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The physics of skyrmions, and in particular the issue of how to isolate and manipulate them individually, is
a subject of major importance nowadays in the community of magnetism. In this article we present an in-depth
extension of a study on this issue that was recently proposed by some of the authors [H. D. Rosales et al., Phys.
Rev. Lett. 130, 106703 (2023)]. More precisely, we analyze the competition between skyrmions and a chiral spin
liquid in a model on the kagome lattice. We first present an analytical overview of the low-energy states using
the Luttinger-Tisza approximation. We then study the effect of thermal fluctuations thanks to large-scale Monte
Carlo simulations and explore the entire parameter space with a magnetic field B, in-plane D, and out-of-plane
D? Dzyaloshinskii-Moriya interactions. While skyrmions and the chiral spin liquid live in different regions of
the parameter space, we show how to bring them together, stabilizing a skyrmion fluid in between; a region
where the density of well-defined skyrmions can be tuned before obtaining an ordered phase. We investigate in
particular the melting of the skyrmion solid. Our analysis also brings to light a long-range ordered phase with
Z; symmetry. At last, we initiate the study of this rich magnetic background on conduction electrons that are
coupled to the local spins. We study how the different chiral magnetic textures stabilized in this model (skyrmion
solid, liquid, and gas and chiral spin liquid) induce a topological quantum Hall effect. We observe in the ordered
skyrmion phase the appearance of Landau levels which persist even in the skyrmion-liquid regime and gradually
disappear as the skyrmion density decreases to form a gas.
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I. INTRODUCTION

Magnetic skyrmions have attracted great interest owing
to their unique topological spin texture [1-6], especially for
potential applications to next-generation magnetic memory
and logic computing devices in spintronics [7,8]. In general,
the formation of skyrmion lattices arises from the interplay
of competing interactions. A variety of stabilizing mecha-
nisms have been well established over the years, starting from
the competition between the ferromagnetic exchange interac-
tion and the Dzyaloshinskii-Moriya (DM) interaction [9,10],
to exchange frustration [11,12], bond-dependent exchange
anisotropy [13-21], the Ruderman-Kittel-Kasuya-Yosida in-
teraction in itinerant magnets [22-25], or higher-order ex-
change interactions [26]. Generally at zero field, B = 0, the
low-temperature physics favors the development of a helical
(H) phase characterized by one-dimensional magnetic stripes.
As the magnetic field B increases from a low but finite value,
these stripes, through the superposition of multiple stripes
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along different directions, develop into a periodic arrange-
ment of skyrmions (SkX). During the transition between the
H and SkX phases, the emergence of elongated skyrmions
known as bimerons is often observed [27]. Ultimately, at high
magnetic fields, the SkX phase undergoes a transition into a
field-polarized (FP) regime.

The intermediate region between the SkX and FP phases
holds significant importance due to the intriguing presence of
a dilute fluid of skyrmions. Typically, the density of skyrmions
can be manipulated at low temperatures by adjusting the
field strength B which acts as an effective chemical poten-
tial [28-30]. However, attempting to control the number of
skyrmions with temperature (by heating) is more challeng-
ing. Thermal fluctuations do melt the SkX phase, but they
eventually destroy the skyrmions. In that sense, temperature
does not really tune the density of skyrmions but rather dis-
integrates them into paramagnetic fluctuations. In a recent
publication, we introduced a frustrated microscopic model
that effectively separates the SkX order from the paramagnetic
regime by introducing an intervening chiral spin liquid (CSL)
in between [31]. This CSL bears a finite magnetization that
couples to the magnetic field, stabilizing the FP regime for
lower fields at intermediate temperatures. As a result, the
FP regime circles around the SkX phase, and the skyrmion
density can now be continuously tuned from high to low on
heating.

©2024 American Physical Society
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Our objective in the present paper is to conduct an in-depth
study of the model proposed in Ref. [31]. First, we analyze the
low-energy physics using a Luttinger-Tisza approximation.
Then, through Monte Carlo simulations, we explore the entire
phase diagram in multidimensional parameter space, varying
the in-plane D™ and out-of-plane D* Dzyaloshinskii-Moriya
interactions as well as the magnetic field B, as a function of
temperature 7. The chiral spin liquid and skyrmions live in
different regions of parameter space, and we explain under
which conditions these regions can be brought together. As
a side benefit, we discover the presence of a long-range or-
der with Z3 symmetry. Then, focusing on parameters where
Sfour distinct chiral magnetic textures are successively stabi-
lized on heating (skyrmion solid, liquid, and gas and chiral
spin liquid), we characterize the two-dimensional solid/liquid
transition of skyrmions [28-30]. Last, we analyze the topo-
logical Hall response of itinerant electrons coupled to the
local magnetic moments to probe these different chiral phases.
We find the traditional topological quantum Hall effect in the
skyrmion-solid phase [32,33] but also, and more surprisingly,
in the skyrmion-liquid regime despite the absence of broken
translational symmetry.

II. THE MODEL

We consider the following spin Hamiltonian on a kagome
lattice:

H=—-

JS;-S; -
(ij) (

D;-(SixS;)—BY S, (1)
i) i

where S; represents classical Heisenberg spins of unit length
(IS;] = 1) at site i, J > 0 (for simplicity, we will fix J = 1 for
the rest of the paper), the DM interaction includes in-plane and
perpendicular (to the lattice) contribution as D;; = iji +
D;; [see Fig. 1(a)], being D}j = D*#;; = D¥(r; —1,)/|r; —
r;|, and B is the external magnetic field perpendicular to the
lattice plane.

In the kagome lattice, at B = 0, the model defined by
Eq. (1) exhibits a particular point in the parameter space.
When D =0 and D*/J = +./3, the ferromagnetic (FM)
coupling perfectly balances the D* interaction. As a result, the
chiral “umbrella” and FM ground-state configurations illus-
trated in Figs. 1(b) and 1(c) minimize the classical energy for
each triangle [34]. This leads to the spins’ xy components dis-
playing CSL behavior, characterized by extensive degeneracy
and algebraic correlations, while the z components assume a
finite uniform value.

However, in the case of pure in-plane DM interaction
where D > 0 and D* = 0, the scenario undergoes a signif-
icant change. A nonzero D value promotes the emergence
of typical spin helical configurations, commonly observed in
ferromagnetic materials, as well as the formation of skyrmion
phases for a finite external magnetic field. Thus, the interplay
between these two types of DM interactions is expected to
give rise to exotic phenomena. In our previous work [31],
we initiated this study by focusing on a combination of these
cases, specifically considering D* = +/3 and D¥ = 0.5. We
demonstrated the possibility of utilizing a CSL as an entropic
buffer to induce a quasivacuum of skyrmions. Building on
these findings, our present study aims to further explore this

ferromagnetic

umbrella

FIG. 1. (a) Kagome lattice and DM vectors. Labels 1, 2, and 3
represent the three sublattices, (b) umbrella configuration in a tri-
angular plaquette and (c) ferromagnetic configuration. Both (b) and
(c) states have the same out-of-plane magnetization.

model and investigate the phenomenology across a broader
range of parameters.

