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Spiral spin liquids are correlated states of matter in which a frustrated magnetic system evades order by
fluctuating between a set of (nearly) degenerate spin spirals. Here, we investigate the response of spiral spin
liquids to quenched disorder in a J1-J2 honeycomb-lattice Heisenberg model. At the single-impurity level, we
identify different order-by-quenched-disorder mechanisms and analyze the ensuing spin textures. In particular,
we show that the latter generally display Friedel-like oscillations, which encode direct information about the
spiral contour, i.e., the classical ground-state manifold. At finite defect concentrations, we perform extensive
numerical simulations and characterize the resulting phases at zero temperature. As a result, we find that the
competition between incompatible order-by-quenched-disorder mechanisms can lead to spiral spin glass states
already at low to moderate disorder. Finally, we discuss extensions of our conclusions to nonzero temperatures
and higher-dimensional systems, as well as their applications to experiments.
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I. INTRODUCTION

Within the realm of frustrated magnetism, one of many
possible outcomes of frustration is to generate a correlated
paramagnetic state known as a spiral spin liquid (SSL). In
such a state, the system fluctuates between (nearly) degenerate
coplanar spin spirals whose ordering wave vectors Q span a
contour or surface in reciprocal space.

Following an early theoretical proposal [1], neutron scat-
tering experiments were able to verify the existence of a spiral
surface in the diamond-lattice antiferromagnet MnSc2S4 and
confirm it as a realization of a SSL [2]. Similar behav-
ior was recently observed in two other compounds: the
spin-5/2 honeycomb material FeCl3 [3] and LiYbO2, where
spin-1/2 Yb3+ ions form an elongated diamond lattice [4].
Meanwhile, the proximity to a SSL regime has also been
associated with the absence of long-range order (LRO) in
CoAl2O4 [5–7] and the clusterlike scattering in the B-site
spinel MgCr2O4 at intermediate temperatures [8]. Motivated
by these developments, current theoretical work continues to
identify spin models with similar classical ground-state de-
generacies [9–12], while also investigating more fundamental
issues related to the nature of the low-energy excitations of
SSLs [13].

Arguably, one of the most appealing traits of a SSL lies
in the wealth of phases and phenomena it can lead to when
subjected to different perturbations. While small thermal fluc-
tuations generally favor magnetic (or, in two dimensions,
nematic) order via entropic selection [1,11,14,15], magnetic
anisotropies are known to give rise to commensurate-
incommensurate transitions which can render the thermal
ordering process highly nontrivial [2,16]. In systems with
small spin S, enhanced quantum fluctuations can circumvent
order by disorder at sufficiently low T and stabilize a quantum

paramagnetic phase, such as a valence bond solid [14,17] or a
quantum spin liquid [10,18].

An additional route toward unconventional behavior in
proximate SSLs comes from the application of a magnetic
field. Experimentally, this is seen in MnSc2S4 through the
emergence of an antiferromagnetic skyrmion lattice in a
field-induced triple-Q phase [2,19]. In parallel, large-scale
classical Monte Carlo simulations have also uncovered dif-
ferent multi-Q phases and nontrivial topological textures,
including a fascinating “ripple state,” by studying minimal
two-dimensional SSL models in magnetic fields [20,21].

In contrast, the influence of quenched disorder on SSLs
remained relatively unexplored to date [22]. The aim of this
paper is to deepen our understanding of such effects by
providing a comprehensive account of impurity-induced phe-
nomena in the simplest model to realize a SSL, the classical
J1-J2 Heisenberg model on the honeycomb lattice. Our pri-
mary results are for zero temperature, but we shall also discuss
their implications for T > 0 and extensions to higher spatial
dimensions. This includes, for instance, scenarios where a
nontrivial competition between different ordered phases arises
due to the incompatibility between order by quenched disor-
der (ObQD) and other selection mechanisms, as observed in
pyrochlore XY antiferromagnets [23–26].

A. Summary of results

The main results of the paper can be divided into two
categories: (a) single-impurity effects, which are relevant to
the limit of dilute disorder, and (b) physics of a finite concen-
tration of defects.

Within the first category, we employed perturbative ana-
lytic techniques to study the outcome of ObQD for different
types of impurities. The results show a dependence not only
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on the type, but, when applicable, also on the sign and spatial
orientation of the defect. In the specific case of a single spin
vacancy, we even found a discontinuity in evolution of the
ordering wave vectors of the selected states as a function of
J2/J1. At the same time, we showed that not in all, but in
most of those cases, the impurity distorts the selected spiral
state.

By using linear response theory, we determined the spin
texture induced by a weak defect at T = 0. This revealed
that, whenever a texture emerges, the zero mode along the
spiral contour drives the texture to become noncoplanar as
a means to relieve frustration. Moreover, the resulting out-
of-plane component of the texture oscillates while decaying
in space, in close similarity to Friedel oscillations in a Fermi
liquid. We argue that this feature is not exclusive to the sys-
tem considered here and should be realized for any model
with a spin-wave mode which is gapless along and linearly
dispersing around a spiral manifold of dimension d � 1 (in
space dimension D � 2). In such cases, the out-of-plane com-
ponent of the texture decays as r−d/2 at large distances r
from the impurity and at T = 0, while the decay becomes
exponential at T > 0. Furthermore, the period and angular
dependence of the oscillations are directly related to the geom-
etry of the spiral manifold. We propose imaging experiments
for these Friedel-like oscillations to turn them into a use-
ful experimental tool to reconstruct spiral manifolds in SSL
candidates.

By combining the same linear-response method with
careful finite-size extrapolations, we also characterized the
long-distance behavior of the in-plane components of the
textures generated by different bond defects (nearest- and
next-nearest-neighbor) as well as by a vacancy. In the former
cases, the textures display p-wave-like symmetry and decay as
1/

√
r over an extended range of J2/|J1|. By analogy with pre-

vious results on the triangular-lattice antiferromagnet [27,28],
this suggests that any finite concentration of bond defects
destroys the long-range magnetic order which ObQD would
otherwise stabilize. On the other hand, the texture induced by
a vacancy changes according to the outcome of the ObQD
selection. Near the first Lifshitz point in parameter space,
defined by the ratio J2/|J1| at which the SSL first emerges, the
texture is s-wave-like and decays more slowly than any power
law. However, at slightly larger J2/|J1|, a different spiral state
is selected, and it develops a texture which is d-wave-like and
decays as r−3/2.

Within the second category, we performed numerical sim-
ulations to determine the classical ground states of finite-size
systems with a reference ratio J2/|J1| = 0.2 and different
types of disorder. Thus, besides obtaining an independent
confirmation of some of our ObQD results, we also identified
two distinct mechanisms for the destruction of long-range
magnetic order. The first stems from the interference between
different textures and tends to lead to short-range order. The
second mechanism, in contrast, results from the competition
between incompatible ObQD mechanisms and has far more
drastic consequences. For a low to moderate concentration �

of defects, the system enters a spin glass phase with a “spiral
spin glass” (SSG) regime whose rugged energy landscape
produces a diffuse T = 0 structure factor which nonetheless
delineates the spiral contour.

FIG. 1. Schematic phase diagrams illustrating the response of
spiral spin liquids to quenched bond disorder in the classical limit
in (a) D = 2 and (b) D = 3 space dimensions. The axes represent
temperature T and disorder strength �; Tc and �c correspond to
the critical values above which the system enters a paramagnetic
(PM) and a spin glass (SG) phase, respectively. The latter has a
freezing temperature Tf and, at intermediate �, exhibits a “spiral
spin-glass” (SSG) regime. O1,2,3 represent possibly different phases
with spiral LRO, selected either by quenched disorder (O1 and O3)
or thermal fluctuations (O2). The red shading encodes the extent to
which the static spin structure factors delineates the spiral contour or
surface.

At low temperatures T > 0, where entropic order by dis-
order becomes active and the system retains only a sixfold
ground-state degeneracy, the second mechanism above gives
rise to effective random-field disorder [29]. This imposes
even stronger restrictions on the occurrence of spontaneous
symmetry breaking than the Hohenberg-Mermin-Wagner the-
orem [30,31]. Indeed, the Imry-Ma argument [32,33] implies
that, in D = 2 space dimensions, phases with discrete order-
parameter symmetry also become unstable at T > 0 if the
system contains any concentration � > 0 of bond defects (see
Sec. V for subtleties related to vacancies). When combined
with the fact that the lower critical dimension of the glass
transition is larger than two [34–37], these considerations
yield the qualitative phase diagrams depicted in Fig. 1. This
shows that disorder can extend the intermediate-temperature
SSL regime, an effect which is most pronounced for D = 2.

B. Outline

The remainder of the paper is organized as follows. In
Sec. II, we introduce the J1-J2 Heisenberg model, review the
properties of its classical ground-state manifold in the absence
of disorder, and discuss caveats arising in finite-size numerics.
Section III proceeds by providing analytic insights into the
effects of different types of single impurities, paying close
attention to the possible ObQD mechanisms and character-
izing the long-distance behavior of the impurity-induced spin
textures. Armed with this background, we investigate various
scenarios with finite impurity concentrations in Sec. IV and
demonstrate the existence of two independent mechanisms
promoting glassiness. In Sec. V, we address the influence of
thermal fluctuations and the presence of additional interac-
tions. We also discuss important differences between two- and
three-dimensional SSL systems. Finally, Sec. VI covers the
connection between our work and experiment, while Sec. VII
closes the paper with a summary and an outlook.
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II. MODEL AND RESULTS FOR THE CLEAN SYSTEM

We consider a classical Heisenberg model on the honey-
comb lattice with nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions. The Hamiltonian for this system
can be written as

H =
∑

〈i0, j1〉
J1,i jSi0 · S j1 +

∑
μ

∑
〈〈iμ, jμ〉〉

J2,i jμSiμ · S jμ. (1)

Here, we identify sites on the lattice by a pair of indices
iμ, which refer to one of the two basis sites μ ∈ {0, 1} in
the unit cell located at position Ri. As we are interested in
the classical limit of the model, the spins Siμ will be treated
as three-component unit vectors; for the semiclassical linear-
response calculations we formally work with spins of size S
and perform a 1/S expansion.

A. Ground state of the clean infinite system

Without disorder, the couplings in Eq. (1) simplify to
J1,i j = J1 and J2,i jμ = J2. Given that the honeycomb lattice
is bipartite, antiferromagnetic J2 > 0 leads to frustration for
both signs of J1. Our main interest will be on the antiferro-
magnetic case when both J1,2 > 0, but many results can also
be adapted to the case J1 < 0, J2 > 0 by inverting the spins on
one of the sublattices.

The energy of the system can be minimized via the
Luttinger-Tisza method [38–40], which is exact not only for
Bravais lattices, but also for any bipartite lattice with equiv-
alent sublattices [10]. It predicts that the lowest-energy states
are coplanar spin spirals, characterized by an ordering wave
vector Q and parameterized as

Siμ = sμ[cos ϕiμ(Q)ẑ + sin ϕiμ(Q)x̂]. (2)

The prefactor s = −sign(J1) builds a staggered structure into
the configuration when J1 > 0, while the function ϕiμ(Q) =
Q · Ri + δμ1θQ encodes the spatial dependence of the spi-
ral. The angle θQ determines the phase shift between two
spins in the same unit cell and follows from the set of equa-
tions [15,41]

sin θQ = (sin �1 + sin �2)/�Q,

cos θQ = (1 + cos �1 + cos �2)/�Q,

�Q =
√

3 + 2(cos �1 + cos �2 + cos �3), (3)

where �n = Q · an, n = 1, 2, 3, are the projections of Q onto
the primitive lattice vectors a1, a2, and a3 = a1 − a2 [see
Fig. 2(a)].

At a fixed value of α = J2/|J1|, the set of possible order-
ing wave vectors Q is determined by minimizing the Fourier
transform of Jμν

i j , a 2 × 2 matrix containing the couplings be-
tween sites that belong to sublattices μ and ν and whose unit
cells are separated by R = R j − Ri [10,41]. When α � 1/6,
this yields a unique solution, Q = 0, corresponding to the
ferromagnetic (J1 < 0) or Néel (J1 > 0) state one expects for
the nearest-neighbor model. On the other hand, once α > 1/6,
the increased degree of frustration gives rise to a macroscopic
ground-state degeneracy as the system enters a SSL regime,
see Fig. 2(b). There, the energy is minimized by satisfying

2|α|�Q = 1. (4)

FIG. 2. (a) Honeycomb lattice with unit cell (green box) and the
primitive vectors a1 and a2. For J1 > 0, the angle between two spins
inside the same unit cell is given by π + θQ. (b) Ground-state phase
diagram of the clean classical J1-J2 Heisenberg model as function
of α = J2/|J1|, valid for both ferromagnetic and antiferromagnetic
J1. The label COL stands for “collinear” and can refer either to
a ferromagnetic or Néel state, while SSL1 and SSL2 are different
SSL regimes. (c) Spiral contours representing the ground-state man-
ifold of the clean Hamiltonian for three different ratios α = J2/|J1|.
In each case, the spiral contour can be parameterized by a polar
angle φQ, which is measured with respect to the origin and K =
(0, 4π/(3

√
3a)) in the SSL1 and SSL2 regimes, respectively.

As depicted in Fig. 2(c), the solutions of Eq. (4) form a
contour in reciprocal space, parameterized by an angle φQ,
which starts as a ring centered at zero momentum for small
(α − 1/6) and expands into a hexagon as α approaches 1/2.
Once α > 1/2, the contour changes topology as it splits into
pockets that enclose the corners of the Brillouin zone. These
pockets gradually shrink to points as α → ∞, where the
ground states become two independent 120◦ orders on each
triangular sublattice.

