and several values of U . Other parameters as in Fig. 3.

FIG. 6. Energy of the lowest one-particle excitation as function
of U for a chain of L = 20 sites. Other parameters as in Fig. 3.

smaller than in the case of a magnetic field perpendicular to
the SOC discussed in Sec. III B.

In Fig. 6 we show the dependence of E (0) with U . The
curve follows an exponential behavior with very small values
for U → 0 and increases abruptly for U ∼ 4. Again, this
effect can be qualitatively explained in terms of a longer local-
ization length ξ ∼ h̄vF /�s due to the renormalization of �s to
lower values by the effect of the interaction. Presumably, at the
value of U 
 4 the regime L ∼ ξ is reached, and the mixing
of MZMs at different ends becomes important. We illustrate
this effect in Fig. 7, where we show the expectation value of
the spin at each site for a chain of L = 20 sites. Note that for
U = 0 and U = 2 the expectation values of 〈Sy

i 〉 are localized
near the ends and vanish exponentially fast near the middle of
the chain. However, for U = 5, the magnetization is spread all
over the system, indicating that the MZM localization length
ξ is of the order of L.

Finally, in Fig. 8 we show the expectation value of the
spin projection at the left end as a function of the mag-
netic field applied parallel to the SOC, for several values
of U . Interestingly, note that despite the fact that Eq. (3)
was analytically obtained for a noninteracting model, it re-
mains valid even in the strongly-interacting regime (i.e.,
up to U � 3) and shows universal behavior. Up to U ∼ 5
the expression is only qualitatively valid and it eventually
breaks down for U > 7. This deviation and breakdown at
extremely large values of U occurs because the MZMs
(and therefore, the magnetization) are no longer localized
at the ends, and the analytic approach of Ref. [21], which

FIG. 7. Expectation value of the spin projection as a function of
site for a chain of 20 sites, Jy = 10E (0) and different values of U .
Other parameters as in Fig. 3.
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FIG. 8. Magnetization at the left side of the chain as a function
of magnetic field applied to the left part of the chain for 20 sites and
several values of U . Other parameters as in Fig. 3.

assumes localized zero-energy modes at the ends, is no
longer valid.

IV. SUMMARY AND DISCUSSION

We have studied the strongly-interacting version of the
one-dimensional Zhang-Kane-Mele model for time-reversal
invariant topological superconductors. The model contains
extended s-wave superconductivity and Rashba spin-orbit
coupling (SOC) as key ingredients, and we incorporate an
on-site Coulomb repulsion U and an external Zeeman field
in order to study the stability of the TRITOPS phase and the
emerging MZMs against the combined effects of the repul-
sive electron-electron interaction and the external field, which
breaks the time-reversal symmetry. The model is relevant to
understand the effect of repulsive interactions in different one-
dimensional systems predicted to host TRITOPS phases, such
Shiba chains on top of high-Tc superconductors [44].

By analyzing the degeneracy of the reduced density-matrix
entanglement spectrum using the DMRG technique (as ex-
plained in Sec. III A), we have determined the different
topological phases of the model as a function of chemi-
cal potential and magnetic field perpendicular to the SOC.
Remarkably, the fourfold degeneracy characteristic of the
TRITOPS phase remains stable up to quite large values of the
external Zeeman field (i.e., comparable to the bandwidth). For
larger values of the magnetic field only the twofold degenerate
topological D phase and the trivial phase persist.

Concerning the effect of U , an important conclusion of this
paper is that despite its effect on the topological phase diagram
(i.e., redefining the topological phase boundaries), the pres-
ence of local repulsive interactions has no other qualitative
effects. In fact, our results support a phenomenological pic-
ture where electron-electron interaction can be introduced in
the renormalized parameters of an effectively noninteracting
model. This has been confirmed by the fact that all physical
properties seem to depend on the renormalized single-particle
excitation gap �s (see Fig. 2). In few words, the interaction
U weakens the fourfold degenerate phase against a perpen-
dicular magnetic field, but it favors and stabilizes this phase
with respect to a varying chemical potential. From a practical
perspective, this last effect could be useful in potential appli-

cations in order to enlarge the range of chemical potential for
which the topological phases exist.