III. THE LUTTINGER-TISZA APPROXIMATION

To explore the low-energy configurations in the absence
of a magnetic field at zero temperature, we resort to the
Luttinger-Tisza approximation (LTA) [35,36]. In this approx-
imation, the local fixed spin-length constraint |S;| =1 is
replaced by a global constraint ) j S? = N, where N repre-
sents the number of lattice sites. By introducing this softer
constraint, the spin Hamiltonian (1) can be diagonalized using
the Fourier transformation S = ), e®TiSY Herea = x,, z,
while r; and k denote the position and pseudomomentum,
respectively. Following the diagonalization process, the re-
sulting spectrum within this method consists of nine bands
wg, (@=1,...,9, representing the three spin components
and three sublattices) and the lowest-energy configuration is
associated with the bottom of the lowest band which defines
the ordering wave vector k*.

In Fig. 2 we summarize several cases of the model de-
fined in Eq. (1). Figure 2(a) shows the pure chiral spin
liquid case, (D*, D**) = («/§, 0), which has the characteris-
tic lowest-energy flat bands. In the “pure skyrmion” model
(D* = 0), at lower values of the in-plane DM interaction the
lowest-energy band has ringlike minima for smaller D™, and
a triple-k set appears as D™ is increased [Figs. 2(b) and 2(c)].
The inclusion of D? = +/3 does not significantly change the
bands’ minima [Figs. 2(d) and 2(e)], but it introduces a flat
band with energy —2J. The energy difference AE between
the minima and the flat bands starts from zero (gapless) and
smoothly increases with D* [Fig. 2(f)]. At low D this dif-
ference is fairly small compared to the ground-state energy
Eg, and thus we may expect a strong influence of the chiral
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FIG. 2. [(a)—(e)] Cut of the band structure obtained from the Luttinger-Tisza approximation (LTA) in momentum space for (D*, DY) = (a)
(+/3, 0) (pure chiral spin liquid), (b) (0,0.5) and (c) (0,1.5) (pure skyrmion models), and (d) (+~/3, 0.2) and (e) (+/3, 0.3), combination of CSL
and pure skyrmion models. The bottom of each panel shows the position of the energy minima at Ey. Panel (f) shows the energy difference
AE between the energy minima and the degenerate flat bands as a function of D, fixing D* = /3.

spin liquid physics at finite temperature. On the other hand
for higher D, AE is significantly larger, so we expect the
chiral spin liquid effects to be erased. At the particular value
DY = 0.5, AE ~ 0.2 ~ 10%E,s, which would be consistent
with the evidence of chiral spin liquid behavior at intermediate
temperatures. Thus, from this analysis we are able to predict
the range of D™ where chiral spin liquid effects are visible
in Monte Carlo simulations: They would be dominant for low
D™ and negligible for larger D & 1. At intermediate values,
DY ~ 0.3-0.6, an interesting interplay between skyrmion and
spin liquid physics can be expected. But the LTA remains an
approximation, which is why we shall now turn our attention
to Monte Carlo simulations in order to confirm this analytical
intuition.

IV. PHASE DIAGRAMS BY CLASSICAL MONTE
CARLO SIMULATIONS

Here we thoroughly investigate the proposed model in
Eq. (1) by exploring different parameter values of the DM
interactions and magnetic field, using extensive Monte Carlo
simulations, with a combination of the Metropolis algorithm
and the overrelaxation method (microcanonical updates), low-
ering the temperature in an annealing scheme. We performed
our simulations in N = 3 x L? site clusters, with L = 48—192,
with periodic boundary conditions; 103 — 10° Monte Carlo
steps (MCS) were used for initial relaxation, and measure-
ments were taken in twice as much MCS.

We first give a general overview of the competition be-
tween CSL and skyrmion physics, varying D™ and D* at zero
field B = 0. Then we describe in detail the emergent physics
in the B — T phase diagram that was presented in Ref. [31]
for D = 0.5. The different magnetic phases are character-
ized via the magnetization M = (1lv > ;S7) and the specific
heat C, = ((E?) — (E)?)/T?. Another convenient quantities

to identify various types of chiral states are the scalar chirality
Xijt = S; - (S; x Sy) defined for each triangular plaquette and,
what is more appropriate to characterize skyrmions states, the
discretized scalar chirality defined as [37]

X0 = ZAl]k Sgn[Xt]k] +A1/’k’ Sgn[Xt]’k’]> (2)

471N<

where i, j, k (i, j/, k) are the sites involved in the calculation
and A;j; is the local area spanned by three spins i, j, k (and
i, j/, k') on every elementary triangle. In addition to these
quantities computed from the local spins {S;}, we introduce
the plaquette spin, calculated as the average spin in each
elementary triangle (or plaquette), S]T =D i AV, S;/3, with
plaquette index j. Taking into account that each tJype of pla-
quette defines a triangular lattice, we also define the plaquette
chirality xg , calculated by the triple product between plaque-
tte spins {SJT.}.

Finally, 1t is well known that the structure factor will have
distinct characteristics for the CSL phase (the presence of
pinch-points [34,38]) and for a skyrmion lattice (six bright
peaks or triple-k phase [4]). Therefore, we have also calcu-
lated the static spin structure factor, with components S (k)
and S (k), perpendicular and parallel to the external field,
respectively, definedas Sy (k) = + >, _, S22 89e™T]?) and
Sik) = N(| Z SZ 112y "and the related plaquette variables,
ST (k) and S (k) As seen in the following section, we will
focus on the use of the plaquette variables at D™ = 0.5 to
evidence the effect of the CSL physics.

A. In zero field B =0

As we described in Sec. II, there are two disconnected
limits of the model presented in Eq. (1): (a) D =0 and
= ++/3, with the spins xy components displaying CSL
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FIG. 3. (a) DY vs T phase diagram at B = 0, D* =

/3. [(b) and (¢)] C, and Xxo vs T for different values of D, D* = V3.(d) Divs T

phase diagram at B = 0, fixing D* = 0.2. [(e) and (f)] C;, and xp vs T for different values of D*, D = 0.2. Representative snapshots for

different phases at T =2 x 10~ for D = 0.2, 0.35, 0.5 [(g)—(i)], D*

lattice spacing (a) is indicated.

behavior and (b) D > 0 and D* = 0 that promotes the emer-
gence of typical spin helical configurations, necessary for the
formation of skyrmion phases in a field. Let us see what
happens when moving from one limit to the other in zero field.
In Fig. 3 we present our simulation results, for lattice size
L = 48. The phase diagrams where constructed combining the
specific heat, the nearest-neighbor chirality and inspection of
the snapshots.