The observed topological transition is enabled by the fact
that the second Lifshitz point α = 1/2 hosts an augmented
ground-state degeneracy [42], which can be parameterized by
a subextensive number of continuous degrees of freedom (as
opposed to a single such degree of freedom for α > 1/6, 	=
1/2) [43]. The nontrivial evolution of the “spiral contour”
with α prompts interesting questions: How do the ground-
state configurations differ between the regimes below (SSL1)
and above (SSL2) α = 1/2? What are the consequences when
perturbed by defects? We will address these issues in Sec. III
by showing that each regime imposes a distinct set of con-
straints on ground states and thereby has its own characteristic
response to different types of impurities.

Finally, the Luttinger-Tisza method also allows us to com-
pute the ground-state energy, Egs, as a function of α. If N
denotes the total number of spins, then we find that, in the
entire SSL regime,

Egs = −NJ2

8

(
12 + 1

α2

)
. (5)

B. Thermal order by disorder

Given that the subextensive ground-state degeneracy is
accidental, i.e., not enforced by symmetries, the states along
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FIG. 3. Illustration of finite-size effects in the clean limit. Results are shown for α ≡ J2/J1 = 0.2 and hexagonal samples with open zigzag
boundary conditions. (a) Finite-size scaling of the ground-state energy per site (circles) fitted to a linear function (solid line). The dashed blue
line indicates the energy of the infinite-system solution [Eqs. (2)–(4)] when placed into the cluster. In the limit L → ∞, the results extrapolate
to the value predicted by Eq. (5) (horizontal dashed line). (b) Static structure factor S(k) of a single lowest-energy state for L = 40. The red
hexagon delimits a second Brillouin zone centered at 2π (1/3, 1/

√
3), while the white ring represents the spiral contour of the infinite system

(shown as guide to the eye). The solid green and dashed cyan lines correspond to different high-symmetry directions. (c) Finite-size scaling
of maxkS(k) normalized by the total number of sites N . (d) Full width at half maximum (FWHM) of the peak in S(k) along a radial (blue
circles) and tangential (red squares) cut through the second Brillouin zone.

the spiral contour differ in entropy and acquire different free
energies at temperatures T > 0. This typically results in the
selection of a discrete set of ground states and the stabilization
of an ordered phase at sufficiently low T through a mechanism
known as order by thermal disorder [44,45].

The outcome of such an effect for the model at hand was
first studied in Ref. [15]. By considering Gaussian fluctuations
around different classical ground states and computing their
contributions to the free energy at leading order in T , the
authors showed that the selected states are φQ = (2n + 1)π/6
when 1/6 < α � 0.232 and φQ = nπ/3 when 0.232 � α <

1/2. These results are consistent with classical Monte Carlo
simulations performed for α = 0.18 and α = 0.3 [15,20,21].
To the best of our knowledge, no explicit calculations have
been reported for α > 1/2. By employing the same theory of
Gaussian fluctuations, we find that, in this SSL2 regime, the
selected wave vectors are given by φQ = (4n + 3)π/6, which
correspond to the corners of the pockets surrounding the K
and −K points, as one might have suspected on the grounds
of continuity.

C. Finite systems and the influence of boundaries

In the presence of quenched disorder, translational invari-
ance is spoiled and the Luttinger-Tisza method, which was
used to derive the results summarized in Sec. II A, can no
longer be applied. Consequently, one has to resort either to
perturbation theory or to numerical methods that minimize the
energy on finite clusters and perform extrapolations to extract
valid conclusions for the thermodynamic limit.

However, doing this in a system that hosts a SSL requires
caution. Every spin spiral in the ground-state manifold has
a unique combination of a wavelength and a propagation
direction, and therefore responds differently when placed in
a finite cluster with specific boundary conditions. For in-
stance, under periodic boundary conditions, spin spirals that
are (nearly) commensurate with the cluster are favored by
an energy difference proportional to the perimeter (or area,
in three dimensions) of the boundary. Imbalances such as
this generally lift the ground-state degeneracy and can induce

strong selection mechanisms that occlude bulk effects caused
by other physical sources in the range of system sizes that
are accessible to numerics. Hence, before adding disorder to
system and investigating its consequences, it is important to
select boundary conditions that permit a meaningful extrapo-
lation to the thermodynamic limit and carefully characterize
their impact on the finite-size behavior of the clean system.

Here, we implemented an energy minimization algorithm
(see Appendix A for details) on finite hexagonal clusters
and, in light of the previous considerations, imposed open
boundary conditions. For concreteness, we considered an
antiferromagnetic J1 > 0, but our conclusions in this and fol-
lowing sections can be extended to the case J1 < 0. Moreover,
all results shown in the main text were obtained for zigzag-
type boundaries, such that N is related to the linear system
size, L, via N = (3/2)(L2 − L mod 2). For such systems, we
observe that all coplanar spin spirals described by Eq. (2) re-
main degenerate for any L. However, as the numerical results
depicted in Fig. 3(a) indicate, they are not minimal-energy
states away from the thermodynamic limit. To characterize
the actual finite-size ground states, we computed the static
structure factor

S (k) = 1

N

∑
i j

∑
μν

eik·(riμ−r jν )Siμ · S jν, (6)

where riμ = Ri + δμ1x̂ denotes the position of site iμ, for
clusters of sizes ranging from L = 16 to 40. The result for
the largest of these systems is shown in Fig. 3(b). There,
one sees a pair of Bragg peaks lying on the intersection be-
tween the spiral contour (white ring) and a high-symmetry
line of the second Brillouin zone. By performing a finite-size
analysis, we find that the height of the Bragg peaks diverges
with N [Fig. 3(c)], whereas their full width at half maximum
(FWHM) vanishes as 1/L [Fig. 3(d)]. Put together, this ev-
idence signals that our choice of open boundary conditions
still induces long-range magnetic order despite being less
biased than periodic boundary conditions. The degeneracy of
the spiral surface is lifted such that the ground-state manifold
reduces to a discrete set of six states, which are related (up
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to global spin rotations) by the sixfold rotational symmetry
around the center of a hexagonal plaquette. In Appendix B,
we explain the origin of the underlying selection mechanism
and show that the finite-size ground states acquire significant
out-of-plane components near four of the six edges of the
cluster.

To cope with these artifacts, we performed numerical simu-
lations with impurity concentrations that were large enough to
overcome the boundary selection and, at the same time, within
a reasonable range for realistic systems. When suitable, we
validated our results by testing their reproducibility in clusters
with armchair edges, which favor a different set of wave vec-
tors. Aside from that, we studied single-impurity effects using
analytic techniques which are immune to finite-size effects.
This will be the topic of the next section.

III. ISOLATED IMPURITIES:
ORDER BY QUENCHED DISORDER

In this section, we discuss how different types of isolated
impurities lift the continuous degeneracy of the ground-state
manifold in the thermodynamic limit—a necessary ingredi-
ent for ObQD—and draw distinctions between the SSL1 and
SSL2 regimes. We also analyze spin textures surrounding
isolated impurities. The physics of a finite concentration of
impurities will be discussed in Sec. IV below.

It is convenient to rewrite the clean version of the Hamilto-
nian (1) in the form H = − ∑

iμ hiμ · Siμ, where

hiμ = −J1

2

∑
NN

S jν − J2

2

∑
NNN

S jμ (7)

is the local field generated at site iμ by exchange interactions.
The first and second sums above run over the NN and NNN
sites of iμ, respectively. In these terms, every spin configura-
tion belonging to the ground-state manifold yields a different
set of local fields satisfying hiμ(α, φQ) ‖ Siμ(α, φQ) for all iμ.
Due to translation invariance and the equivalence between the
two sublattices, this implies that hiμ = −h Siμ for such states,
with h = |Egs|/N .

When a single impurity is added to the system, its leading
effect is to change the local fields at the sites iμ to which it
couples, i.e. hiμ → hiμ + δhiμ. Generally, the deviation field
δhiμ lifts the degeneracy of the ground-state manifold and
selects a discrete set of ground states via ObQD [44–46]. As
we describe in detail below, the selection mechanism is in
some cases simple enough to allow one to directly predict the
outcome for an infinite system by analytic means.

A. Bond defect

We begin by considering a single bond defect between
a pair of NN sites m0 and n1, such that the couplings in
Eq. (1) take the form J1,i j = J1 + δimδ jnδJ1 and J2,i jμ = J2.
For concreteness, we assume that this bond is horizontal, as
depicted in Fig. 4(a).

When δJ1 > 0 and J1 > 0, the defective bond is strength-
ened and therefore favors states in which Sm0 and Sn1 are
antiparallel, i.e., θQ = 0. According to Figs. 2(c) and 4(b), this
condition is, for any α, fulfilled by the pair of wave vectors Q
in the spiral contour that satisfy Qx = 0 in the first Brillouin

FIG. 4. (a) Schematic showing the angles θQ between NN spins
in the same unit cell and �3 between NNN spins separated by a
vector a3. The green and red lines highlight the directions of the
NN and NNN bond defects we considered for the ObQD arguments.
(b) Momentum-dependence of the function θk (3). Solid hexagons
delimit Brillouin zones, and the inner dashed hexagon corresponds
to the spiral contour at the Lifshitz point α = 1/2, which separates
the SSL1 and SSL2 regimes. (c) Variation of k · a3 with ky. For wave
vectors k in the spiral contour, this sets the angle �3 between NNN
spins, which is why we limited the results to the compact interval
] − π, π ]. We also took ky as the y axis to match the visualization in
(b). The horizontal dashed lines indicate the locations of the upper
and lower edges of the α = 1/2 spiral contour. (b) and (c) can be
used to determine under which circumstances bond defects do not
produce a texture, for details see text.

zone. Formally, we can verify this conclusion by tracking how
δhm0 = −(δJ1/2)Sn1 changes relative to Sm0 as a function of
φQ. It follows from Eq. (2) that

δhm0

δJ1/2
= cos(Q · Rnm+θQ)ê‖ + sin(Q · Rnm+θQ)ê⊥, (8)

where Rnm = Rn − Rm and ê‖ (ê⊥) is a unit vector that is
parallel (perpendicular) to Sm0. Since Rnm = 0 for a hori-
zontal bond defect, we confirm that the parallel component
δh‖

m0 is indeed maximized when θQ = 0. At the same time,
Eq. (8) reveals that the transverse component δh⊥

m0 = 0 for
these optimal states, such that they remain intact regardless
of the magnitude of δJ1. In fact, this analysis implies that
any distribution of equally oriented strong NN bond defects
selects a pair of spiral states without inducing any additional
spin textures.

An entirely different result arises when δJ1 < 0. In this
case, Eq. (8) indicates that the impurity favors the states in
the spiral contour with minimal cos θQ, for which Sm0 and Sn1

are as aligned as possible. The system thereby transfers the
maximum amount of frustration to the defect in order to opti-
mize the exchange interactions on the unweakened NN bonds
connected to m0 and n1. However, as depicted in Fig. 4(b),
this condition cannot be fully satisfied through states with
θQ = π unless the spiral contour intersects the boundaries
of the Brillouin zone, i.e., α � 1/2. Remarkably, this shows
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TABLE I. Summary of the effects of different isolated bond
defects. All Q are assumed to be in the first Brillouin zone. BZ⊥
and BZ‖ stand for the boundaries of the Brillouin zone which are
perpendicular and parallel to the defect in question.

Selected states Textures?

Type SSL1 SSL2 SSL1 SSL2

δJ1 > 0 Q ⊥ defect Q ⊥ defect No No
δJ1 < 0 Q ‖ defect Q ∈ BZ⊥ Yes No
δJ2 < 0 Q ⊥ defect Q ∈ BZ‖ No Yes
δJ2 > 0 Q ‖ defect Q ‖ defect Yes Yes

that the effect of a weak NN bond defect depends sensitively
on the topology of the spiral contour. In the SSL1 regime,
the preferred states φQ = 0 or π always have a transverse
deviation field δh⊥

m0 	= 0, since Sm0 and Sn1 are not parallel
for any ground state. As a result, the selected spin spiral
acquires a texture due to the defect. In contrast, there is no
such constraint in SSL2; the impurity simply selects the states
with wave vectors Q on the vertical edges of the Brillouin
zone without inducing any textures.

Next, we turn to the case of a bond defect between two
NNN sites mμ and nμ. Without any loss of generality, we can
assume that both sites belong to the sublattice μ = 0, such
that J1,i j = J1 and J2,i jμ = J2 + δimδ jnδμ0δJ2. The deviation
field δhm0 = −(δJ2/2)Sn0 at site m0 is then given by

δhm0

δJ2/2
= − cos (Q · Rnm)ê‖ + sin (Q · Rnm)ê⊥. (9)

For now, let us focus on the case of a vertical bond defect with
Rnm = a3 [see Fig. 4(a)]. As before, we consider the cases of
positive and negative δJ2 separately.

When δJ2 < 0, Eq. (9) shows that the system benefits from
minimizing the angle �3 between Sm0 and Sn0. Similarly
to the case δJ1 < 0, this optimizes the energy by relieving
the frustration on the unweakened NNN bonds. However,
according to Fig. 4(c), the spiral contour only contains states
with �3 = 0 when it crosses the line ky = 0 or, equivalently,
when α � 1/2. Thus the response of the system once again
differs between the SSL1 and SSL2 regimes. In the former, the
selected states φQ = 0, π are left undistorted. In the latter, the
impurity favors the two configurations with Q on a vertical
edge of the Brillouin zone; since these do not fully frustrate
the defective bond, they experience δh⊥

m0 	= 0 and acquire a
texture.

Conversely, a defect with δJ2 > 0 tends to maximize �3.
From Figs. 2(c) and 4(c), we see that, regardless of α, this
condition is fulfilled by the points Q on the spiral contour
which belong to the first Brillouin zone and have Qx = 0.
Nevertheless, because the extreme case �3 = π only occurs
along the horizontal edges of the α = 1/2 spiral contour, a
strong NNN bond defect induces textures in both SSL1 and
SSL2 regimes.

