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Frustrated Ising model with competing interactions on a square lattice
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The Ising model with nearest-neighbor and next-nearest-neighbor interactions of the coupling constants J1 and
J2, respectively, is investigated on a square lattice. For J1 = 2 and J2 = 1, the model becomes frustrated because
ground states are infinitely degenerate. We obtain the density of states by using the Wang-Landau Monte Carlo
method and calculate the specific heat. We find two separate peaks in the specific heat: a sharp peak related to
the critical behavior and a round peak related to the specific heat of a disordered system such as spin glass. As
the system size increases, the sharp-peak temperature decreases towards zero, and the maximum height of the
sharp peak increases logarithmically, supporting that the spatial correlation length diverges exponentially at zero
temperature. The partition-function zeros calculated by the density of states also suggest the zero-temperature
phase transition.
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I. INTRODUCTION

In the absence of an external magnetic field, the Ising
model with nearest-neighbor (NN) interactions on a square
lattice was exactly solved by Onsager [1]. The understanding
of phase transitions and critical phenomena has been mainly
developed since the Onsager’s exact solution. However, this
problem becomes unresolved when the next-nearest-neighbor
(NNN) interactions are added. The lack of an exact solution
has given rise to the challenge of various methods [2–20].

The Hamiltonian of the Ising model with both NN and
NNN interactions is

H = J1

∑
〈i, j〉

σiσ j + J2

∑
〈i,k〉

σiσk, (1)

where J1 (J2) are the coupling constants of NN (NNN) inter-
actions, the sum is over all NN (NNN) pairs, and σi = ±1.
The coupling ratio is defined as R ≡ J2/J1. The sign of J2

produces a very different aspect. For J2 < 0 this model is
similar to the typical Ising model, only with NN interaction,
and has the well-known ferromagnetic (FM) ground states for
J1 < 0 and antiferromagnetic (AF) ground states for J1 > 0 at
zero temperature.

Interestingly, two phase transitions exist for J2 > 0. One
is transition between paramagnetic (P) and FM phases (J1 <

0) or between P and AF [Fig. 1(a)] phases (J1 > 0) for
|R| < 1/2. The other is transition between P and superanti-
ferromagnetic (SAF) [Fig. 1(b)] phases for |R| > 1/2, where
the nonuniversal critical behavior appears, i.e., critical ex-
ponents vary continuously depending on R values. Although
lots of studies have been conducted on the phase transition
for |R| > 1/2, the debate on the order of transition remains
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controversial. Some studies [21–29] have argued for a second-
order transition, while others [30–40] have supported the
occurrence of a first-order transition in the range 1/2 < |R| <

Rc, where 0.53 � Rc � 1.144. Because this model shows
the same critical phenomena regardless of the sign of J1,
only the case R > 0 (J1 > 0 and J2 > 0) is covered in
this work.

The ratio R = 1/2 has been of special interest because the
ground states are highly degenerate, i.e., the energies of AF
and SAF ground states are the same. The number of ground
states for R = 1/2 is infinite [Fig. 2] [35,41], in some sense
similar to disordered systems [42] such as spin glass [43].
For R = 1/2, some studies have claimed the critical temper-
ature Tc is suppressed to zero in the thermodynamic limit
[5,8,23,28,29,31,35,40,44,45]. There have also been simu-
lation studies claiming a finite critical temperature, Tc > 0
[46,47]. Studies of partition-function zeros [41] and effective
field theory [48] have proposed a first-order phase transition.
It has been suggested that the system behaves as the one-
dimensional Ising model [30,31,44] whose specific heat is a
finite peak and the well-known Schottky anomaly [49–53].
Landau [23] and Kim [28] argued that the correlation length
diverges exponentially at zero temperature. As such, quite a
lot has been revealed for R = 1/2, but the results are still not
accurate enough to adequately describe the critical behavior
of this system.