We first fix D° = /3 and B =0 [Fig. 3(a)], inducing the
CSL phase for D™ = 0 with two clear signatures: (i) the pres-
ence of the well-known “pinch points” in the spin structure
factor S, (k) at low temperatures [34,38] and (ii) a specific
heat C, = 5/6 < 1 [see Fig. 3(b)] which reflects the presence
of soft modes [39]. In the context of the LTA, as presented
in Sec. III, the initial scenario occurs when the dispersive
band intersects with the lowest-energy flat band, leading to
the observation of pinch points [40,41]. As the CSL is chiral,
time-reversal symmetry in this phase is broken. In the absence
of any external magnetic field, it is then a spontaneously
broken symmetry, indicating a phase transition between the
paramagnetic and CSL phases. As explained in the Introduc-
tion, this broken symmetry only applies to the z component
of the spins (out-of-plane magnetization); the spin-liquid de-
grees of freedom are entirely in the (S, $¥) plane [42]. For
0 < D¥ < 0.35, from the LTA analysis we expect strong CSL
effects. Indeed, the CSL phase persists at intermediate tem-
peratures (C, < 1), until a sharp peak in specific heat arises
at lower temperatures, indicating a transition to a “labyrinth”
phase [see Figs. 3(a), 3(b), and 3(g)]. This phase is similar to

= /3, and for DY = 0.2, D¢ =2 (§)- In (g)—(j) the scale in terms of

that found in other chiral magnets [43—46], lacking a defining
wave vector but clearly showing a scale in the “thickness”
of the labyrinth, which varies with D*. This competition
between the CSL and labyrinth phases is consistent with the
LTA results presented in Sec. II; for low-enough D* the gap
to the flat bands remains fairly small [see Fig. 2(f)], which
means that the chiral spin liquid state may be accessed through
thermal fluctuations. For D™ 2> 0.35, the CSL region is sup-
pressed and the system stabilizes in a distorted helix phase,
which gets smoother as D is increased [compare snapshots
for D¥ = 0.35, 0.5 in Figs. 3(h) and 3(i)].

Starting from the other limit, we now fix D = 0.2 and
vary D*. The resulting phase diagram is presented in Fig. 3(d).
The helical order persists up to D* ~ 0.6. For intermediate
values, 0.6 < D* < 1.35, the competition between in-plane
and out-of-plane DM interactions distorts the helical order
and induces a labyrinth phase, while CSL appears at higher
temperatures for 1.35 < D* < /3. Since the phase diagram
of Fig. 3(d) at D* = /3 overlaps with the one of Fig. 3(a), we
know that the labyrinth phase must re-emerge at low temper-
ature below the CSL (see the upper violet region). Finally, for
D > /3 the system goes into a ¢ = 0 planar order [see, for
example, Fig. 3(j)], due to the dominant positive D* term [42].

In a nutshell, it is possible to tune the system from the
chiral spin liquid to the helical phase, passing by the labyrinth
phase. In particular, the helical phase is accessible, albeit dis-
torted, for D? \/§, which is the closest in parameter space
to the CSL. From now on, we will only consider D? V3
(except briefly in Sec. IV C). Now that the zero-field physics
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FIG. 4. B vs T phase diagrams for D° = /3 and D™ = 0.33
(a) and D™ = 0.35 (b) with representative spin configurations (c)—(e)
(lattice size L = 48). In panel (f) we present the order parameter
¢ (scaled by system size N) as a function of temperature for three
different system sizes L = 36, 48, 60 for D = 0.35 and magnetic
fields B = 0.045. Panel (g) presents the evolution of ¢ as a function
of the magnetic field B showing a well-defined region where the FV
phase emerges. In panels (f) and (g) the error bars are the size of the
markers.

is under control, let us turn on the magnetic field to determine
in which parameter space we can find skyrmions.

B. The search of skyrmions in a magnetic field

To explore the emergence of skyrmions in a finite magnetic
field, we investigate the cases of D™ = 0.33 and D* = 0.35
[dashed black lines in Fig. 3(a)]. As seen, at zero magnetic
field, for D* = 0.33 there is a small CSL region encroaching
on the labyrinth region at higher temperature, which is not
seen for DY = 0.35. We thus explore the behavior of the
model for these two values of D in the presence of a mag-
netic field to see the effect of the zero-field CSL region in the
formation of skyrmions; in particular, if they can appear out
of the labyrinth phase or if they require the more traditional
helical one [47]. In Figs. 4(a) and 4(b) we present the resulting
B vs T phase diagrams.

For D = (.33, the labyrinth phase persists at low field [a
representative snapshot is shown in Fig. 4(d)], and then turns

into a “frustrated vortex” (FV) phase, which we describe in
detail below, and at higher field it goes into the FP phase.
This FP phase is actually the magnetized evolution of the
CSL that was present in a small temperature window at B = 0
but where the time-reversal symmetry is broken by the field
instead of spontaneously by a transition. The out-of-plane
spin components are magnetized when increasing B, but the
in-plane spin components continue to support a noticeable
chirality |x¢|, a signature of the underlying CSL. As seen in
the LTA analysis, for these values of D™ the flat band, related
to the CSL, is not far from the minima and thus is accessible
through thermal fluctuations and magnetic field. For D =
0.35, however, the labyrinth phase and the CSL are absent at
zero field. When increasing the magnetic field, bimerons and
skyrmions appear above the distorted-helical phase [Fig. 4(e)]
before the labyrinth phase, which then evolves into the FV
phase.

The frustrated vortex phase is favored at higher fields,
but it gets smaller as D" is increased until it disappears at
higher D*. As depicted in the snapshot in Fig. 4(c), the xy
components of the spin in the hexagons of the kagome lattice
form vortices with alternating circulation. It is easily seen
that there is a Z3 symmetry breaking due to the three possi-
ble tilings, which have a 3 x 3 hexagons magnetic unit cell.
These structures are similar to those proposed in Ref. [48],
but here the sense of the circulation is fixed by the sign of
the DM interaction. To identify this phase, we calculate as an
order parameter ¢, the planar structure factor ¢ = S, (k*) at
k* = (47 /3, 0) [48]. In Fig. 4(f) we illustrate MC results for
¢/N as a function of T for three different system sizes (L =
36, 48, 60) at D* = 0.35 and B = 0.045. The order parameter
¢ jumps to a finite value below a critical temperature, where
the FV phase emerges. Furthermore, in Fig. 4(g) we present
¢ as a function of B for D¥ = 0.35 at the lowest temperature
T = 0.0002, averaged over independent copies, showing that
¢ distinguishes the FV phase from the other ones.

The labyrinth phase at zero field thus seems to prevent
the apparition of skyrmions at finite field. This is probably
because the skyrmion crystal comes from multi-g order or,
in other words, from the interference pattern of the stripes
of spins oriented in multiple directions [47]. In the labyrinth
phase, these different orientations can naturally coexist in the
same spin configuration [see Figs. 3(g) and 3(h)]. More intu-
itively speaking, there is no need for the interference pattern
of the skyrmion crystal to minimize the energy.

As a conclusion of this analysis, and combining the results
from simulations and the Luttinger-Tisza approximation, we
understand the necessary balance on the value of D in order
to support both the CSL and skyrmion physics. On one hand,
the LTA shows that we need small values of D to keep
the energy gap of the flat bands reasonable [see Fig. 2(f)],
and thus the physics of the chiral spin liquid accessible to
thermal fluctuations. On the other hand, we also need D
to be large enough to support a (distorted) helical phase at
zero field; otherwise, the presence of the labyrinth phase at
low temperature would prevent the apparition of skyrmions in
a field. Hence, we expect the competition between CSL and
skyrmion physics to be stronger at intermediate D*Y. Through
the rest of this work, we fix D = 0.5. Now, we shall describe
in detail the phase diagram of this model in a field B.
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for D* = 0 (top) and D* = /3 (bottom), fixing D™ = 0.5 (lattice size L = 48). Please note the sharp increase of chirality o when D* = V3;

the color scale is an order of magnitude higher than for D* = 0.