By exploiting the C3 symmetry of the system, one can
readily generalize the arguments above to other orientations
of bond defects. The corresponding results are summarized in
Table I and importantly show that bond defects of the same
kind, but with different orientations, favor distinct pairs of

spin spirals. At a nonvanishing concentration of impurities,
this will result in a competition between incompatible ObQD
mechanisms, whose implications are discussed in Sec. IV
below.

B. Single vacancy

Nonmagnetic impurities, which are equivalent to spin va-
cancies, are another common type of defect in magnetic
solids. Contrary to a bond defect, a single vacancy does not
break the local lattice rotation symmetry, and thus cannot
produce the same kind of state selection we encountered in
Sec. III A. In particular, it must preserve at least a sixfold
ground-state degeneracy for the system at hand.

A vacancy eliminates all couplings connected to its site
I0; equivalently, we may also set SI0 = 0. Proceeding as in
the previous sections, we find that the deviation fields at the
vacancy site and at its nine neighbors yield the same energy
correction 2h = 2|Egs|/N for every Q on the spiral contour.
This, however, does not imply that the degeneracy of the spiral
contour remains intact, as an energy splitting arises due to the
impurity-induced spin texture, which we discuss now.

To this end, we calculate the full spin texture within linear-
response theory. The procedure, which is explained in detail
in Appendix D, begins by identifying a combination of local
fields that mimic the effect a given impurity (in this case,
a vacancy). We then use linear-response theory to relate the
texture to a susceptibility and compute this quantity to leading
order in 1/S via linear spin-wave theory [27,28,47].

As a byproduct, we obtain the necessary ingredients to
derive the correction Htex to the ground-state energy due to
the emergence of the texture. Figures 5(a) and 5(b) depict the
variation of this quantity along the spiral contour for α = 0.2
and 0.8, respectively. In the first case, the data exhibit the ex-
pected sixfold symmetry and indicates that the vacancy selects
the set of states φQ = nπ/3 with n ∈ Z. On the other hand,
the second case displays a lower threefold symmetry because
the angle φQ ∈ [0, 2π [ only spans half of the spiral contour,
corresponding to the pocket enclosing K = (0, 4π/(3

√
3a)).

Furthermore, the ObQD mechanism is seen to favor states
with φQ = (4n + 1)π/6, which live along line connecting the
center of the Brillouin zone to its corners.

To verify whether the previous results are representative
of the entire SSL1 and SSL2 regimes, we computed �Htex =
Htex(φQ1) − Htex(φQ2) with

(φQ1, φQ2) =
{

(0, π/2) for α in SSL1,

(π/2,−π/2) for α in SSL2,
(10)

as a function of α. As shown Figs. 5(c) and 5(d), �Htex

is negative at α = 0.2, in full consistency with Fig. 5(a).
However, it changes sign at α∗ ≈ 0.2148 and remains positive
beyond that point. Thus the selected states shift from φQ =
nπ/3 when 1/6 < α < α∗ to φQ = (2n + 1)nπ/6 when α∗ <

α < 1/2. As suggested by Fig. 2(c), the latter wave vectors
evolve continuously into the points characterized by φQ =
(4n + 1)π/6 once α > 1/2, which correspond precisely to the
states selected at α = 0.8 and in the rest of the SSL2 regime.
Finally, we note that the magnitude of �Htex vanishes as α →
1/6+ and α → ∞, revealing that the strength of the ObQD
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FIG. 5. ObQD results for a single vacancy. [(a) and (b)] Variation
along the spiral contour of the energy correction Htex/J1 due to the
spin texture for α = 0.2 and 0.8, respectively. (c) Difference �Htex

between the energy corrections at different high-symmetry points as
a function of α. (d) Same as (c), but zoomed into the vicinity of the
first Lifshitz point α = 1/6. The sign change at α ≈ 0.2148 signals
a shift in the wave vectors Q selected by the vacancy.

mechanism is proportional to the degree of anisotropy of the
spiral contour as expected.

C. Two-vacancy clusters

In the previous section, we stressed that the selection mech-
anisms promoted by a bond defect and a vacancy must be
fundamentally different due to symmetry. However, in situ-
ations with a finite concentration p of vacancies there is a
probability ∝p2 for two-vacancy clusters to form. This type
of defect lowers the symmetries of a single vacancy down
to those of a bond defect and can therefore have one of
two effects: it can either further lift the sixfold ground-state
degeneracy we encountered in Sec. III B or favor an entirely
different pair of spiral states. The latter case gives rise to
yet another instance where competing ObQD mechanisms
coexist in the same system; we shall comment more on its
implications in Sec. IV C.

Let us first consider the case where two vacancies are
located on NN sites, m0 and n1. By considering the effect
of the interaction between the deviation fields δhiμ and an
undistorted spin spiral, one finds an energy correction

δENNvacs = 4h − J1 cos (Q · Rnm + θQ), (11)

which is equal to the correction due to two isolated vacancies
minus a term that eliminates the double-counting of the bond
connecting m0 to n1. We thus see that a NN two-vacancy
cluster favors the same states as a strong (δJ1 > 0) NN defect
of the same orientation. This result also has a simple visual
explanation. If the two vacancies are connected by a z bond, as
shown in Fig. 6(a), then they eliminate two x and two y bonds,

FIG. 6. Different types of two-vacancy clusters on the honey-
comb lattice with (a) NN and (b) NNN vacancies.

but only one z bond. Thus configurations that minimize the
energy on z bonds (Q ⊥ to the defect) are preferred.

Analogously, the energy correction due to a pair of NNN
vacancies that occupy sites m0 and n0 is

δENNNvacs = 4h + J2 cos (Q · Rnm). (12)

The Q-dependent term here acts as a strong NNN bond defect,
thereby favoring spirals for which Sm0 and Sn0 as misaligned
as possible. From Fig. 6(b), we see that this also has a sim-
ple rationalization: Vertically aligned vacancies, for instance,
eliminate four of each of the different diagonal NNN cou-
plings, but only three of the vertical ones. Hence, it is less
energetically costly to frustrate interactions on the diagonal
NNN bonds.

Finally, one can analyze the configuration of the deviation
fields for the two types of vacancy clusters we considered
above and verify that both cases have impurity-induced tex-
tures. This fact, along with the other results we obtained in
connection to single vacancies and two-vacancy clusters, are
summarized in Table II.

D. Spin textures from linear-response theory: Friedel-like
oscillations and exceptionally slow decays

Having established that different types of isolated impuri-
ties induce distortions on top of selected spiral states, we now
characterize the long-distance behavior of these spin textures.
This is a relevant undertaking because, depending on the out-
come, the interference between textures can drastically impact

TABLE II. Summary of the effects of a single vacancy or a pair
of adjacent vacancies separated by a vector d. φQ is a polar angle
parametrizing the entire spiral contour in the SSL1 regime and the
upward pocket centered at K in SSL2. The ratio α∗ ≈ 0.2148 was
obtained by analyzing the data in Fig. 5.

Type & regime Selected states Textures?

Vacancy (1/6 < α < α∗) φQ = n π

3 Yes
Vacancy (α∗ < α < 1/2) φQ = (2n + 1) π

6 Yes
Vacancy (SSL2) φQ = (4n + 1) π

6 Yes
NN vacancies Q ⊥ d Yes
NNN vacancies Q ‖ d Yes
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FIG. 7. Friedel-like oscillations in the out-of-plane texture
〈Sy

iμ〉/(S|δJ1|) due to a weak NN bond defect in a system with
[(a) and (b)] α = 0.2 and [(c) and (d)] 0.3, obtained from the cal-
culation outlined in Appendix D. The left (right) column displays
results for the μ = 0 (μ = 1) sublattice, respectively. In all cases,
the impurity is located at the origin and the data were obtained by
performing the integral in Eq. (D25) numerically.

the stability of LRO in a system with a finite concentration of
impurities [28].

Using the same linear response procedure as outlined in
Sec. III B, we computed the spin texture that an arbitrary
impurity generates on top of a spiral state in the ground-state
manifold. Upon doing so (see Appendix D for details), we
were able to show that the presence of zero modes along the
spiral contour generally disrupts the coplanarity of the spin
configuration. As illustrated in Fig. 7, the texture acquires an
out-of-plane component 〈Sy

iμ〉 which oscillates as it decays
and, for this reason, is reminiscent of Friedel oscillations in
an electron gas [48,49]. If we denote the polar coordinates of
unit cell i as (R, θ ), then〈

Sy
iμ

〉 = S√
R

∑
φ0∈�θ

Aμθ (φ0) cos[kα(φ0)· Ri + ξμθ(φ0)], (13)

at large distances R � 2π/Q from the impurity. Here, kα :
[0, φmax[→ R2 is a function parametrizing the spiral contour,
such that φmax = π (2π ) in the SSL1 (SSL2) regime. The sum
runs over the set �θ of points φ0 for which the projection
kα (φ0) · Ri is stationary. Together, the amplitude Aμθ (φ) and
the phase shift ξμθ (φ), which depend on Q and whose precise
definitions are given in Eq. (D27), encode all the impurity-
specific information. In the limit of small α − 1/6, where the
spiral contour is approximately a circle of radius kα , Eq. (13)
simplifies to

〈
Sy

iμ

〉 = S√
R

Aμ cos(kαR + ξμ), (14)

which only carries a sublattice-dependent amplitude Aμ and
phase shift ξμ.

We have therefore shown that, whenever an impurity dis-
torts a selected state in the spiral contour, it gives rise to
Friedel-like oscillations in the out-of-plane component of the

spin texture. Similarly to the electron gas [50], the period of
these oscillations in the asymptotic limit R → ∞ is dictated
by a discrete set of momenta on a surface of gapless modes.
The degree of anisotropy of the corresponding “Bose surface”
(i.e., the spiral contour) is directly reflected in the texture,
as one can see by comparing the top and bottom rows of
Fig. 7. For (a) and (b), the spiral contour is approximately
circular and the resulting pattern is almost perfectly isotropic.
In contrast, (c) and (d) display a nontrivial angular dependence
because they correspond to a larger value of α, which, in the
SSL1 regime, accentuates the anisotropy of the spiral contour.
A close inspection of Fig. 7 also reveals that the out-of-plane
component of the texture has a staggered sublattice structure,
i.e., spins in the same unit cell cant in opposite out-of-plane
directions. This particular feature, however, is enforced by the
sign of J1; a ferromagnetic J1 leads to a uniform sublattice
structure. As we show in Appendix D 1, such a sublattice com-
pensation allows the out-of-plane component of the texture
to emerge at no energy cost (within linear response theory)
and thereby relieve the frustration within the original ordering
plane.

One aspect in which the present Friedel-like oscillations
differ significantly from their analog in the electron gas is
their spatial decay rate. The 1/

√
R dependence in Eq. (13)

is far slower than the 1/R2 power law expected for a two-
dimensional electron gas [51] or the 1/R3 behavior that
applies specifically to graphene [52]. In a three-dimensional
model, where the dimension d of the spiral surface may
be either 1 or 2 [11], the same methods we employed in
Appendix D indicate that the texture decays as R−d/2. This
is again slower than the well-known 1/R3 power law in the
three-dimensional electron gas [48,49].

We note that the existence of an impurity-induced out-of-
plane texture in a system with a spiral ground-state manifold
was previously observed in numerical simulations on a
diamond-lattice antiferromagnet with antisite disorder [22].
However, the authors did not recognize the generality of this
effect across the SSL regime, nor did they identify its long-
range and oscillating nature. Our results suggest that searching
for such Friedel-like oscillations provides additional means
to characterize spiral manifolds, complementary to neutron
scattering, in the effort to identify new SSL candidates.

On the other hand, the in-plane component of the textures
depends more sensitively on the microscopics of the impurity
and on the ordering wave vector Q it selects through ObQD.
In Appendix D, we provide a detailed compilation of linear-
response results for α = 0.2. Our analysis shows that either
type of bond defect (weak NN or strong NNN) produces a
texture with p-wave-like symmetry (in the sense that it has a
nodal line) and a remarkably slow power-law decay r−γ , with
γ ≈ 0.5, for distances r � 2π/Q. Upon varying α, we found
that the same qualitative behavior holds across the entire
SSL1 and over a wide range of the SSL2 regime. Overall, the
textures only become weaker as one approaches the second
Lifshitz point α = 1/2.

The case of a single vacancy is perhaps even more striking.
When α = 0.2, the texture displays s-wave-like symmetry (no
nodal lines) and decays more slowly than any power law.
However, once α > α∗ and the outcome of ObQD changes
(see Table II), the texture acquires two orthogonal nodal lines
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(d-wave-like) and decays as a power law with exponent γ ≈
1.5 at large distances. Similarly to the case of bond defects,
varying α > α∗ leads to a quantitative change in the strength
of the texture, which decreases toward α = 1/2. The recur-
rence of this observation may be related to α dependence of
the spin stiffness [22], which vanishes at the first Lifshitz point
α = 1/6 and might reach a maximum at α = 1/2.

To put the previous results into perspective, it is instructive
to compare them to the structure of impurity-induced tex-
tures in another frustrated system: the NN triangular-lattice
Heisenberg antiferromagnet. Past studies have shown that, in
this setting, a vacancy gives rise to an octupolar texture [47],
which has f -wave symmetry and decays as 1/r3, whereas a
bond defect induces a dipolar texture [27], which displays
p-wave symmetry and decays as 1/r. In the latter case, one
can rigorously prove that any nonzero concentration of bond
defects destroys LRO [28]. Although we refrain from pursu-
ing a similar proof here due to the lower symmetry of our
model and the higher complexity of the spin spirals, it is
likely that the far-reaching textures of the SSL are equally
detrimental to the stability of LRO. This applies in particular
to the textures induced by bond defects, which have a similar
angular symmetry as in the triangular lattice, but decay even
more slowly. Such a destruction of LRO is consistent with the
results in Sec. IV below.