In this paper we obtain the density of states via the
Wang-Landau (WL) Monte Carlo algorithm [54,55] with high
precision, which makes it possible to calculate various physi-
cal quantities at any temperature. Exact enumeration provides
the exact density of states [41] but requires enormous compu-
tational time, making it unsuitable to investigate the properties
of the specific heat for R = 1/2 on a large finite lattice. By
using the obtained density of states, we calculate the specific
heat and the partition-function zeros [13,27,28,41,56], which
lead us to definite conclusions.
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FIG. 1. The ground states of the Ising model with nearest-
neighbor and next-nearest-neighbor interactions on a 4 × 4 square
lattice for (a) antiferromagnetic phase (R < 1/2) and (b) superan-
tiferromagnetic phase (R > 1/2). For R = 1/2 this model becomes
frustrated because both ground states have the same energy.

II. WAND-LANDAU ALGORITHM

If we define a given energy

E ≡
∑
〈i, j〉

σiσ j + J2

J1

∑
〈i,k〉

σiσk, (2)

the partition function reads

Z =
∑
{σn}

e−H/kBT =
∑
{σn}

e−J1E/kBT =
∑

E

g(E )e−J1E/kBT , (3)

where {σn} denotes a sum over all possible configurations, kB

is the Boltzmann constant, T is the temperature, and g(E ) is
the density of states.

To obtain g(E ), the WL method is performed as follows.
Initially g(E ) = 1 and energy histogram h(E ) = 0 are set for
all possible energy states. A spin is placed to each site of

FIG. 2. Several examples of ground states for R = 1/2 on a 4 × 4
square lattice.

L × L square lattices with periodic boundary conditions, hav-
ing a value of either +1 or −1 at random. The total energy
Ei for the current state is calculated first, then E f is computed
after flipping the spin of a randomly selected site. The flipping
trial is accepted with the probability

p(Ei → E f ) = min

[
g(Ei )

g(E f )
, 1

]
. (4)

If accepted, the spin is flipped and E f → Ẽ , otherwise
the change is rejected and Ei → Ẽ : g(Ẽ ) → g(Ẽ ) × fn and
h(Ẽ ) → h(Ẽ ) + 1, where Ẽ is the energy value determined
after one trial and fn is a modification factor after the nth
satisfaction of the flatness. When the histogram becomes flat,
hmin(E ) � 0.99h, all h(E ) are reset and the modification fac-
tor reduces as fn+1 = f 1/2

n , where h is the average histogram
of all energy states. In this work the histogram flatness is
checked every 105 Monte Carlo sweeps. The initial and fi-
nal modification factors are f0 = e ≈ 2.718 28 and ffinal ≈
exp(10−9) corresponding to n = 30, respectively.

III. SPECIFIC HEAT

The internal energy of the system is given as a function of
temperature,

〈Em〉T =
∑

E Emg(E )e−E/kBT∑
E g(E )e−E/kBT

, (5)

where g(E ) is the density of states that was sampled by
using the WL Monte Carlo simulations and m is a natural
number. Figure 3 shows the data for 〈E〉T /L2 that increases
monotonically with T . The temperature of the maximum slope
decreases gradually as the system size increases, and we
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FIG. 3. The internal energies per site on systems of sizes for L =
10, 20, . . . , 120 from right to left.

assume such a temperature to be the critical temperature T ∗
for a finite system.

In order to estimate the critical temperature accurately,
we calculate the specific heat as a function of T using the
definition

C(T ) = 〈E2〉T − 〈E〉2
T

L2T 2
. (6)

Figure 4(a) shows the specific heat for various system sizes.
Data for larger systems show double peaks: one sharper
at a low temperature and the other round at a higher
temperature.