C. Competition between skyrmions and a chiral spin liquid

In order to quantify the influence of the spin liquid, it is
useful to know what happens in the absence of it. To do so,
we compare our model (where D* = +/3) to a standard model
for skyrmions (where D* = 0). In Fig. 5 we present B — T
density plots for the magnetization, nearest-neighbor chirality,
and plaquette chirality for both Hamiltonians.

The D* = 0 case presents the features of a typical skyrmion
model. At low field is the helical phase, with quasizero
magnetization and chirality because the stripes in the spin
configuration bear alternatively positive and negative magne-
tization. As we increase the field B, there is a jump in the spin
and plaquette chirality and a gradual increase of the magne-
tization; this is the region of the skyrmion crystal (SkX). The
chirality vanishes again when the magnetization saturates at
high field; this is the FP phase.

The picture becomes noticeably different when D* = /3.
The FP phase goes down at high temperature, circling around
the skyrmion crystal, and accompanied by a sharp increase
of the spin chirality; xo is 10 times bigger in this high-
temperature FP regime than in the SkX. This high-temperature
FP regime is clearly not due to skyrmions because the plaque-
tte chirality x(g now behaves differently from the spin chirality
Xo- This is due to the CSL, where under a magnetic field
the out-of-plane spin components tend to be aligned with the
field. As the planar spins components in each plaquette are
either chiral or ferromagnetic (see Fig. 2), this structure is
washed out when adding the three spins in each plaquette to
calculate XQT . Therefore, we may identify an extended chiral
spin liquid region in the density plots by noticing there is
a large region at higher temperatures, starting at intermedi-

ate fields, where x, is quite large but x5 is significantly
smaller.

The phase diagram for D* = +/3 and D™ = 0.5 is given in
Fig. 6(a), as determined in Ref. [31]. We summarize the main
results of Ref. [31] below:

(i) Helical (H): In Fig. 3(i) we show an example of a
helical phase, present at low temperatures and low
fields.

(i) Skyrmions+ bimerons (Sk+B): A very thin
metastable region characterized by a mixture of
skyrmions + bimerons [27,49] [Fig. 6(c)] emerges
between the helical and the skyrmion lattice phases.

(iii) Skyrmion lattice (SkX): A typical skyrmion lattice
[Fig. 6(b)] is found at intermediate fields and low
temperature, matching the region where Xé is higher
in Fig. 5 (bottom right panel). This phase is a super-
position of three spiral orders that preserves the C3
symmetry of the lattice.

(iv) Field polarized: In this phase, as the temperature is
lowered, magnetic moments are further aligned with
the field, but the xy components retain the extended
degeneracy of the chiral spin liquid, as explained in
Sec. II.

(v) Skyrmion-fluid (SkF): This phase can be qualitatively
separated in a dense, or skyrmion liquid phase (SkL)
and a dilute phase, dubbed skyrmion gas (SkG). Un-
like the SkF usually present at higher fields and low
temperatures in a typical skyrmion model (D* = 0),
this SkF phase is found at higher temperatures, and
skyrmions are found on a chiral spin liquid back-
ground [Fig. 6(d)].
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FIG. 6. (a) B — T phase diagram obtained from MC simulations for D* = 0.5, D* = /3, where there are helical (H), mixed skyrmion and
bimeron (Sk + B), skyrmion crystal (SkX), skyrmion fluid (SkF), bimeron glass (BG), and field-polarized (FP) phases, taken from Ref. [31].
[(b)—(e)] Typical real-space spin configurations obtained by Monte Carlo simulations on a N = 3 x 482 system size at different temperatures
and magnetic field, illustrating various phases of panel (a). [(f) and (g)] Comparison of the two phases where bimerons are found, i.e., the
low-field Sk + B phase (f) and the high-field BG phase (g), as seen from their plaquette chirality density per plaquette position. Bimerons are
surrounded by dashed curves, showing that the chirality is stronger in the extremities.

(vi) Bimeron glass (BG): An intermediate phase between
the SkX and field-polarized region emerges at lower
temperatures [Fig. 6(e)], which is not present when
D* = 0. In Figs. 6(f) and 6(g), we present the pla-
quette chirality density of the Sk + B and BG phases,
illustrating that the chirality in bimerons is located in
their extremities and that bimerons in the BG phase
are more extended.

A remarkable feature of our model is the formation of a
skyrmion gas at high temperature, emerging from a CSL back-
ground. The difference with traditional skyrmion models (e.g.,
when D* = 0) is that the CSL provides a large entropy to the
FP phase. The chirality xo of Fig. 5 clearly illustrates how this
enhanced entropy of the FP phase separates the paramagnetic
regime to the SkX order, imposing an intervening region with
quasizero skyrmions. This is how the density of skyrmions
becomes controllable with temperature, even forming a di-
luted gas, before skyrmions are destroyed by paramagnetic
fluctuations.

In Fig. 7 we present several snapshots and their cor-
responding spin-spin structure factor S, (k) and plaquette-
plaquette structure factor ST (k) (calculated with the total spin
per plaquette) at different temperatures for B = 0.09. From
Figs. 7(a) to 7(c) we see how well-defined skyrmions start
to emerge as 7T is lowered. The underlying CSL background
is signaled by the characteristic pinch points in S, (k), al-
beit broadened by thermal fluctuations and the presence of
skyrmions. As T is lowered further, more skyrmions appear
with no particular pattern, but with distinctive changes in
the structure factors [Fig. 7(d)]. Pinch points are replaced by
“half moons” [50-52], indicating the disappearance of the
CSL. And the circles of intensity in ST (k) become hollow
circles, whose radius indicates the apparition of a length scale,
typically the mean distance between skyrmions. These bright

circles, which strongly suggest a liquidlike behavior, are still
present as the lattice is more densely populated by skyrmions
[Fig. 7(e)] and disappear at the lowest temperatures in favor of
Bragg peaks when the skyrmion lattice is formed [Fig. 7(f)].
Given the rich variety of emergent phases and their unique
characteristics, in the following section, we focus on carefully
characterizing this transition from fluid to solid.

V. FLUID-TO-SOLID PHASE TRANSITION

In this section we focus on the transition from the CSL
phase to the SkX phase, going through a skyrmion fluid, and
how the skyrmions “crystallize” at low temperatures. For this
purpose, we choose a region in parameter space where several
different phases emerged as the temperature was lowered,
DY =0.5, D= \/3, and B = 0.09, as discussed in Sec. IV C.
An important fact to carry on this analysis is that the individ-
ual skyrmions persist throughout the whole melting process
[53]. Apart from a crystal/solid phase at low temperature
and a fluid at high temperature, a third intermediate hexatic
phase may emerge, characterized by short-range translational
order and quasi-long-range orientational order. However, this
is still an open problem with several scenarios depending on
the nature of model [28-30].