Given that the model we consider here reduces to two
decoupled triangular-lattice antiferromagnets in the limit
α → ∞, we can expect consistency with the results of
Refs. [27,28,47] in this limit. Indeed, our textures obtained for
large α (see Appendix D 3) show that the impurity behavior
expected for the triangular lattice emerges at intermediate dis-
tances and crosses over to that of a SSL at a distance Rcross(α),
which increases with α and diverges as α → ∞.

In broader terms, the above results underscore the fact
that SSLs are, due to the abundance of low-energy modes,
exceptionally soft systems, which are extremely susceptible
to perturbations. Thus, taking the point of view of a “swiss
cheese model” [22], where different impurities are regarded
as independent, indiscriminately of the type of defect and the
ratio α, may be dangerous even at small defect concentrations.

IV. FINITE IMPURITY CONCENTRATION

The wealth of different ObQD phenomena we encountered
in Sec. III, along with the possibility that single impurities
induce slowly decaying spin textures, implies that the re-
sponse of a SSL to a finite concentration of impurities is rich
and highly nontrivial. Here we explore this in three different
settings. In Sec. IV A, we investigate whether the presence
of multiple bond defects of the same type (NN or NNN,
strong or weak) and orientation generically reinforces order-
ing tendencies, or if impurity-induced textures can destabilize
LRO even at small to moderate disorder concentrations. Next,
in Sec. IV B, we analyze a more realistic situation, where
impurities of the same type are allowed to have different ori-
entations. As we noted at the end of Sec. III A, this gives rise
to a competition between incompatible selection mechanisms.
Finally, Sec. IV C discusses the case of a randomly distributed
vacancies.

TABLE III. Parameters used in numerical simulations where de-
fects were randomly distributed over a fraction p = 10% of bonds
with the same direction. α refers to the average ratio defined in
Eq. (15).

L � 28 L > 28

Set δJ1 δJ2 α Ndis Ninit Ndis Ninit

A 1.0 0 0.193 20 120 20 120
B −0.5 0 0.213 20 120 40 1000
C 0 −0.1 0.196 40 150 40 150
D 0 0.1 0.203 40 150 40 150

While our numerical results are specifically for α = 0.2,
they will illustrate principles that are valid throughout the
entire SSL regime and which bear relevance to other models
hosting SSLs.

A. Bond defects of the same type and orientation

Using the energy minimization algorithm described in
Appendix A, we searched for the lowest-energy states of
systems of linear size L at a fixed ratio p = 10% of the number
of bond defects to the total number of sites. All bond defects
were assigned the same deviations (δJ1 or δJ2) from reference
values J1 = 1.0 and J2 = 0.2. From this, one can estimate an
average coupling-constant ratio

α =
{

α
(
1 − 2p

3
δJ1/J1

1+δJ1/J1

)
for NN defects,

α + p
3

δJ2
J1

for NNN defects.
(15)

For each disorder realization, we randomly distributed defects
with the same orientation over the lattice and, after reaching
converged solutions for Ninit different initializations, selected
the spin configuration with the minimal energy to compute the
static structure factor S (k). Finally, we averaged this quantity
over Ndis different disorder realizations. The relevant param-
eter sets for this section are summarized in Table III, while
the corresponding results for the disorder-averaged structure
factor are shown in Fig. 8.

According to our analysis in Sec. III A, the cases covered
by sets A (strong NN bonds) and C (weak NNN bonds) are
special in that a single impurity does not distort the selected
spin spirals in the thermodynamic limit. Based on this fact,
we argued that an arbitrary concentration of defects of either
kind stabilizes LRO with one of two states contained in the
spiral contour of the clean system. This expectation is fully
consistent with the numerical results presented in Fig. 8. In
both cases, we see a pair of Bragg peaks that remain pinned
to the α = 0.2 spiral contour and lie along directions that are
compatible with Table I. Furthermore, the finite-size extrapo-
lations of the height and width of the Bragg peaks show the
correct behavior for systems with LRO.

In contrast, sets B (weak NN bonds) and D (strong NNN
bonds) refer to cases where single impurities induce spin
textures that decay slowly in space (see Sec. III D). As such,
it is conceivable that, even at small impurity concentrations,
the interference between textures destroys LRO [28]. The data
in Fig. 8 show that this happens for set B. Indeed, while
Bragg peaks appear along the direction predicted in Table I,
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FIG. 8. Numerical results for the four different parameter sets listed in Table I. Top: Disorder-averaged static structure factors for systems
of linear size L = 40. The elements in the plots are the same as those in Fig. 3(b), except for the dotted white lines. These represent the spiral
contour for the average ratio α in each parameter set. (Middle and bottom) Finite-size scaling of the normalized height and FWHM of the
Bragg peaks. The linear fits shown discarded the data points corresponding to the two smallest system sizes. Magnetic LRO is seen for sets A
and C, but not for set B. For set D see text.

they have drifted toward the reaveraged spiral contour (dotted
white line) and seem broader than their counterparts in sets
A and C. This is confirmed by the finite-size analysis, which
reveals that the peak retains a nonzero width in the thermo-
dynamic limit. Thus the correlation length remains finite and
the system only develops short-range magnetic order. For set
D, we once again see Bragg peaks that are along the expected
direction and detach from the α = 0.2 spiral contour due to
impurity-induced textures. However, there are no clear indi-
cations of the destruction of LRO up to the system sizes we
could access in our numerics. We suspect that this is because
the disorder, δJ2 = 0.1, is overall weak.

B. Bond defects of random orientation: emergent glassiness
from competing ObQD mechanisms

As a next step, we allowed the bond defects to have random
orientations as well, while keeping the ratio p = 10%. For
each disorder realization with NN (NNN) bond defects, the
deviations δJ1,i j (δJ2,i jμ) were drawn from a Gaussian distri-
bution with mean δJ1 (δJ2) and standard deviation σδJ1 (σδJ2 ).
With this, we computed the disorder-averaged structure factor
as before and symmetrized the result with respect to 2π/3
rotations to restore the C3 symmetry of the lattice.

Figure 9 shows a compilation of results for the parameter
sets listed in Table IV. From the finite-size extrapolations

to the L → ∞ limit, one sees that all four cases clearly
lack long-range magnetic order. Their diffuse structure factors
display no discernible Bragg peaks, and are much more rem-
iniscent of glassy behavior than of short-range order found
for set B (see Fig. 8). Given that the parameter sets E-H
have the same concentration of defects as their counterparts
in A-D, we conclude that the coexistence of the incompatible
ObQD mechanisms promoted by bond defects with different
orientations strongly suppresses magnetic order in favor of a
spin glass phase.

To further substantiate this statement, we exploited the fact
that our iterative minimization algorithm samples different
local minima in configuration space to gain information on
the energy landscapes. More specifically, we tracked how the
distribution of energies of converged solutions evolves with
increasing L for a clean system, and looked for qualitative
differences in the results for parameter sets E-H. Figure 10
illustrates this comparison for set F.

In the absence of disorder [Figs. 10(a)–10(d)], we see
that the excited states gradually move toward lower energy
differences �E/N as L grows and the boundary effects wear
off. This is reflected not only in the appearance of isolated
peaks at lower energies, but also in a noticeable shift of the
dense group of states in the range 10−5 � �E/N � 10−4.
Although our simulations are limited to L � 40, it is clear
that this trend is responsible for restoring the degeneracy
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FIG. 9. Same as Fig. 8, but for the parameter sets listed in Table IV. The disorder-averaged structure factors shown here are symmetrized
by additionally averaging over 2π/3 rotations. There is no magnetic LRO in any of the cases.

of the spiral contour in the thermodynamic limit and must
persist indefinitely. The low-lying states can thus be viewed
as finite-size descendants of coplanar spiral states with values
of φQ that are slightly different from those selected by the
boundaries.

However, a markedly different behavior emerges once dis-
order comes into play [Figs. 10(e)–10(h)]. For a given system
size L, the distribution of energies in the window 10−5 �
�E/N � 10−3 becomes both denser and smoother, while the
frequency with which the lowest energy is reached (leftmost
bin in the histograms) decreases significantly. This indicates
that the energy landscape develops profuse barriers and local
minima, which are, along with the diffuse structure factors,
hallmarks of glassiness [53]. As L increases, these features
persist but we see no clear shift of energy levels toward
�E = 0.

TABLE IV. Parameters used in numerical simulations where de-
fects were randomly distributed over a fraction p = 10% of either
NN or NNN bonds. We set (Ndis, Ninit ) = (100, 500) for L � 28 and
(Ndis, Ninit ) = (50, 1000)100 for L > 28.

Set δJ1 σδJ1 δJ2 σδJ2

E 1.0 0.2 0 0
F −0.5 0.2 0 0
G 0 0 −0.1 0.04
H 0 0 0.1 0.04

We have also simulated other disorder distributions and
found qualitatively similar results (not shown), re-enforcing
the notion that random bond disorder efficiently destroy any
selection of ordered magnetic states.

C. Randomly distributed vacancies

Finally, we investigated the zero-temperature physics at
a fixed concentration p = Nvac/N of vacancies. In light of
Sec. III B, one could expect an infinitesimal p to induce mag-
netic order by spontaneously selecting one of the six states
φQ = nπ/3, as listed in Table II. However, any slight increase
in p simultaneously triggers up to four different effects that
conspire against the stability of this ordered phase. The first is
the interference between different vacancy-induced textures,
which have long-range components both in and out of the
original ordering plane. The three remaining effects relate to
the nonvanishing probability to form vacancy pairs. Depend-
ing on the α, one of these defects may favor configurations
which are incompatible with the states selected by a single
vacancy (see Table II). Furthermore, it induces a texture with
its own particular symmetries. Combined with the incompat-
ibility between the ObQD mechanisms of vacancy pairs with
different orientations, this leads to an enormous amount of
frustration.

The fact that all of these mechanisms are active in the
interval 1/6 < α � 0.2148 where vacancy-induced textures
are extremely long-ranged, indicates that magnetic order is
particularly fragile to vacancies in the proximity of the first
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FIG. 10. Histograms of the energy per site, E/N , of converged
solutions of the classical minimization algorithm. The horizontal
axis represents deviations relative to the lowest energy, �E/N =
max[10−8, (E − Emin )/N], while the vertical axis corresponds to the
frequency with which solutions in a given energy window were
obtained after 103 different initializations. The arrows highlight the
positions of the peaks with �E/N < 10−5. These histograms map
out the local minima of the energy landscape for finite clusters of
[(a)–(d)] the clean system and [(e)–(f)] single disorder realizations
of set F. In both cases, the clusters had open zigzag boundary
conditions.

Lifshitz point. This is fully consistent with previous results
obtained for diamond-lattice antiferromagnets [22], while of-
fering further insight as to why that is true and reinforcing the
expectation that the same conclusion holds for different SSL
models.

We performed numerical simulations on systems of lin-
ear sizes L � 40 with (Ndis, Ninit ) = (100, 500) for L � 28
and (Ndis, Ninit ) = (50, 1000) for L > 28, computed disorder-
averaged structure factors and symmetrized them with respect
to 2π/3 rotations. As shown in Fig. 11, a system with p = 5%
vacancies decidedly lacks LRO and presents the same glassy
features as above; results for p = 10% are similar. Given that
simulations become increasingly expensive and unreliable for
small p, we are not able to decide whether glassiness emerges
at infinitesimal dilution or at a finite critical pc; we leave it as
an open problem for future research.

V. EFFECTS OF THERMAL FLUCTUATIONS
AND ADDITIONAL COUPLINGS

In this section, we discuss physics aspects not covered by
our numerical results, such as the effect of thermal fluctuations

FIG. 11. Same as Fig. 8 but for systems with p = 5% of vacan-
cies and a maximum system size of L = 40. The disorder-averaged
structure factors shown here are symmetrized by additionally aver-
aging over 2π/3 rotations.

in D = 2, the order of phase transitions, and generalizations to
D = 3, also connecting to results from the literature.

A. J1-J2 honeycomb model

At finite low temperatures T > 0 and in the absence of dis-
order, the accidental degeneracy of the spiral contour is lifted,
such that only a discrete set of six ground states remains.
While the Hohenberg-Mermin-Wagner theorem [30,31] for-
bids long-range spiral order at any T > 0, the system can still
spontaneously break the threefold rotational symmetry around
a lattice site by realizing short-range-ordered patches with a
single pair {Q,−Q} of opposite wave vectors. Importantly,
the symmetry between ±Q cannot be broken spontaneosly
because the corresponding spin spirals are related by a global
spin rotation. This nematic phase has indeed been observed
in previous numerical studies [14,15], and has a similar in-
carnation in the J1-J2 Heisenberg model on the square lattice
[54,55]. Its thermal transition into the paramagnetic phase is
equivalent to the three-state Potts transition in D = 2, and is
therefore continuous [56].

The presence of impurities leads to a nontrivial interplay
between ObQD and thermal order by disorder. Quenched
disorder acts as a set of random spatial anisotropies, each of
which favors a particular ordering “axis,” i.e., a pair of wave
vectors {Q,−Q} on the spiral contour (see Sec. III). Regard-
less of whether the system is in the SSL1 or SSL2 regime,
bond disorder generally sets six such axes. By symmetry, three
of these must match the wave vectors selected by thermal
fluctuations; the remaining three can be neglected as long as
the disorder strength is small compared to the largest gap in
the spiral contour. We thus infer that the effective low-energy
description of the system corresponds to a three-state Potts
model supplemented with random fields [14]. According to
the Imry-Ma criterion [32], the lower critical dimension of
the thermal transition between the ordered and paramagnetic
phases is then D−

c,RF = 2. Therefore, at T > 0, any concentra-
tion � > 0 of bond defects destroys the long-range nematic
order by inducing the proliferation of domains with different
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ordering axes. The resulting phase is, however, not a genuine
spin glass, but rather a paramagnet, since the lower critical
dimension of a Heisenberg spin-glass transition is larger than
two [35–37], such that a glass phase only exists at T = 0. The
response of the system to disorder is thus similar to that of the
J1-J2 Heisenberg model on the square lattice [57]; the main
difference lies in the existence of a SSL regime, which one
can expect to span an extended portion of the phase diagram
[see Fig. 1(a)].