We note that the persistence of the MZMs when the inter-
action is turned on, is not a general result. For example, in the
interacting Su-Schrieffer-Heeger model, although in presence
of the on-site repulsion U , two different topological sectors
can still be identified by many-body topological invariants
[46–48], the MZMs end states disappear even in the topo-
logical phase for finite U [47]. The presence of zero-energy
edge modes dictated by the bulk-boundary correspondence is
modified by the possible presence of zeros of the interacting
Green’s function at zero energy [46,47,52]. Interestingly, a
zero of this kind is responsible for a topological transition in a
two-channel spin-1 Kondo model with easy-plane anisotropy
[53], which explains several relevant experiments [53–55].

While at the moment there is no evidence, to our knowl-
edge, of concrete experimental realizations of TRITOPS, the
results found in this and other theoretical studies (see e.g.,
Ref. [44]) give hope in the search of potential realizations,
in particular given the extended region of the fourfold de-
generate phase in parameter space μ-J shown in Fig. 1, for
different values of U . As mentioned before, a crucial as-
pect in the search of concrete realizations of TRITOPS is
the presence of an extended superconducting pairing [14].
In this sense, superconductors with unconventional pairing
symmetry are potential candidate materials. In particular,
cuprate high-Tc compounds, featuring d-wave pairing with
nodal gapless points in the excitation spectrum, seems to
be excluded in the search of potential TRITOPS platforms,
as fully gapped systems are the obvious choice to obtain
stable topological phases. This naturally narrows the search
to the iron-pnictides and iron-chalcogenides superconductors,
featuring an extended s-wave pairing with a fully gapped
Fermi surface, such as FeSe [56,57], FeTeSe [58], LaFeAsO
[59], and BaKFe2As2 [60]. These materials have the addi-
tional advantage of having much larger Tc as compared to
conventional s-wave materials, such as Al or Pb, typically
used in different magnet/superconductor hybrid interfaces. We
recall that a higher Tc usually indicates a larger gap size, a
fact that simplifies the spectral resolution of subgap states
and simultaneously enhances the topological protection of the
MZMs [44]. Many other iron-based superconductors could be
mentioned; however, in those cases the pairing symmetry is
less clear and is currently under debate.

In order to characterize the different phases and the effect
of the on-site interaction, we have calculated the magnetiza-
tion at one end of the chain when a magnetic field is applied
to that end. While external magnetic fields with atomic spatial
resolution are not experimentally feasible, in the case of Shiba
chains spin-polarized STM tips have allowed to study the spin
response of atomic chains near the ends [61]. In our paper,
we obtain a highly anisotropic response depending on the
orientation of the externally applied field with respect to the
SOC axis. For a magnetic field J parallel to the SOC, the spin
projection at the end rapidly saturates [i.e., for field strengths
corresponding to the small energy scale E (0) arising from
mixing and energy splitting of the MZMs at different ends]
to the unconventional value S = 1/4. This splitting decays
exponentially with L, the length of the chain. For moderate
values of U , the magnetization at the end follows a universal
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curve as a function of the ratio between magnetic field and
E (0) [see Eq. (3)].

For magnetic field perpendicular to the SOC, the magne-
tization at the end increases linearly with the applied field
with a slope inversely proportional to the superconducting
gap �s.

Finally, we comment on the possible effects of longer
range repulsion. The effect of nearest-neighbor (long-range)
repulsion on the Kitaev model has been studied by DMRG
[62,63] (approximate [64]) methods. In addition, the effect of
repulsions between a quantum dot and a Kitaev chain have
been also studied [65,66]. From these papers we conclude that
in order for these repulsive interactions to affect significantly
the MZMs, they should reach simultaneously the MZMs of

both ends. In other words either the interactions are long range
so that both MZMs repel each other, or the wire is sufficiently
short so that there is a significant mixing between MZMs at
both ends. We believe that this conclusion can be extended to
our spinful model.
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