Here, by means of a combination of Monte Carlo algo-
rithms (Metropolis and Heat-Bath), using large system sizes
(L = 96, 192), real-space identification of the skyrmion posi-
tions, and a Delaunay triangulation, we study the emergence
of SkX tuning the temperature 7. To do so, we first as-
signed a real-value position to each skyrmion in the lattice,
computing it as the center of mass of one individual skyrmion
R, = % ZaeSk r, where r, denotes the position of the n
spins in skyrmion i, defined as a contiguous cluster of spins
with $° < 0. Each skyrmion i is surrounded by n; nearest
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-2

@T

FIG. 7. Snapshots of spin configurations taken at different temperatures for our model at D = 0.5 and D° = /3 at fixed magnetic field
B = 0.09, for large system sizes (L = 96). Each panel is accompanied by the corresponding structure factors S, (k) (top right) and S7 (k)
(bottom right), averaged over Monte Carlo time. S (k) is the traditional magnetic structure factor for the transverse (S, $”) spin component.
ST (k) is the same but the degrees of freedom are the total spin of each triangular plaquette. In panels (b) and (f), we zoom in on a skyrmion
(inset, above) and show how it looks like from the point of view of the total spins per plaquette (inset, below). Please note that the Fourier
space in panel (f) is smaller than the others; it is zoomed in to emphasize the six Bragg peaks characteristic of the skyrmion lattice.

neighbors determined by a standard Delaunay triangulation.
Each nearest neighbor j € {1, ..., n;} sits at position R; + 7;;.
If 6;; is the angle formed between the x axis and 7;; [see inset
in Fig. 9(b)], then we can define the local orientational order
parameter ¥ (R;) [54],

LI
Ye(R) = — > e, 3)
lj=1

which is a standard measure to quantify the emergence of
local hexagonal order in a two-dimensional (2D) ensemble
of particles. We can also define the global orientational order

parameter as

L&
Vo= > (R “
i=1

Then, the orientational correlation function Gg(R) is defined
as:

1
Ge(R)=— Y Ye(R)VLR)), ()

R \R,—R;|=R

where the sum is over all ng particle pairs at distance R. In
addition, we introduce the translational correlation function
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FIG. 8. Spin configuration (top row), Delaunay triangulation (middle row), and structure factor S,(q) (bottom row) for a representative set
of temperatures of the different regimes for D+ = 0.5, D* = +/3 and B = 0.09. Here it is the structure factor of the position of skyrmions, given
by S,(q) = ]ﬁ DoeT Iy ;6(r — r;;) where the summation in r is over all skyrmion positions, the summation in i, j is over all skyrmion
pairs, and r;; is the vector between skyrmions i and j. Figure taken from Ref. [31], supplemental material (lattice size L = 192).

G (R) defined as

1< 1
GeR)=2d — Y URIVLR), (6

a=1 "R |R,—R;|=R

1.2 5 T I T T UL P LILALALE
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FIG. 9. Competition between the chiral spin liquid and skyrmion
solid at B = 0.09 as measured from (a) the specific heat C, and
magnetization M, and (b) the normalized number of skyrmion Ng
and orientational order parameter Ws of Eq. (4) whose angle 6;; is
defined in the inset. Ny is is the saturated number of skyrmions for
B = 0.09. Figure taken from Ref. [31].

where ¥ (R;) = ¢/*® is the translational order parameter
and k, (a=1,...,6) are the reciprocal lattice vectors de-
termined by the positions of the first-order Bragg peaks in
the structure factor of the position of the skyrmions r, given
by Sp(k) = 1% Y rexp®R Y 8(R —R;j), where Ny is the
total number of skyrmions in the lattice. The nature of the
orientational and translational correlation functions, whether
they are short ranged or quasi-long ranged, together with the
values of the exponents, will be the key to classify the various
phases.

Before exploring these parameters, we briefly recall some
relevant results from our previous work [31] to show how the
structure factor from the Delauney triangulation (Fig. 8) and
variables such as the specific heat and the chirality (Fig. 9)
behave in the different phases. In Fig. 8 we show, on the
first row, the real-space skyrmion structures at five different
temperatures and, on the second row, the filtered particle
configurations and corresponding Delaunay triangulation. At
low temperature (7' = 0.0009), the skyrmion crystal is sta-
bilized in the form of a triangular lattice, characterized by
the well-known six bright peaks in the structure factor. This
lattice gets distorted at higher temperatures, and the Bragg
peaks turn into a bright circle (T = 0.1152), suggesting a
fluid-type behavior, which broadens on heating until the lattice
structure essentially vanishes. This disorder in the positions
of skyrmions is accompanied by a reduction of their density,
granting them more freedom to occupy nonregular positions.

In Fig. 9, we compare the behavior of the skyrmion density
Ns (normalized with Ny, the number of skyrmions at T — 0)
with the thermally averaged (| W¢|) parameter. We can observe
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FIG. 10. Orientational G¢(R) (a) and positional Gg(R) (b) cor-
relation functions as a function of the distance between skyrmions
(R), calculated for a fixed magnetic field B/J = 0.09 at different
temperatures 7. The dashed black curves are typical fits of their
local maxima to power-law or exponential decay. (c) Temperature
dependence of the power-law exponents 7¢ and 1.

that (| W) is saturated at low temperature (crystal phase) and
sharply decreases at 7. In this window of temperature (7; <
T < T;), Ns/Ny remains saturated to 1 and thus corresponds
to a dense fluid of skyrmions or SkL. Ng/Ny then drops from
T; to Ty, defining the region for the SkG.

In order to clarify and characterize the different phases
that emerge as temperature varies, in Fig. 10 we show the
calculated G¢(R) and Gg(R) and the corresponding fits of
its upper envelopes at different temperatures in log-log scale.
Following the theory proposed by the Kosterlitz, Thouless,
Halperin, Nelson, and Young [54-57], we recall the expected
behavior of the correlations in each type of phase:

(i) crystal phase: Gg(R) — 1 and Ggx(R) — 1

(i) solid phase: Gg(R) — 1 and Gg(R) ox R7%,

ng < 1/3.
(iii) hexatic phase: Gg(R) ox R™",
Gx(R) o< e R/ék,

(iv) liquid phase: Gg(R) o< e~ ®/% and G (R) ox e R/éx

Figures 10(a) and 10(b) show the G¢(R) and Gk (R) as
a function of distance R between skyrmions for different

with

with ng < 1/4 and

temperatures. It can be seen that at the lowest temperature
(T/J ~ 9 x 107*), both the orientational and positional cor-
relation functions are constant with skyrmion distance and
remain close Gg(R) ~ 1 and Gg(R) ~ 1, indicating a crystal
phase. By increasing the temperature, G¢(R) ~ 1 while Gg(R)
follows an algebraic behavior with ng < 1/3, consistent with
the characteristic quasi-long-range positional ordering of a
solidlike phase.

In Fig. 10(c) we show the evolution of the power-law expo-
nents 7 and ng obtained from the fits of the local maxima of
the correlation functions at a given temperature, in the range
where an algebraic fit is adequate. We observe that 7 in-
creases rapidly when the temperature approaches T ~ 7. This
abrupt change is also reflected in the parameter (|Wg|) (Fig. 9).
At the temperature T = T, ~ 0.0769 J, ng crosses the specific
value ng = 1/4, the upper bound for 7 if the system were
in a hexatic phase, which means we have entered the liquid
phase. However, for T < T;, Gx(R) decay as a power law
with ng < 1/3, as expected for a solid phase. This situation
differs from the hexatic state in 2D systems, where Gk (R) is
expected to decay exponentially at a large distance. A similar
situation has earlier been studied in the context of a vortex
lattice in a Type II superconductor [58]. This state could be
an orientational glass with a slowly decaying orientational
order. At T = Ty, the structure factor presents a reduction in
the peak amplitude while the sharp peaks are widened, which
is similar to that characteristic of the hexatic phase (see Fig. 8,
bottom row). Nonetheless, the present results suggest that the
potential hexatic phase in our model is either in a very narrow
temperature range or nonexistent.