The outcome is more subtle when only site disorder is
present. As indicated by Table II, the formation of vacancy
pairs only leads to three—as opposed to six—inequivalent
axes. Hence, the previous Imry-Ma argument only applies if
these axes coincide with the wave vectors selected by thermal
fluctuations. According to the results summarized in Sec. II B,
this condition is violated over the majority of the SSL regime,
such that nematic order can be expected to survive for small
vacancy concentration.

Notably, the applicability of an Imry-Ma-type argument
is not restricted to T > 0, but in fact holds even at T = 0
provided that the spiral degeneracy is lifted by additional
terms in the Hamiltonian. At T = 0 magnetic LRO is possible,
and one such state has to break a Z3 ⊗ SO(3) symmetry, cor-
responding to the direct product of a threefold lattice rotation
and global spin rotation symmetries. The presence of the dis-
crete Z3 component implies that the low-energy theory of the
system still includes a three-state Potts order parameter, which
is again supplemented by disorder-induced random fields if
another type of perturbation, such as a third-neighbor Heisen-
berg coupling, lowers the degeneracy to a discrete sixfold one.
Hence, the system is equally unstable to weak bond disorder
as for T > 0 with no additional couplings. If only site disorder
is present, the result depends on the sign of the supplemental
coupling.

B. Spiral spin liquids in three dimensions

In three space dimensions, spiral LRO is stable at low tem-
peratures T and/or small disorder strength �, since neither
the Hohenberg-Mermin-Wagner theorem nor the Imry-Ma
criterion apply. However, as suggested by Fig. 1(b), thermal
fluctuations and quenched disorder may favor different or-
dered phases, O2 and O3, which (without fine tuning) should
be separated by a first-order transition. While the precise
character of these phases depends on the lattice, ratios of cou-
plings, and the type of defect present, they both spontaneously
break spatial point-group symmetries in addition to the global
SO(3) spin symmetry by selecting a particular ordering wave
vector Q. One may thus expect their thermal transitions into
the paramagnetic phase to be of the same order as a q-state
Potts transition [45], with q determined by lattice symmetries.
For � = 0 and q > 2, this turns out to be of first order [58], in
agreement with Monte Carlo results for the J1-J2 Heisenberg
model on the diamond lattice [1]. Nevertheless, the inclusion
of disorder can render the phase transition continuous, which
is known to happen, e.g., when the three-state Potts model is
supplemented with moderate random-field disorder [58,59].

The increase of � at low T eventually destroys LRO in
favor of a spin glass, in what we expect to be a first-order
phase transition. The freezing transition of the (Heisenberg)

spin glass is, in contrast, most likely continuous. However,
the nature of the latter remains a divisive issue to date with
two opposing theories. One advocates that isotropic Heisen-
berg systems in fact display two glass transitions due to a
decoupling between the scalar spin chirality and continuous
spin degrees of freedom at large length scales. Upon cooling,
the former would freeze before the latter, and an intermediate
“chiral glass phase” would arise above the spin glass phase
[36,37]. The second theory denies this spin-chirality decou-
pling and defends that both degrees of freedom freeze at the
same temperature in what may be a Berezinskii-Kosterlitz-
Thouless transition [35,60,61].

The fact that thermal fluctuations or additional couplings
gap out the spiral contour also has implications for the Friedel-
like oscillations we described in Sec. III D in both two and
three dimensions. First, the finite energy of the excitations
implies that the out-of-plane texture does not emerge for ar-
bitrarily weak perturbations, but only beyond a finite strength
of individual defects, see Appendix D. Second, we expect this
texture to be damped and follow an exponential rather than
a power-law decay. This, of course, does not preclude the
experimental observation of such oscillations.

VI. CONNECTIONS TO EXPERIMENTS

Among the few known realizations of a SSL, FeCl3 is the
one which best fits the model we studied here. It is a van
der Waals material where honeycomb planes of S = 5/2 Fe3+

ions are stacked with a three-layer periodicity. While the sys-
tem orders in a commensurate magnetic phase below TN ∼
8 K, a neutron scattering study reported the observation of a
spiral contour for T = 10–20 K and attributed its existence
to the competition between dominant intralayer interactions
J1 < 0 and J2 > 0 [3]. The best fit of a minimal model to
the data yielded a ratio α = J2/|J1| ≈ 0.25, which increases
to α ≈ 0.36 if further-neighbor couplings are included.

More recently, Ref. [62] investigated how chemical substi-
tution of Cl by Br affects the magnetic properties of FeCl3

in a series of samples FeCl3−xBrx with 0.08 � x � 3. Be-
sides changing the lattice spacing and the average ratio α,
introducing small x is expected to enhance the level of bond
randomness. By performing magnetization measurements as
a function of temperature and magnetic field, Cole et al. [62]
showed that even doping as small as x = 0.08 is sufficient
to change the ground state of FeCl3−xBrx to an antiferro-
magnet with alternating ferromagnetic layers, a collinear state
incompatible with a spiral contour. Based on first-principles
calculations, the authors associated such an abrupt transition
with the proximity of FeCl3 to the Lifshitz point α = 1/6 and
a rapid decrease of the average α as a function of doping.
However, we believe that the previous interpretation may be
incomplete. In Ref. [3], Gao et al. suggested that a weak
single-ion anistropy, which tends to lock an incommensurate
Q to a nearby commensurate position [16], was responsible
for the mismatch between the ordering wave vectors of the
x = 0 ordered phase and the ground state of the model that
produced the best fit to their data. By a similar token, the
action of the same lock-in mechanism on a set of Q favored by
ObQD may accelerate the transition to the x � 0.08 ground
state. In other words, the extreme sensitivity of FeCl3−xBrx
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to doping may be a combined effect of ObQD and weak
single-ion anisotropy in the proximity of the Lifshitz point
α = 1/6.

A related honeycomb-lattice compound, ZnMnO3, has also
been proposed as a SSL candidate. According to Ref. [63],
this material orders below TN ≈ 17.4 K in an S = 3/2 zigzag
state, which can be described by a J1-J2 Heisenberg model
supplemented by a weak antiferromagnetic J3. The ratio of
its Curie-Weiss temperature by its saturation field produces
an estimate α ∼ 0.44, which is in the correct range for the
emergence of SSL behavior at intermediate temperatures.
However, there has been no report to date on the observation
of a spiral contour in the material. This calls for further exper-
imental measurements of both clean and disordered samples.

Early investigations on the influence of disorder in SSLs
were largely motivated by the unusual properties of CoAl2O4,
an A-site spinel which freezes into a collinear short-ranged
ordered state at low temperatures and has an estimated ratio
α ≈ 0.110 [5–7]. Previous theoretical work [22] showed that
such a propensity toward glassiness could be understood as
a consequence of the proximity to the first Lifshitz point
α = 0.125, where the spin stiffness in the ordered phase of a
clean sample vanishes. As mentioned in Secs. III D and IV C,
our findings here are consistent with this statement and show
that spin vacancies, as may arise from Co–Al site exchange
in CoAl2O4, can lead to pronounced responses. In particular,
larger disorder is likely to produce a conventional spin glass in
the compound. Returning to FeCl3, we expect that substituting
Fe by a nonmagnetic ion could similarly destabilize LRO and
cause the emergence of an extended SSL or SSG regime.

Finally, as mentioned in Sec. III D, we expect Friedel-like
oscillations in the out-of-plane component of impurity-
induced textures to occur in any SSL system, both in two and
three dimensions. It would be extremely interesting to search
for this behavior in SSL candidates. This applies particularly
to the compounds MnSc2S4 [2], FeCl3 [3], and LiYbO2 [4],
for which there is clear evidence of SSL behavior.

VII. CONCLUSION AND OUTLOOK

We have provided an in-depth investigation of disorder
effects at T = 0 in a prototypical two-dimensional model
realizing a SSL. This includes the derivation of ObQD re-
sults, the characterization of impurity-induced textures, and
the identification of conceptually distinct mechanisms that
destabilize magnetic order to different degrees. Based on the
association of one of these mechanisms with random fields,
we propose that disorder can provide a route to expand the
intermediate-temperature SSL regime, but also give rise to a
“spiral spin glass”.

By cataloguing different ObQD results, we have identified
a number of situations in which quenched disorder selects spi-
ral states other than those favored by quantum and/or thermal
fluctuations. Given that such disparities should exist in any
SSL, one can expect the interplay between incompatible selec-
tion mechanisms to generate a nontrivial competition between
ordered phases, as sketched in Fig. 1(b). Similar behavior is
known to occur in XY pyrochlore magnets [23–26], and we
have argued that it may well be of experimental relevance
to FeCl3−xBrx [62]. A detailed theoretical investigation of

disorder-induced ordered phases in three space dimensions is
left for future work.

In the context of neutron scattering signatures of SSLs,
i.e., the emergence of a spiral line or surface, we have found
that these also arise in frozen SSG states, see Fig. 1. Our
results therefore prompt to search for glassiness, e.g., by ac
susceptibility measurements, in SSL candidate compounds.

Arguably, our most surprising result is that, whenever
an impurity distorts a selected spin configuration from the
ground-state manifold of a SSL, the ensuing spin texture has
a component out of the original ordering plane which displays
Friedel-like oscillations. We believe that searching for this
effect in material candidates can be highly worthwhile, as
it provides a distinctive signature of the classical ground-
state degeneracy and may complement neutron scattering in
the task of mapping out spiral manifolds. Magnetic imaging
techniques based, e.g., on transmission electron microscopy
or hard-x-ray tomography may be suited for this purpose,
especially in materials with ferromagnetic NN couplings. A
more fundamental, but equally interesting, question is whether
these noncoplanar textures can have nontrivial topological
properties. We leave this as an open topic for future research.

Finally, we recall that our investigations have been re-
stricted to the semiclassical limit of large spins. Quantum
effects can destroy both LRO and SSG phases in favor of
quantum spin liquids, valence-bond glasses or other param-
agnetic states dominated by quantum fluctuations.
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APPENDIX A: ENERGY MINIMIZATION ALGORITHM

The energy minimization algorithm we used in this paper
is based on the notion of local exchange fields, which we
introduced at the beginning of Sec. III. The algorithm starts by
generating an initial spin configuration, which we constructed
by adding small random in-plane and out-of-plane deviations
to a coplanar spiral state with either fixed or random φQ. Next,
it computes the set of N local exchange fields defined by
Eq. (7). The algorithm thus initiates an iterative scheme where
each step consists of three actions:

(1) randomly select nupd ∼ 3L spins;
(2) align the selected spins with their local fields;
(3) update the subset of mean fields that were affected by

the changes.
Furthermore, once every τtarg ∼ 105 steps, we perform a

“targeted” update, whereby action 1 in the list above is re-
placed by selecting the nupd spins that are most misaligned
with their mean fields.
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FIG. 12. Illustration of scalar chiralities χ 1
i jk in a ground state

of a clean system with α = 0.2, open zigzag boundary conditions,
and linear system size L = 28. The left and right figures correspond
to two different choices for triplets of sites such that i1, j1, and
k1 are next-nearest neighbors. In both cases, the values of χ1

i jk are
represented by triangles whose vertices point toward these three sites.
The size of each triangle is proportional to the absolute values of χ1

i jk ,
while the binary color code represents its sign.

This procedure is repeated until the maximum change in
a single spin, max |Snew

iμ − Sold
iμ |, is less than a certain con-

vergence parameter εconv for nconv consecutive iterations. For
most simulations, we used εconv = 10−12 and nconv = 15. Fi-
nally, we checked the global convergence of our solutions
by ensuring that the angle between each spin and its local
mean field did not exceed εconv. For L = 28, the algorithm
required roughly 106 steps to reach convergence, a number
which increases to ∼108 for L = 40.

APPENDIX B: DETAILS ON THE BOUNDARY-SELECTED
STATES FOR CLEAN FINITE SYSTEMS

In Sec. II A, we analyzed numerical data that led us to con-
clude that open zigzag boundary conditions lift the degeneracy
of the spiral contour and stabilize LRO. This Appendix is
dedicated to providing further details on the structure of
the resulting ground states and elucidating the nature of the
boundary-induced selection mechanism. To do so, we com-
puted the scalar spin chirality

χ
μ

i jk = Siμ · (S jμ × Skμ) (B1)

for ground states on finite clusters with different sizes. As
before, μ is a sublattice index, while i, j, and k label the
unit cells of three next-nearest-neighbor sites. Importantly, the
absolute value of Eq. (B1) is restricted to the interval [0, 1]
and reflects the degree of noncoplanarity of a triplet of spins.
Thus it can be used to diagnose deviations from coplanar
order.

Figure 12 illustrates the spatial dependence of χ1
i jk for

one of the six ground states on an L = 28 cluster. There, the
chirality of each triplet of spins is depicted as a triangle whose
vertices point in the direction of the three relevant sites. The
size and color of a triangle encode the absolute value and sign
of χ1

i jk , respectively. When we compare the data in Fig. 12 to
the structure factor in Fig. 3(b), we verify that both results
are (up to symmetry-allowed transformations) fully consis-
tent. Indeed, the latter indicates that, in the boundary-selected

configurations, spins connected by lines which are parallel to a
pair of opposite edges of the cluster have the same orientation.
While this statement is only strictly true in the thermodynamic
limit, it explains why the chirality nearly vanishes around the
top left and bottom right edges of the cluster in Fig. 12.

The triangles adjacent to the four remaining edges are
likewise quite small, but are shielded from the bulk by walls of
large triangles. This remarkable feature reflects that the finite-
size ground state in fact realizes a compromise between bulk-
and boundary-preferred configurations. More specifically, it
spontaneously adopts the ordering wave vector favored by any
of the three pairs of opposite edges and accommodates the
other four edges with nearly parallel NNN spins by distorting
the perfect coplanar spin spiral. Such a distortion occurs at a
minimal energy cost when it rotates spins out of the ordering
plane, which is why we observe the aforementioned strips of
large chirality.

The comparison between the energies of noncoplanar
ground states and truncated coplanar spin spiral in Fig. 3(a)
shows that the boundaries supply a significant energetic con-
tribution for all system sizes we accessed in our numerics.
As we noted in Sec. II C, this hinders a systematic numerical
analysis of most single-impurity effects. Meaningful conclu-
sions about impurity-induced textures, for instance, can only
be drawn from clusters that are large enough for the bulk to
be sufficiently insensitive to the boundary-induced textures.
However, in this case, the energy landscape is already so
complex that convergence to the exact ground state is not
guaranteed.

APPENDIX C: LINEAR SPIN-WAVE THEORY

To establish notation and lay the groundwork for the linear-
response calculations discussed in Sec. III D and Appendix D,
we devote this Appendix to a brief exposition of the linear
spin-wave theory for the clean J1-J2 model. Different aspects
of the theory were previously explored in Refs. [9,14,42].

To this end, we promote the Hamiltonian in Eq. (1)
to a quantum spin model and consider an arbitrary spiral
state described by a wave vector Q in the spiral contour.
In the original reference frame, each spin has components
{Sx

iμ, Sy
iμ, Sz

iμ} given by Eqs. (2) and (3). We then perform
rotations in spin space that map {x̂, ŷ, ẑ} onto a set of site-
dependent basis vectors {ê1,iμ, ê2,iμ, ê3,iμ}, defined such that
ê3,iμ ‖ Siμ and ê2,iμ = ŷ. The components in this rotated
frame, {S1

iμ, S2
iμ, S3

iμ}, are related to those in the original frame
via⎛

⎜⎝
Sx

iμ

Sy
iμ

Sz
iμ

⎞
⎟⎠ = (−1)μ

⎛
⎝ cos ϕiμ 0 sin ϕiμ

0 (−1)μ 0
− sin ϕiμ 0 cos ϕiμ

⎞
⎠

⎛
⎜⎝

S1
iμ

S2
iμ

S3
iμ

⎞
⎟⎠,

(C1)

where ϕiμ(Q) = Q · Ri + δμ1θQ as before. The resulting
Hamiltonian reads

H =
∑

i j

∑
μν

[
Lμν

i j

2

(
S3

iμS3
jν + S1

iμS1
jν

)

+Jμν
i j

2
S2

iμS2
jν + T μν

i j S3
iμS1

jν

]
, (C2)
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with coupling matrices given by

Jμν
i j = J1δ|r jν−riμ|,a + J2δ|r jν−riμ|,√3a, (C3)

Lμν
i j = −J1 cos[(−1)μQ · R ji + θQ]δ|r jν−riμ|,a

+ J2 cos(Q · R ji )δ|r jν−riμ|,√3a, (C4)

T μν
i j = (−1)μJ1 sin[(−1)μQ · R ji + θQ]δ|r jν−riμ|,a

− J2 sin(Q · R ji )δ|r jν−riμ|,√3a. (C5)

Thus the original coupling matrix in the laboratory frame, Jμν
i j ,

sets the interaction between out-of-plane components that the
spin texture might acquire. Meanwhile, Eqs. (C4) and (C5)
can be interpreted as the components of the local field that Siμ

generates parallel and perpendicular to S jν , respectively, in an
unperturbed spin spiral. Also, a denotes the lattice constant,
such that the Kronecker deltas enforce that matrix elements
are only nonzero when iμ and jν are NN or NNN sites.

Being in the rotated frame enables us to employ the
Holstein-Primakoff transformation

S3
jμ = S − a†

jμa jμ, S1
jμ + iS2

jμ =
√

2S − a†
jμa jμa jμ,

(C6)

and expand the Hamiltonian in powers of S−1/2. After ap-
plying a Fourier transform, a jμ = √

2/N
∑

k eik·R j akμ, and
truncating the series at O(S), we obtain the linear spin-wave
Hamiltonian

HLSW = S(S + 1)Egs + S

2

∑
kμ

�
†
k

(
Ak Bk

B†
k Ak

)
�k, (C7)

where �
†
k = (a†

k0, a†
k1, a−k0, a−k1). If we set the lattice con-

stant a = 1, introduce the shorthand notation k0 = 0 and kn =
k · an, and recall the definition h = |Egs|/N , we can write their
matrix elements of the 2 × 2 Hermitian matrices Ak and Bk
as

Ak,00 = Ak,11 = 2h + J2

3∑
a=1

cos ka(1 + cos Qa),

Ak,01 = A∗
k,10 = J1

2

2∑
a=0

[1 − cos (θQ − Qa)]e−ika ,

Bk,00 = Bk,11 = −J2

3∑
a=1

cos ka(1 − cos Qa),

Bk,01 = B∗
k,10 = −J1

2

2∑
a=0

[1 + cos (θQ − Qa)]e−ika . (C8)

The quadratic Hamiltonian in Eq. (C7) can be diagonalized
via a Bogoliubov transformation and recast in the form

HLSW = S(S + 1)Egs + S
∑
kμ

εkμ

(
b†

kμbkμ + 1

2

)
, (C9)

with εkμ � 0 being the excitation energy of a single magnon
created by the bosonic operator b†

kμ. The relation between
Eqs. (C7) and (C9) is established by diagonalizing the non-

FIG. 13. Plots of the lower branch εk0 of the linear spin-wave dis-
persion for α = 0.2 with [(a) and (b)] φQ = 0 and [(c) and (d)] π/2.
In upper row, the dashed gray hexagons indicate the boundary of the
first Brillouin zone, while the yellow vector corresponds to the order-
ing wave vector (a) Q = (2/3) cos−1[1/(4α)2 − 5/4]x̂ ≈ 0.8353x̂
and (c) Q = (2/

√
3) cos−1[1/(4α) − 1/2]ŷ ≈ 0.8345ŷ. Plots (b) and

(d) depict the radial dependence of the dispersion along rays with
polar angles ϕ ranging from 0 (blue) to π/2 (gray).

Hermitian matrix

σ3Mk =
(

Ak Bk

−B†
k −Ak

)
, (C10)

where σ3 = diag(1, 1,−1,−1) [64]. The eigenvalues of
σ3Mk are {εk0, εk1,−ε−k0,−ε−k1}, with

εkμ =
√

Pk + 2(−1)μ
√

Rk (C11)

and

Pk = A2
k,00 − B2

k,00 + |Ak,01|2 − |Bk,01|2,
Rk = |Ak,11Ak,01 − Bk,00Bk,01|2 − Im(Bk,01A∗

k,01). (C12)

The four eigenvalues listed above correspond to right eigen-
vectors we shall denote as {Vk0,Vk1,Wk0,Wk1}, respectively.
With the normalizations

V †
kμσ3Vkμ = 1, W †

kμσ3Wkμ = −1, (C13)

the Bogoliubov transformation reads(
akμ

a†
−kμ

)
=

1∑
ν=0

(
Vkν,μ Wkν,μ

Vkν,2+μ Wkν,2+μ

)(
bkν

b†
−kν .

)
. (C14)

For the case at hand, we were able to derive the eigenvectors
of σ3Mk analytically. Although we shall not reproduce the
expressions here, we note that this task is facilitated by the
property Wkμ = σ1V ∗

−kμ [64], where σ1 is a 4 × 4 generaliza-
tion of the Pauli matrix σx.

The linear spin-wave spectrum given by Eq. (C11) has
a few remarkable properties. To illustrate them, we present
plots of the lower branch εk0 of the α = 0.2 spectrum for
two different ordering wave vectors, corresponding to φQ = 0
and φQ = π/2, in Fig. 13. Both cases exhibit a Goldstone
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mode at k = 0. However, the dispersion around this point is
highly anisotropic and even changes from linearly (for k ‖
Q) to quadratically dispersing (for k ⊥ Q) [see Figs. 13(b)
and 13(d)]. This anisotropy of the Goldstone mode may be
the underlying cause of the pinch-point singularities we find
Appendix D, when inspecting susceptibilities that describe the
response of the system to different types of impurities.

While both spectra exhibit zero modes at the expected
locations, a comparison between the left and right columns
of Fig. 13 reveals that they are not equivalent under 90◦ rota-
tions. This, however, is by no means a contradiction, since the
Hamiltonian is not invariant under such a rotation. It merely
reflects the fact that the degeneracy of the spiral contour is
not protected by symmetry, and is therefore prone to be lifted
by fluctuations. By computing the leading correction to the
ground-state energy within linear spin-wave theory, the au-
thors of Ref. [14] showed that quantum fluctuations select the
same set of spiral states as a single vacancy (see Table II):
φQ = nπ/3 in the SSL1 regime and φQ = (4n + 3)π/6
in SSL2.

APPENDIX D: LONG-DISTANCE BEHAVIOR OF SPIN
TEXTURES VIA LINEAR-RESPONSE THEORY

This Appendix presents a detailed derivation of the linear-
response results discussed in Sec. III D. We start by outlining
the procedure in full generality and later, while focusing on
the SSL1 regime, address the cases of a NN bond defect, a
NNN bond defect and single vacancy separately.

The first step of the calculation has already been provided
in Appendix C, where we solved the unperturbed (clean)
Hamiltonian at the level of linear spin-wave theory. Thus our
next task is to construct a pertubation δH which can be added
to the Hamiltonian to mimic the effect of a weak impurity that
preserves the form of Eq. (1), but is otherwise arbitrary. To do
so, we return to the rotated frame introduced in Appendix C
and consider modifications to the coupling matrices appearing
in Eq. (C3)–(C5), which is to say T μν

i j → T μν
i j + δT μν

i j and
so on. Assuming that this induces small deviations from the
original spin spiral, we use the normalization constraint of
classical spins to expand the different terms in powers of the
tranverse components S1

iμ and S2
iμ. By truncating the expan-

sion at next-to-leading order, we obtain

δH =
∑

i j

∑
μν

(
S2

2
δLμν

i j + S δT μν
i j S1

jν

)

= S2δH0(Q) − S
∑

jν

BjνS1
jν . (D1)

The first term, S2δH0(Q), represents the energy correction
due to the change in the longitudinal component of the local
exchange fields. Thus it encapsulates the same principles that
guided our considerations in Sec. III A. The second term,
in contrast, corresponds to a transverse in-plane field Bjν

acting only in the immediate vicinity of the impurity. As
such, it is responsible for the possible emergence of a spin
texture.

The expectation values of the spin operators with respect to
the ground state of the perturbed Hamiltonian (H + δH) can

be expressed as⎛
⎜⎝

〈
S1

iμ

〉〈
S2

iμ

〉〈
S3

iμ

〉
⎞
⎟⎠ = S

⎛
⎜⎝cos ϑiμ sin δϕiμ

sin ϑiμ

cos ϑiμ cos δϕiμ

⎞
⎟⎠. (D2)

Here, δϕiμ and ϑiμ denote the correction to the in-plane angle
of the spin spiral, ϕiμ → ϕiμ + δϕiμ, and a canting angle
out of the original ordering plane, respectively. Naively, one
could be tempted to conclude that all ϑiμ must be zero, since
the impurity does not couple to the out-of-plane components
S2

iμ directly (through δH) nor indirectly (H does not have
a S1

iμS2
jν cross term). However, as we will show below, this

assumption turns out to be incorrect due to the presence of
zero modes along the spiral contour. Within linear-response
theory [49,65],

δ
〈
Sa

iμ(t )
〉 = 〈

Sa
iμ(t )

〉 − 〈
Sa

iμ

〉
0

= −i
∫ t

−∞
dt ′〈[Sa

iμ(t ), δH(t ′)
]〉

0

=
∫ ∞

−∞
dt ′′χa1

iμ (t ′′) = χ̃a1
iμ (ω = 0), (D3)

where a = 1, 2, 3. Furthermore,

iχa1
iμ (t ) =

∑
�λ

∑
jν

δT λν
� j

〈[
Sa

iμ(t ), S1
jν (0)

]〉
0
�(t ) (D4)

is a real-space retarded correlation function, χ̃a1
iμ (ω = 0) is

its Fourier transform at zero frequency, and 〈· · ·〉0 denotes
the expectation value with respect to the ground state of the
unperturbed Hamiltonian. The time dependence in Eq. (D3)
follows from the fact that both operators appearing in the
correlation function are in the interaction picture.

As usual, the susceptibility χ̃a1
iμ (ω) is most conveniently

evaluated by first computing the Matsubara correlation func-
tion

χ̃a1
kμ(iωn) =

∑
ν

βkν

∫ 1/T

0
dτeiωnτ

〈
Sa

kμ(τ )S1
−kν (0)

〉
0

(D5)

at a nonzero temperature T . Here, ωn = 2πn/T are bosonic
Matsubara frequencies, 〈· · ·〉0 is the thermal average in the
Gibbs ensemble of the unperturbed Hamiltonian, and

βkν = −
∑
j�λ

δT λν
� j e−ik·R j (D6)

is a sublattice-dependent form factor. Using the Holstein-
Primakoff transfomation in Eq. (C6) and the Bogoliubov
transformation in Eq. (C14), it is easy to see that Eq. (D5)
vanishes for a = 3, given that it only involves averages of
odd numbers of bosons. The two remaining cases (a = 1, 2)
can be calculated straighforwardly to leading order in 1/S.
After performing analytic continuation to real frequencies, we
obtain

χ̃a1
kμ(ω = 0) = S

2ia−1

∑
νλ

βkν

[
F±

μν (Vkλ)

εkλ − i0+ + F±
μν (Wkλ)

εkλ + i0+

]
,

(D7)
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where εkλ = ε−kλ is the spin-wave spectrum given by
Eq. (C11) and

F±
μν (V ) = (Vμ ± V2+μ)(Vν + V2+ν )∗ (D8)

appear as functions of the eigenvectors (i.e., the Bogoli-
ubov coefficients) of the spin-wave matrix σ3Mk defined in
Eq. (C10). The upper (lower) sign applies for a = 1 (a = 2).