For temperatures Ty, < T < T, Gg(R) presents short-range
correlations [Fig. 10(a)], while Gx(R) x R™™ (ng ~ 1/2).
This phase corresponds to the fluid phase with a characteristic
widened ring distribution in the structure factor (Fig. 8). Al-
though for a fluid phase short-range order for the translational
correlations is expected, the present behavior for Gg(R) can
be understood as follows: The crystal/solid phase presents
well-defined sharp peaks in the structure factor, while the fluid
phase supports a ringlike distribution of peaks with homo-
geneous amplitude. Then, we must calculate the average of
Gk (R) in the whole k ring. If we write k - R;; = kR cos Qikj
in the definition of the translational order parameter vy, (R;),
then

1 2

2k 0

1 N
= E/dek |:6 ;—Zcos (kR cos@l.l}):|

n
R R

(Gix|(R)) = 40" k Gre(R)

1

2 2 .
=2 ), o[ =) cos (kR cos6f)

ngr R
x Jo(kR), @)

where Jy(k R) is Bessel function of the first kind (n = 0).
This description is confirmed in Fig. 11 where we compare
the average value (Gig|(R)) in Eq. (7) to Gg(R) from MC
simulations.

Finally, for temperatures T > T, we have the chiral spin
liquid behavior discussed in the previous sections.
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FIG. 11. Positional correlation function calculated for (Gx|(R))
(dashed black line) and Gk (R) from MC simulations at fixed mag-
netic field B/J = 0.09. For both temperatures the system is in the
SkG phase.

VI. ROTATION OF THE HAMILTONIAN

When D = 0, the ground state of Hamiltonian (1) is the
chiral spin liquid, where each triangle is either ferromagnetic
or an umbrella state with a fixed magnetic chirality imposed
by the sign of D* [34] [see Figs. 1(b) and 1(c)]. It has been
shown that this Hamiltonian can be mapped exactly onto a
specific point of the XXZ model on the kagome lattice [34]
without any DM interaction. Since the mapping is exact, the
ground state of this XXZ Hamiltonian is an equivalent spin
liquid, but where all triangles are in an umbrella state, with
either positive or negative magnetic chirality; our chiral spin
liquid has thus lost its magnetic chirality. And since the map-
ping is a rotation of in-plane spin components (different for
each kagome sublattice), the out-of-plane magnetic field is
invariant. When applying this mapping to our present model
with finite D™, we thus obtain an XXZ model in a magnetic
field, with rotated in-plane DM interactions,

1
Het =211 (s,,L St — zs;s;)
ij
ny X 29
— (=555 + 5785)
V3
2

+
DV(SISi+SS)) —BY Si.  (®)

Here it is important to understand that since the trans-
formation between Hamiltonians (1) and (9) is exact and
conserves the spin length, the energy spectrum of these two
models is the same; it is only the corresponding eigenstates
(i.e., spin configurations) that are transformed by the mapping.
It means that the phase diagram of Hamiltonian (9) is the
same as in Fig. 6, albeit with different magnetic textures.
For example, the specific heat is the same between the two

(a)——Bpecificheat—— (b)),

1.2{ * Rotated
* Original

-0.006

-0.012 4

0.8 e Xo.Rot X.?\ v
* %o . X(Iz.Rol
o Yas.Rot o %o

0.6 -

0.00 0.01 0.1 i 0.001 001 0.1 1

FIG. 12. Top: Comparison of specific heat (a), nearest-neighbor
chirality xo, third-nearest-neighbor chirality x/°, and plaquette chi-
rality xé (b) as a function of temperature for the original [Eq. (1)]
and rotated [Eq. (9)] Hamiltonians. (c) Low-temperature spin con-
figuration of the SkX lattice (left) and for each sublattice (right).
Comparison of the magnetic structure factor S* in the spin-liquid
regime at 7 = 0.1853 between the (d) original and (e) rotated Hamil-
tonians. All data have been measured for D* = 0.5 and B = 0.09
(lattice size L = 48).

models in Fig. 12(a), but the magnetic chiralities in Fig. 12(b)
are different. The spin chirality xo is much lower at high
temperature for the rotated Hamiltonian (9) because the spin
liquid is not chiral anymore; there are as many umbrella states
with positive than with negative chirality ion average. And the
in-plane spin components of the umbrella states always have
zero magnetization; the plaquette magnetization is thus only
along the z axis and the plaquette chirality x5 is necessarily
zero.

This mapping nonetheless raises the question of skyrmions.
Thermodynamically, there must be phases equivalent to the
skyrmion solid and fluid in the phase diagram, but the form
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of their magnetic texture after transformation is less straight-
forward. The presence of skyrmions can be measured by the
third-nearest-neighbor chirality xy3, where we see that both
models give the same result in Fig. 12(b). This is confirmed
by looking at snapshots of spin configurations in Fig. 12(c),
where we show that the transformation simply changes the
helicity in each sublattice. Finally, the magnetic structure
factor S+ of the spin liquid changes from ferromagnetic to
antiferromagnetic pinch points in Figs. 12(d) and 12(e), as was
measured in Ref. [34].

In summary, we have shown here that all the physics
developed in this paper does not necessarily requires an out-
of-plane Dzyaloshinskii-Moriya term but can also be obtained
in a simple XXZ model on kagome.

VII. HALL CONDUCTIVITY OF CHIRAL MAGNETS

Itinerant electrons are especially useful probes for chiral
magnetic textures and have a long history with frustrated
magnetism [59-62], especially on the kagome lattice, due to
the natural occurrence of scalar spin chirality in this geometry
[63—-66], even if virtual [67] or attached to antiferromagnetic
order [68,69], spin liquids [70-72], and more recently to
Fe;Sn, [73]. The unconventional electron conduction prop-
erties of skyrmion systems have also attracted a rather intense
effort over the past several years, especially related to anoma-
lous and topological Hall effects (THE) [15,32,33,74-82]. In
this section, we address how the competition between the
chiral spin liquid and skyrmion phases (gas, liquid, and solid)
leads to different types of THE, focusing on the parameter set
of DY = 0.5, D% = /3 and B = 0.09 where all these chiral
phases are stable.

A. The Kondo lattice

To describe the coupling between the itinerant electrons
and magnetic textures, we consider the classical Kondo lattice
Hamiltonian, which has been widely used to address the trans-
port properties of the electron-spin coupled systems [83-87]:

Hix = Hiin + Hine + H, 9)

where H is the Hamiltonian of Eq. (1) between localized
moments, and

Hign = —1 Y _ (chejs + clcis).
(ij).s
Hin = —Jx Y _si - Si. (10)

Here Hyi, is the kinetic energy of itinerant electrons:
CZY(CLY) is a creation (annihilation) operator of an electron
at a site i and spin s. The summation over (ij) is taken
over the nearest-neighbor pairs of sites. The electrons inter-
act with the localized moments through the Kondo coupling
represented by Hiy, where S; = (Siy, Siy, Siz) is a classical
localized moment defined at a site i on the kagome lattice, and
S; = %clan/ci;r is an electron spin, with oy, the vector nota-
tion of Pauli matrices. Note that we do not consider the direct
coupling of itinerant electrons with the external magnetic field
B. As a transport property of the system, we focus on the Hall

conductivity, which is obtained from the Kubo formula, as

Im((m|Jy|m') (m'|Jy|m))
(Em - Em’)2 + 1/‘1'—2 .

2
0 = T D En) = F(En)]
" (11)

Here oy, is given in unit of e?/h and V is the volume (area)
of the system. In Eq. (11), |m) is the one-particle eigenstate of
the Hamiltonian (10), and E,, is the corresponding eigenen-
ergy labeled in ascending order, namely E,, < E,, ;. J, is the
current operator in v direction, and 1/t is a dumping rate
due to nonmagnetic impurities, which are implicitly assumed.
We consider a clean system, and set the damping rate 1/t to
be small, 1/t = 0.001. As we are generally interested in the
low-temperature transport compared with the electric energy
scale, we assume a low temperature ~0.01¢, which allows us
to connect the chemical potential p and the total number of
electrons N as p =~ %(ENCl,l + Ey, ), in the Fermi distribu-
tion function f(¢g).

As to the coupling constant Jg, we set Jx = 100¢, which is
almost the strong-coupling limit, Jx — 0o, where we expect
the influence of magnetic texture on the transport to be the
clearest. We mainly focus on the region of small electron
density n, even though we present results for all range of n. In
general, itinerant electrons mediate the effective interactions
between localized spins. However, in the strong-coupling
limit, the energy scale of effective interaction is small in the
low-density region Jeg o< nt. Accordingly, we can exclude the
possibility that the presence of electrons alters the magnetic
structure due to the localized part 7. With this assumption,
we obtain the Hall conductivity as a sample average of o,,
over 120 configurations of {S;}, obtained from Monte Carlo
simulations of Hamiltonian H at different temperature, 7.

B. Hall conductivity in each phase

As we discussed in Sec. IV C, the competition between
skyrmions and a chiral spin liquid results in a rich phase
diagram for the parameter set of D = 0.5, D = /3, and
B =0.09, as is evident in Fig. 6 and Fig. 9. We here address
the behavior of Hall conductivity in each phase. To this aim,
from the high-temperature side, we define the characteristic
temperatures, Trp = 0.430, T, = 0.229, T; = 0.109, and T; =
0.065 below which the field-polarized state containing the
chiral spin liquid (FP), SkG state, SkL, and skyrmion crystal
state (SkX) are respectively realized.

In Fig. 13, we show the overall temperature dependence
of Hall conductivity o,, at several small electron densities,
n = 0.001, 0.005, 0.01, and 0.02, together with the specific
heat. As shown here, oy, shows larger values for larger n in
the whole temperature range, and at low temperatures, oy,
is approximately proportional to n, as we discuss in more
detail later. The temperature variation of oy, shows several
characteristic features. On cooling from high temperature, o,
starts to show a gradual increase around Tpp, as seen more
clearly for n = 0.02. Then o, turns to a rapid increase when
entering the skyrmion fluid below T, while no conspicuous
change is found at the boundary between the skyrmion gas
and liquid. Finally, at the transition to the SkX phase at T}, a
small kink appears in oyy.
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FIG. 13. Temperature dependence of Hall conductivity for n =
0.001, 0.005, 0.01, and 0.02 compared to the evolution of the specific
heat. Characteristic temperatures are indicated by arrows.

To understand the behavior of the Hall conductivity in
each region, we now plot the doping dependence of oy, at
several temperatures in Figs. 14. Please note that in the limit
of Jx — 00, oy, satisfies the symmetry relation: oy, — —0y,
when changingn — n + % We will thus only consider doping
values, 0 < n < 1/2.

Figure 14(a) shows the evolution of oy, at high temperature
for T > T,. As mentioned previously, oy, gradually starts to
grow below Typ. Even though its magnitude remains small, the
Hall conductivity displays large error bars in this region. Since
these curves are obtained after sample averaging over 120
spin configurations obtained from Monte Carlo simulations,
these large error bars indicate a strong sample dependence in
the chiral spin liquid. This might be because umbrella states
(with scalar chirality) and ferromagnetic states (without scalar
chirality) are equiprobable in the spin-liquid ground state [34]
(see Fig. 1); their relative ratio may thus vary a lot from
one sample to the other. This sample dependence vanishes at
n = 1/6 where oy, exhibits a quantized value of e¢/h. Since
n = 1/6 corresponds to band touching in the tight-binding
spectrum on the kagome lattice at Jx = 0, this quantum Hall
effect is a consequence of the degeneracy lift and gap opening
when the Kondo coupling to the spin texture Jx is turned on.
More precisely, the quantization of the transverse conductivity
at n = 1/6 is consistent with the spin scalar chirality of the
umbrella states in the chiral spin liquid, generating a Berry
curvature responsible for the topological Hall effect [63,64].

Figure 14(b) shows oy, inside the skyrmion fluid phase,
T} < T < T,, where the error bar is suppressed, indicating
little sample dependence; o,, shows a quick and mono-
tonic evolution on cooling, approximately 50-fold between 7,
and 7.

Finally, Fig. 14(c) shows o, around the SkX phase. Across
the transition point of the skyrmion ordering, oy, seems to
exhibit a rather gradual increase. Inside the SkX phase, o,y
continues to grow slowly as decreasing temperature and sat-
urates at low temperature. From the smooth evolution of
Fig. 14(c), it is unclear how the kink of Fig. 15 appears at 7.
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FIG. 14. Hall conductivity oy, as a function of doping n (top)
around Tgp, (middle) between 7T, and 7;, and (bottom) around T7;.
Please note that the different scale of longitudinal axis in the top
panel. For the guide to eye, we draw vertical dashed lines to indicate
n=1/6 and n = 1/3, and horizontal dashed lines to indicate the
quantized Hall conductivity.

This is because we need to zoom in at the low doping behavior
of oy,.

C. Landau level formation without skyrmion crystallization

Indeed, Fig. 15 shows that at low doping, oy, increases
smoothly in the skyrmion gas (7 = 0.135) but develops a
steplike behavior on cooling, which is especially clear in the
SkX phase (T = 0.027). The edge of the plateau corresponds
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FIG. 15. (a) Hall conductivity oy, as a function of doping n
for T/t = 0.1351, 0.0798, and 0.0278, which correspond to SkG,
SkL, and SkX regions, respectively. The electron density # is scaled
with the skyrmion density ng, = 2.2425 x 1073 of the SkX phase.
Namely, n/nsx = 1 means an electron density just filling up the
lowest skyrmion band. (b) Derivative of o,, with respect to doping n.
The Hall conductivity quantization appears as peaks in the SkX and
SKL regimes but disappears in the SkG region (except for a weak
signal at very low doping). The change of periodicity of the peaks
between the SkX and SKL is due to the decrease of skyrmions with
temperature.

to quantized value of o,, = n% where integer n changes
by 1 between neighboring plateaus. Additionally, the jump
between plateaux occurs when n is the integer multiple of
skyrmion density ng, = 2.2425 x 1073, In the SkX phase for
our Hamiltonian parameters, the number of skyrmions is 31
in the systems of 48 x 48 x 3 sites. This feature naturally
explains the origin of the kink at 7; where each skyrmion is
the source of an emergent magnetic field [6].