Equation (D7) can, however, be cast in a more transparent
form if one exploits the fact that the linear spin-wave matrix
obeys Mk = M∗

−k. This property, which is a consequence of
the time-reversal symmetry of H, implies that V ∗

−kλ = Vkλ and
Wkλ = σ1Vkλ. By combining this result with Eqs. (D3) and
(D7), we conclude that〈

S1
iμ

〉 = S

Nc

∑
k

eik·Ri
∑
νλ

βkνF+
μν (Vkλ)P

(
1

εkλ

)
, (D9)

〈
S2

iμ

〉 = πS

Nc

∑
k

eik·Ri
∑

ν

βkνF−
μν (Vk0)δ(εk0), (D10)

where P stands for the Cauchy principal value and Nc = N/2
is the number of unit cells in the system. It is worth noting
that, although the eigenvectors Vk0 diverge at the points where
εk0 = 0, the functions

∑
ν βkνF±

μν (Vk0) will turn out to be
analytic over the entire Brillouin zone for all three cases we
consider below.

1. Energy correction due to the texture

With the results outlined above, one can compute the en-
ergy correction due the distortions an isolated impurity causes
to the spin configuration. To achieve this, we employ the
normalization constraint for classical spins,

S3
iμ ≈ S − 1

2S

[(
S1

iμ

)2 + (
S2

iμ

)2]
, (D11)

and express Eq. (C2) solely in terms of transverse spin compo-
nents. As a result, the Hamiltonian naturally decomposes into
three separate contributions, H = Egs + δH0(Q) + Htex(Q).
The first two, which have appeared previously in Eqs. (5) and
(D1), represent the ground-state energy of the clean system
and a trivial correction due to changes in the local fields. The
third term, on the other hand, encompasses the influence of
the impurity-induced spin texture and reads

Htex = 1

2

∑
i j

∑
μν

{
Lμν

i j

[
S1

iμS1
jν − (

S1
iμ

)2 − (
S2

iμ

)2]

+ Jμν
i j S2

iμS2
jν

} − S
∑

iμ

BiμS1
iμ. (D12)

It depends on the ordering wave vector Q through the coupling
matrices and contributes to the ObQD mechanism at a higher
order in response theory than δH0. However, as demonstrated
in Sec. III B, there are situations in which δH0 is independent
of φQ and the state selection is determined exclusively by Htex.
This justifies an explicit evaluation of Eq. (D12), which is
most conveniently carried out in reciprocal space.

Since we are interested in the classical limit S → ∞, we
can drop the ground-state expectation values in Eqs. (D9)
and (D10), and substitute these expressions directly into
Eq. (D12). After converting the discrete sum over momenta

into an integral over the Brillouin zone, we obtain

Htex = S2vuc

8π2

∫
BZ

d2k { f1(k) + f2(k)[δ(εk0)]2}, (D13)

where vuc denotes the area of a unit cell in real space. The
functions

f1(k) = β
†
k Gk[(Lk + 2h1)Gk − 21]βk, (D14)

f2(k) = π2 β
†
k (F−

k0)†(Jk + 2h1)F−
k0 βk (D15)

carry information about the magnon modes through

F±
kλ =

(
F±

00 (Vkλ) F±
01 (Vkλ)

F±
10 (Vkλ) F±

11 (Vkλ)

)
, Gk =

∑
λ

F+
kλ

εkλ

, (D16)

which are matrices defined in terms of the functions given in
Eq. (D8) and the spin-wave dispersion in Eq. (C11). Equa-
tions (D14) and (D15) also depend on Lk and Jk, the Fourier
transforms of the 2 × 2 coupling matrices Lμν

i j = Lμν (R ji ) and
Jμν

i j = Jμν (R ji ). Finally, all impurity-specific information is
encoded in the form factors βk = (βk0, βk1)�.

With Eq. (D12), we have expressed Htex in terms of two
integrals over the Brillouin zone, one related to the in-plane
and the other to the out-of-plane component of the spin tex-
ture. However, the latter requires a careful examination due
to the presence of the square of a Dirac delta. We thus start
by noting that only momenta hosting zero modes can con-
tribute to I2 = ∫

BZ d2k f2(k)[δ(εk0)]2. This allows us to split
the integration domain into disjoint sets consisting of a disk of
infinitesimal radius centered at the origin and closed portions
of the spiral contour. Let us focus on one of the latter contours
for now, which we denote as γ . It can be parametrized as
kα (φ) = k0 + qα (φ) with a polar angle φ ∈ [0, 2π [ measured
with respect to an origin k0 = 0 (k0 = K) if α is in the SSL1

(SSL2) regime. Given that the lower spin-wave branch has a
linear dispersion around the spiral contour, i.e.,

εk0+q,0 = v(φ)|q − qα (φ)| + O(|q − qα (φ)|2) (D17)

for q ≈ qα (φ) (see Fig. 13), the corresponding contribution to
I2 is

I ′
2 =

∫
γ

d2q f2(k0 + q)

[
δ(q − qα (φ))

v(φ)

]2

=
∫ 2π

0

dφ

v2(φ)

∫ ε

−ε

dx gφ (x)[δ(x)]2, (D18)

with gφ (x − qα (φ)) = x f2(k0 + x(cos φ, sin φ)).
We are thus left with the task of evaluating an integral of

the form I = ∫ ∞
−∞ dx g(x)[δ(x)]2. We claim that if

(i) g(x) is analytic at x = 0,
(ii) g(0) = 0,
(iii) g′(0) = 0,

then I = 0. To prove this claim, we shall consider the rep-
resentation of the Dirac delta as the limit of the sequence
of functions δε(x) = �(ε − |x|)/(2ε) when ε → 0+. Due to
Assumption (i), there exists an ε∗ > 0 for which g(x) is con-
tinuous in the interval [−ε∗, ε∗]. The mean value theorem then
implies that, if ε � ε∗, Iε = ∫ ε

−ε
dx g(x)[δε(x)]2 = g(x0)/(2ε)

for some x0 ∈ [−ε, ε]. Together with Assumption (ii), con-
tinuity also guarantees that |g(x0)| � |g(ε)| for sufficiently
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small ε. Finally, when supplemented by Assumption (iii),
these results yield

|I| � lim
ε→0+

|g(ε)|
2ε

= |g′′(0)|
4

lim
ε→0+

ε = 0, (D19)

which concludes the proof.
Hence, if every function gφ (x) satisfies properties (i)–(iii),

then I ′
2 = 0. We will argue below in three steps that this

is indeed the case. Before doing so, however, we note that
Eq. (D15) can be—and in fact is—finite along the entire spiral
contour even though Vk0 itself diverges as |k − kα (φ)|−1/2.
This is possible because the components of such eigenvectors
appear in combinations that eliminate the divergences.

As a first step, let us prove that gφ (x) � 0 for every x �
−qα (φ). The key insight behind the proof is that Jk is the
Fourier transform of the coupling matrix of the clean J1-J2

Hamiltonian in its original laboratory frame. Thus, by the
Luttinger-Tisza method, its minimum eigenvalue as a func-
tion of k is Egs/Nc = −2h. This implies that (Jk + 2h1) is a
positive semidefinite matrix with a unique square root, such
that Eq. (D15) can be rewritten as

f2(k) = |π (Jk + 2h1)1/2F−
k0 βk|2 � 0. (D20)

The stated result then follows straightforwardly from the def-
inition of gφ (x), which was given below Eq. (D18).

Second, we would like to argue that gφ (0) = 0. In light
of Eq. (D20), this can only hold for an arbitrary defect if
(Jk + 2h1)1/2F−

k0 = 0 along the entire spiral contour. By us-
ing the unitary transformation that diagonalizes Jk, one can
show that this is equivalent to the simpler set of conditions
eiθk F−

0ν (Vk0) + F−
1ν (Vk0) = 0. Although Vk0 itself diverges as

|k − kα (φ)|−1/2, we find by numerical inspection that its com-
ponents not only enter the functions F−

μν (Vk0) in combinations
that cancel out the divergence, but that also satisfy the above
condition, yielding compelling evidence that gφ (0) = 0.

Finally, given that gφ (0) = 0 and gφ (x) � 0 in the vicinity
of x = 0, Assumption (iii) could only be violated if g were
nonanalytic at x = 0. However, this scenario is incompati-
ble with our numerical observations, which suggest that g(x)
vanishes quadratically in x since [eiθk F−

0ν (Vk0) + F−
1ν (Vk0)] ∝

|k − kα (φ)|.
We therefore conclude that Eq. (D18) is zero. Similar con-

siderations indicate that the contribution coming from k = 0
also vanishes, such that

Htex = S2vuc

8π2

∫
BZ

d2k f1(k) (D21)

only depends on the in-plane component of the texture at
leading order in response theory. The texture develops an
out-of-plane component merely to relieve the frustration of
its in-plane part.

2. Out-of-plane texture: General considerations
and Friedel-like oscillations

In Sec. III, we considered several examples of how a single
impurity lifts the degeneracy of the spiral contour and can
induce a texture on top of a selected coplanar spiral state.
With Eq. (D10), we have proven that the existence of gap-
less spin-wave modes allows such a texture to acquire an

out-of-plane component, even though the impurity acts as an
effective magnetic field applied within the original ordering
plane.

To show that this unintuitive possibility does generally
come to fruition in a SSL, let us consider Eq. (D10) in closer
detail. Similarly to previous section, after taking the thermo-
dynamic limit and converting the sum over momenta into an
integral over the Brillouin zone, we can split the latter into two
separate contributions, which originate from the k = 0 Gold-
stone mode and the spiral contour. Explicitly, if we denote the
polar coordinates of unit cell i by (Ri, θi ),

〈
S2

iμ

〉 = Svuc

4π
[Ik=0 + Ispc(Ri, θi )]. (D22)

The first term reads

Ik=0 =
∫

�

d2k δ(εk0)
∑

ν

β0νF−
μν (V0ν ), (D23)

where the integration is over a disk � of infinitesimal radius
centered at the origin. For the system at hand, one can show
that F−

μν (V0ν ) is independent of ν. Paired with the fact that
β00 = −β01 due to the antisymmetry of δT μν

i j , this implies that
the spatially uniform term Ik=0 vanishes and that the out-of-
plane component of the texture is dictated exclusively by the
spiral contour.

To evaluate the second term in Eq. (D22), it is convenient
to split the spiral contour into two separate branches related
by inversion symmetry. We can then choose one of these
branches arbitrarily and parametrize it in terms of the polar
angle φ ∈ [0, φmax[ in a coordinate system whose origin lies
at a point k0. This results in a function kα (φ) = k0 + qα (φ)
with

(k0, φmax) =
{

(0, π ) for 1/6 < α < 1/2,

(K, 2π ) for α > 1/2,
(D24)

which describes half of the closed contour in the SSL1 regime
and the upper pocket surrounding K = (0, 4π (3

√
3a)) in

SSL2 [see Fig. 2(c)]. By additionally using Eq. (D17), we
arrive at

Ispc(R, θ ) = 2 Re
∫ φmax

0
dφ ei fθ (φ)Rzμ(φ), (D25)

where fθ (φ) = kα (φ) · R̂ is the projection of a point kα (φ) on
the spiral contour along R̂ = R/R and

zμ(φ) = qα (φ)

v(φ)

∑
ν

βkα (φ)νF−
μν

(
Vkα (φ)0

)
. (D26)

The asymptotic form of Ispc in the limit R → ∞, which
determines the long-distance behavior of the out-of-plane
texture, can be derived by means of the stationary phase
approximation [50,66]. This approach is based on the notion
that, in the stated limit, the complex exponential in Eq. (D25)
is a rapidly oscillating function of φ. Consequently, terms in a
small neighborhood around a point φ0 interfere destructively
and average to zero unless f ′

θ (φ0) = 0. To derive the desired
asymptotic behavior, it then suffices to expand zμ(φ) and
fθ (φ) to zeroth and second order, respectively, around the
stationary points of fθ (φ). By following this prescription, we
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obtain〈
S2

iμ

〉 ≈ Svuc√
8πRi

∑
φ0∈�

|zμ(φ0)|∣∣ f ′′
θi
(φ0)

∣∣ 1
2

cos [ fθi(φ0)Ri + ξ(φ0)].

(D27)

Here, � is the set of stationary points of fθ (φ) in the interval
[0, φmax[, while ξ (φ) = arg zμ(φ) + sgn[ f ′′

θ (φ)]π/4 is a phase
shift.

In the limit of small (α − 1/6), where the spiral contour is
nearly circular, kα (φ) ≈ kα , one can easily show that � = {θ
mod π} and that Eq. (D27) becomes〈

S2
iμ

〉 ≈ Svuc|zμ(θi )|√
8πkαRi

cos
[
kαRi + arg zμ(θi ) − π

4

]
. (D28)

In fact, in this special case, it is even possible to evaluate
Eq. (D25) exactly. To do so, one can exploit the property
zμ(φ + π ) = zμ(φ)∗ to conclude that Fourier series of the real
(imaginary) part of zμ(φ) only has nonzero coefficients for
sines and cosines of even (odd) multiples of φ. Then, one can
perform the integrals and express Ispc as a series of Bessel
functions. By taking the asymptotic limit of the latter, one
recovers Eq. (D28).

Given that the out-of-plane texture arises from zero modes,
we need to ask what happens if these modes acquire a small
finite gap, either by additional couplings or by interaction ef-
fects beyond T = 0 linear spin-wave theory. While Eq. (D10)
shows that the linear out-of-plane response is then strictly
zero, continuity demands that an out-of-plane texture still
emerges from defects of sufficient strength to overcome the
gap. Hence, the relevant response will be strongly nonlin-
ear, but for stronger defects our results remain qualitatively
valid.

3. In-plane textures: A case study

To obtain the in-plane component 〈S1
iμ〉 of the texture, one

must compute the Fourier transform in Eq. (D9). However,
this step turns out to be highly nontrivial due to presence
of pinch points and (integrable) singularities in χ̃11

kμ [see
Eqs. (D31) and (D36) below]. Being unable to compute the
Fourier integrals that arise in the thermodynamic limit to a
satisfactory degree of accuracy, we instead performed discrete
Fourier transforms on grids of M2 momenta corresponding
to finite systems of N = 2M2 sites under periodic boundary
conditions. To warrant this choice, we slightly adjusted the
desired α to the nearest value α̃ which guaranteed that the spin
spirals used as reference states for the spin-wave expansion
were commensurate with our smallest cluster (Mmin = 26).
The results shown in Figs. 14–16 below refer to use α = 0.2
and α̃ ≈ 0.201. We then ensured that the same condition held
for larger systems by only considering values of M that were
multiples of Mmin.

In practice, before performing the discrete Fourier trans-
form itself, we mapped the spin model onto a graph-equivalent
brickwall lattice with primitive vectors a1 = √

2a(1, 0) and
a2 = √

2a(0, 1). This resulted in a rectangular equispaced
momentum grid and enabled us to employ a standard fast
Fourier transform routine [67], with which we could easily
access system sizes up to M = 214. Whenever a momentum
q coincided with the position of a zero mode εqλ = 0, we

FIG. 14. Linear-response results for a horizontal (Rnm = 0) NN
bond defect with δJ1 < 0, obtained by using the φQ = 0 spin spiral as
a reference state for the spin-wave expansion. [(a) and (b)] Real and
imaginary parts, respectively, of χ̃ 11

k0 (ω = 0)/(|δJ1|S). The dashed
hexagons indicate the boundaries of the Brillouin zone. [(c) and (d)]
Real-space configuration of 〈S1

i0〉/|δJ1| on a linear and logarithmic
scale sgn(z) ln(|z/zmin|), respectively. These in-plane textures cor-
respond to a periodic system with M = 256 and are depicted such
that an impurity lies at the center of the unit cell outlined in black.
(e) Finite-size scaling of the position yn of the n-th zero along the
yellow line x = 48a in (d). The dashed black lines indicate the slope
of power laws proportional to

√
M and M. (f) Decay of the texture

along the green high-symmetry line in (d). The color code was
selected such that the brighteness of the shade of red increases with
system size. In (b) and (c), white colors occur when the susceptibility
exceeds the limits of the plot legends.

replaced the result obtained from the expression in Eq. (D7)
with an average over the susceptibilities at the four near-
est momenta. This regularization procedure is innocuous in
the cases where q lies on top of the spiral contour, since
limk→q χ̃11

kμ is then well defined. However, it leads to artifacts
in the Fourier transform when applied to the singular q = 0
point. Fortunately, these features only appear at distances on
the order of the inverse of the spacing between points in the
momentum grid, such that we can still extract meaningful
results from the calculation. Finally, we carried out the reverse
mapping to restore the geometry of the honeycomb lattice.

a. Nearest-neighbor bond defect

For a NN bond defect that changes the coupling between
sites m0 and n1 by an amount δJ1, the corrections to the
coupling matrix δT μν

i j are given by δT 00
i j = δT 11

i j = 0 and

δT 01
i j = −δT 10

ji = δimδ jnδJ1 sin (Q · Rnm + θQ). (D29)
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FIG. 15. Similar to Fig. 14, but for a vertical (Rnm = a3) NNN
bond defect on the μ = 0 sublattice. To keep consistency with the
ObQD result, the spin-wave calculations were performed by using
the φQ = π/2 coplanar spiral as a reference state.

Thus the form factors in Eq. (D6) read

βk0 = −|δJ1| sin (Q · Rnm + θQ),

βk1 = |δJ1| sin (Q · Rnm + θQ)eik·Rnm . (D30)

Note that the Q-dependent prefactor is (by no mistake) pro-
portional to the tranverse component of the deviation field in
Eq. (8). Therefore, it vanishes at the pair of ordering wave

FIG. 16. Same as Fig. 14, but for a single vacancy on the μ = 0
sublattice.

vectors selected by δJ1 > 0, in agreement with our previous
conclusion that no texture arises in this case (see Table I).

By combining Eqs. (D7) and (D30), we computed the static
susceptibility for a horizontal defect (Rnm = 0) with δJ1 < 0.
To keep consistency with our ObQD analysis, we chose the
coplanar spiral with φQ = 0 as the classical reference state for
the spin-wave expansion. The result for the μ = 0 sublattice
is depicted in Figs. 14(a) and 14(b). There, we see that the
(a) real and (b) imaginary parts of χ̃11

k0 are both even under
a reflection with a mirror plane parallel to Q, yet differ in
parity when the mirror plane is taken perpendicularly to Q.
After taking the observed symmetry properties into account
and performing fits to numerical results, we find that the
susceptibility behaves as

χ̃11
0 (k, φ)

S|δJ1| = a + b

cos2 φ + ck2

(
k2 + i

d cos φ

k

)
(D31)

in the long-wavelength limit k → 0. Here, φ denotes the polar
angle respect to Q, whereas a, b, c, and d are real constants.
Hence, the susceptibility displays both a pinch point and a
simple pole at k = 0.

Figures 14(c) and 14(d) show the spatial dependence of
〈S1

i0〉/|δJ1| for a system with M = 256, as obtained by tak-
ing a discrete Fourier transform of the full momentum-space
susceptibility depicted in Figs. 14(a) and 14(b). Though the
texture has the same mirror symmetries as a dipole, it is
strongly confined along the high-symmetry direction parallel
to Q. In the orthogonal direction, it displays a curious oscil-
latory behavior which gives rise to nodal lines (i.e., lines of
zeros). To determine whether the latter persist in the thermo-
dynamic limit, we tracked how the position yn of the nth zero
and the height hn of the nth peak along a cut with fixed x
[see yellow line highlighted in Fig. 14(d)] evolve with M. As
shown in Fig. 14(e), y1 displays a slow (possibly logarithmic)
growth, while yn ∝ √

M for n = 2, 3 and yn ∝ M for n = 4, 5.
Moreover, we verified that h1 converges to a nonzero constant,
but all other peaks vanish according to hn ∝ M−3/2. When
combined, these results indicate that all n � 2 nodal lines are
finite-size artifacts which disappear as M → ∞. On the other
hand, the n = 1 nodal line collapses onto x = 0 as the two
lobes crossing y = 0 in Fig. 14(d) expand into half-planes and
the texture acquires a p-wave-like symmetry.

Given that the finite-size effects are weakest parallel to
Q, we resorted to a cut along this high-symmetry direction
to determine the decay rate of the texture at distances r far
from the impurity. From the data shown in Fig. 14(f), we
extracted a power-law behavior of r−γ , with γ ≈ 0.5, as stated
in Sec. III D.

b. Next-nearest-neighbor bond defect

Alternatively, if we consider a bond defect between NNN
sites m0 and n0, we have δT 01

i j = δT 11
i j = 0 and

δT 00
i j = δJ2(δinδ jm − δimδ jn) sin(Q · Rnm), (D32)

which leads to the form factors

βk0 = δJ2e−ik·Rm (e−ik·Rnm − 1) sin(Q · Rnm),

βk1 = 0. (D33)
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As before, these expressions are fully consistent with our
ObQD results. The fact that δJ2 < 0 selects states with Q ⊥
Rnm implies that βk0 = 0 and, consequently, that the defect
only induces a texture if δJ2 > 0 (see Table I).

By using the disorder-selected φQ = π/2 spin spiral as a
reference state for the spin-wave expansion and assuming that
the defect is vertical (Rnm = a3), we obtained the momentum-
dependent μ = 0 susceptibility shown in Figs. 15(a) and
15(b). Apart from a rotation by 90◦, which is due to the change
in φQ, this result has the same symmetries as the susceptibility
for the NN bond defect. Upon closer inspection, one finds
that it also behaves as Eq. (D31) at small k, albeit with a
different set of constants. Given such similarities, it is not
entirely surprising that, after going through the same type of
analysis we described above, we conclude that a strong NNN
bond defect also induces a texture with p-wave-like symmetry
which decays as r−γ , with γ ≈ 0.5, at long distances [see
Figs. 15(c)–15(f)].

c. Vacancy

Finally, we turn to the case of a single vacancy located
at site m0, which we can take as the origin without loss
of generality. In this case, the only changes to the coupling
matrix T μν

i j come from

δT 00
m j = J2δ|r j0|,

√
3a sin(Q · R j ),

δT 01
m j = −J1δ|r j1|,a sin(Q · R j + θQ), (D34)

and the corresponding transpose elements. Using the same
shorthand notation introduced before Eq. (C8), we can express
the resulting form factors as

βk0 = 2iJ2

3∑
a=1

sin Qa sin ka,

βk1 = J1

2∑
a=0

eika sin (θQ − Qa). (D35)

After performing the spin-wave expansion with respect to
the φQ = 0 spiral state (as suggested by our ObQD results
discussed Sec. III B), one obtains the susceptibility χ̃11

k0 de-
picted in Figs. 16(a) and 16(b). Once again, the real and
imaginary parts are even under a reflection with respect to
a plane parallel to Q, but have opposite parities when the
mirror plane is chosen perpendicularly to Q. However, apart
from these symmetries, the vacancy susceptibility bears little
resemblance to the bond-defect susceptibilities. In particu-
lar, its long-wavelength behavior is markedly different from
Eq. (D31) and can be well approximated as

χ̃11
0 (k, φ) = a + b

cos2 φ + ck2
[1 + ik(d cos φ + d̄ cos3 φ)],

(D36)

with real constants a, b, c, d , and d̄ . This expression captures
the fact that Reχ̃11

k0 diverges as 1/k2 when φ → π/2, but
is well behaved when one approaches the origin from other
directions.

The corresponding spin texture for a system of size M =
256 is plotted in Figs. 16(c) and 16(d). One of its most promi-

FIG. 17. Same as Fig. 16, but for α = 0.3.

nent features is that 〈S1
i0〉 is sizable across almost the entire

unit cell. The only exceptions occur around horizontal nodal
lines, which are parallel to Q. Proceeding as in the previous
cases, we tracked the finite-size evolution of the position yn

of the n-th zero and the height hn of the n-th peak along
on the vertical yellow line in Figs. 16(d). The result shows
that the positions all zeros but the first, which is located in
the immediate vicinity of the vacancy, scale as M and thus
disappear in the limit of a single impurity [see Fig. 16(e)].
The heights hn vary only weakly, without any discernible
trend.

Hence, we sought to determine the long-distance behavior
of the M → ∞ texture by analyzing the scaling of the data
along the high-symmetry green line in Fig. 16(d), given that
it belongs to the region that is the least affected by finite-size
effects. Figure 16(f) shows that the outcome is quite remark-
able: Within linear-response theory, the texture induced by a
single vacancy decays more slowly than any power law. We
note that the pinch-point structure in Eq. (D36) provides an
intrinsic length scale, such that the unconventional texture is
compatible with dimensional analysis.

d. Changes in textures with increasing α

As mentioned in Sec. III D, the qualitative form of the
texture induced by a vacancy is affected by the change in the
states selected by ObQD once α � 0.2148. To demonstrate
this, we present in Fig. 17 numerical results which were ob-
tained for α = 0.3 and a classical reference state φQ = π/2.
When compared to Fig. 16, we observe clear differences in
the symmetries of the momentum-state susceptibility [(a) and
(b)], which are directly reflected in the real space [(c) and (d)].
Based of our previous analyses, Figs. 17(c) and 17(d) suggests
that the α = 0.3 texture displays a d-wave-like symmetry,
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FIG. 18. Spatial decay of the texture generated by a weak NNN
bond defect for α = 30. The two dashed lines correspond to power
laws 1/y and 1/

√
y, indicating that the behavior expected for a

triangular-lattice antiferromagnet (α → ∞) emerges below a char-
acteristic distance Rcross(α) from the impurity.

with two orthogonal nodal lines. Proceeding as before, we
sought to confirm this by tracking the positions yn of the zeros

along the yellow cut in Fig. 17(d). The results, which are
depicted in Fig. 17(e), indicate that y1 grows logarithmically
with M, while the rest scale as

√
M. Combined with the fact

that the heights of secondary peaks along the same cut vanish
as 1/

√
M (not shown), we confirm our initial hypothesis.

The data in Fig. 17(f), which correspond to the variation of
texture along the green vertical cut highlighted in Fig. 17(d),
furthermore show that the texture decays as r−3/2 at large
distances from the vacancy.

We also pointed out in Sec. III D that the results we de-
rived above differ from those expected for the limit α →
∞, where the system becomes two decoupled triangular-
lattice antiferromagnets. However, we explained that this is
not a contradiction, because the behavior appropriate for
the triangular lattice emerges as a short-distance effect and
crosses over to our results at a characteristic length Rcross(α).
This is exemplified in Fig. 18, which illustrates the spa-
tial decay of the texture generated by a weak NNN bond
defect for α = 30. There, one sees a clear crossover be-
tween a power law 1/y to 1/

√
y upon increasing y, as we

claimed.
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