To understand the microscopic origin of this steplike be-
havior, we plot the averaged density of states (DOS) in the
lower band in Fig. 16, with properly shifted energies depend-
ing on n. The DOS shows oscillatory behavior as a function of
the energy, especially in the SkX phase. As a result of the DOS
oscillations, the integrated DOS shows a steplike behavior
whose jumps are consistent with the width of the plateaux in
Fig. 15, ns. This implies that the steplike behavior of oy, can
be attributed to the oscillations in the DOS.

0.12—C 0.012
o
=
0.08 e, 0.008
»n %
o
A
0.04 0.004
0.00 0.000
0.00 0.01 0.02 0.03
Energy

FIG. 16. A set of one particle electron density of states (DOS)
is shown for several temperatures across 7 and 7;. To facilitate the
comparison of oscillation amplitudes, we shift energies to each curve
to place the lowest peak at the same position. After this shift, we set
the origin of the energy near the band bottom. We also show the
accumulated density of states at 7 = 0.0278. The thin horizontal
lines are integer multiples of ngx to compare with the accumulated
DOS.

Presumably, the oscillation of DOS in the SkX phase may
not be surprising [32,33], since the skyrmions exhibit periodic
ordering, which explicitly breaks the translational symme-
try of the kagome lattice. As a result of this translational
symmetry breaking, the electric states are decomposed into
skyrmion subbands. If each skyrmion subbands has the Chern
number v = 1, then o,, would show a steplike behavior, as
shown in Fig. 15, and each plateau should be quantized as an

integer multiple of % Moreover, the jump of the integrated
DOS corresponds to the number of the states contained in one
subband, which precisely corresponds to the electron density
of nsk.-

What is remarkable in Fig. 16 is that the DOS oscillations
persist even above Ty = 0.065 in the skyrmion liquid. Reflect-
ing this oscillatory character of DOS, oy, also shows rounded
but nonetheless distinctive steps at 7 = 0.080. In other words,
there is a signature of subband formation in the electric state
without translational symmetry breaking in the magnetic state.

As an origin of the subband formation, it is interesting to
point out the role of Berry phase arising from the coupling
of itinerant electrons to the disordered magnetic texture of the
skyrmion fluid. In the strong-coupling limit, / — 0o, when an
itinerant electron moves around a triplet of spins, it acquires
the Berry phase ® = %, where 2 is the solid angle spanned by
the triplet of the spins. It means the presence of one skyrmion
generates the effective magnetic field equivalent to one mag-
netic flux quantum.

Accordingly, if the effective magnetic field is uniformly
distributed, then one Landau level is formed per one skyrmion.
We expect it is actually what happens in the SkL phase. The
assumption of uniform effective magnetic field is, however,
far from trivial. The translational symmetry in the skyrmion
fluid phase is obtained after the sample average. Each spin
configuration suffers a strong spatial variation of the effective
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magnetic field, which may destroy the equally spaced Landau
level structure. Indeed, in the skyrmion gas phase, Landau
levels do not appear to exist, as DOS lacks the oscillatory
components (see T = 0.135 of Fig. 16).

Presumably, in the SkL phase, the highly packed nature of
skyrmions, as is implied by the saturation of skyrmion density
[Fig. 9], leads to the suppression of the fluctuation of the
effective magnetic field. In contrast, in the SkG phase, loosely
placed skyrmions may result in a random distribution of ef-
fective magnetic field and makes it difficult to form Landau
levels.

So far, electric response of skyrmion fluid states has not
been well explored, in contrast to abundant studies on the
skyrmion crystal case. Our study reveals two important as-
pects of electric transport in the skyrmion fluid phase. First,
the Berry phase from the magnetic texture induces the Landau
levels. Second, packed configurations of skyrmions might be
necessary for the equally space Landau levels to be actually
observable. These findings will give insights into this nontriv-
ial spin-electron coupled state and will be useful to further
studies.

VIII. CONCLUSION AND PERSPECTIVES

In this work we have extensively studied a magnetic model
with an extremely rich variety of relatively unconventional
phenomena. Starting from a model defined in the kagome
lattice with isotropic couplings and an unidirectional DM
interaction, which is known to host a chiral spin liquid phase,
we investigated the effect of a perpendicular DM term and a
magnetic field. Depending on the values of each parameter,
we found an extremely rich behavior of the system, which can
be summarized in Figs. 3, 4, and 6.

We first analyze the purely magnetic system with the LT
approximation. The main result with this approach is that
for small in-plane DM interaction (D), the energy gap be-
tween the minima and the flat band associated with the chiral
spin liquid remains relatively modest in comparison to the
ground-state energy, suggesting a substantial impact of chiral
spin liquid physics at finite temperatures. Thus, we resort to
large-scale Monte Carlo simulations to incorporate thermal
fluctuations and broaden the exploration in parameter space.
The zero field behavior is already quite rich, with a dubbed
labyrinth phase, distorted helices order, and a chiral spin
liquid. In the presence of an external magnetic field, a large
variety of additional phases unfolds. When the in-plane D*
is limited to a narrower range, we identify a region where

a frustrated vortex phase emerges exhibiting long-range or-
der and spontaneous breaking of Z; symmetry. Regarding
skyrmion textures, for large-enough D™ we have identified
three different phases, liquid, solid, and crystalline, according
to the long-range behavior of positional and orientational or-
der parameters. On top of the skyrmion crystalline phase lies
a bimeron glass phase whose study goes beyond the scope of
the present work but certainly deserves further investigation
as another horizon for a very rich phenomenology, this time in
the subject of slow dynamics and out-of-equilibrium physics.

As magnetic chiral structures induce interesting behaviors
in itinerant electrons, the rich variety of chiral phases found
in this model motivated our investigation in this direction.
We studied a Kondo-lattice Hamiltonian, where the nonzero
but relatively low measured Hall conductance in the chiral
spin liquid phase sees a dramatic rise once the skyrmions
start to form until reaching a very high level in the dense
skyrmion phase. At the crystalline phase, the Hall conduc-
tance shows a steplike behavior indicating the formation of
band with nonzero Chern number which originates from the
larger periodic structure of the skymion crystal. This can be
easily seen in the plot of the DOS as the function of the filling
where distinctive oscillation of quasiband structure shows up.
What is remarkable is that the DOS oscillations persist even in
the skyrmion liquid phase, indicating that there is a signature
of subband formation in the electric state without translational
symmetry breaking in the magnetic state.

It is quite surprising that a relatively simple model, such as
the one studied here, can give rise to such a spectacular variety
of phenomena, some of which would deserve further investi-
gation. The issues of the dynamics in the bimeron glass as well
as the behavior of the Hall conductivity of itinerant electrons
in all these phases certainly open promising perspectives for
future studies.
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