The round peak is observed near T = 0.5 irrespective of
the size of system for L � 50, as shown in Fig. 4(b). The
round-peak value (Table I) does not diverge even in the limit
of L → ∞. It has been suggested that such a peak is the
main peak of the specific heat [23,30,31,44], and it is sim-
ilar to the specific heat of the one-dimensional Ising model
[30,31,44], which corresponds to the well-known Schottky
anomaly [49–53]: C(T ) ∼ T −2 exp(−b/T ). In the case of
previous studies or smaller systems, the round peak and sharp
peak may be mixed, and the resulting critical temperature

TABLE I. Peak values and temperature of the round peaks for
L = 40, 50, . . . , 120.

L Cpeak Temperature

40 0.437 0.530
50 0.436 0.540
60 0.435 0.542
70 0.436 0.541
80 0.435 0.542
90 0.436 0.542
100 0.436 0.543
110 0.435 0.542
120 0.436 0.541

might be measured inaccurately. Excluding the data for small
sizes, we try to fit this round peak to the following equation:

C(T ) = c1

T c2
e−c3/T , (7)

with fitting coefficients c1 = 2.100(22), c2 = 4.062(26), and
c3 = 2.201(14) [shown in Fig. 4(b)]. The value of c2 ≈ 4 is
distinctly different from c2 = 2 for the one-dimensional Ising
model. Our result for the round peak is rather similar to the
specific heat of a disordered system such as spin glass [43],
whose ground states are infinitely degenerate.

For the sharp-peak temperature T ∗ decreasing as the size
of system increases, we plot ln T ∗ as a function of ln(1/L)
in Fig. 5(a), in which the data are represented by a curved
line. This suggests that T ∗(L) for a finite-size system may not
follow the well-known power-law behavior T ∗ ∼ L−1/ν [35],
where ν is the correlation-length critical exponent, which is
typical for continuous phase transitions. Instead, we plot T ∗
against 1/(ln L + c) in Fig. 5(b), where c is a constant. It
shows that T ∗ approaches 0 as the system size L increases,
implying that Tc = 0. This critical behavior fits well with
an assumption ξ ∼ exp(c′/T ) [23,28], where ξ is the spatial
correlation length and c′ is a constant.

The peak value of the specific heat Cmax increases slowly
with the system size, as shown in Fig. 4(a). For Tc = 0
and L ∼ exp(c′/T ), the typical relation Cmax ∼ (T − Tc)−α

FIG. 4. (a) The specific heat per site for L = 10, 20, . . . , 120 from right to left. The peak temperature T ∗ gradually decreases as the system
size increases. (b) Same plot as (a) for L = 40, 50, . . . , 120 with ranges adjusted to highlight the round peak on the right in (a), where all peaks
almost overlap. The dotted line corresponds to the fitting curves of Eq. (7).
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FIG. 5. (a) The log-log plot of the sharp-peak temperature T ∗

as a function of 1/L. (b) The peak temperature T ∗ as a function
of 1/(ln L + c) with c = 0.736, indicating T ∗ → 0 in the thermo-
dynamic limit. (c) The peak value of the specific heat, Cmax, as a
function of ln L.

becomes Cmax ∼ T −α ∼ (ln L)α . Figure 5(c) shows that Cmax

increases logarithmically as L increases with α = 1. Cmax(L)
typically diverges as Ld in the first-order transition [57,58].
However, our logarithmic divergences of the specific heat
seem to be too weak to support the first-order transition [59].
A similar case using a power-law fit to the specific heat

FIG. 6. Distribution of the partition-function zeros in the com-
plex a = exp(−J1/kBT ) plane for R = 1/2 on 10 × 10 square
lattices. The points closest to the positive real axis (marked as dot)
are the first zeros.

appears in the study of the antiferromagnetic Ising model for
triangular lattices at Tc = 0 [60].

To check the possibility of the Berezinskii-Kosterlitz-
Thouless (BKT) transition [61], we fit the data of T ∗(L) to
a formula T ∗(L) = b1(ln L + b2)−b3 , and then obtain b1 =
0.974(17), b2 = −0.465(30), and b3 = 0.7608(84). If it is a
BKT-type transition, b3 should be 2 with T ∗(L) ∼ 1/(ln L)2

for Tc = 0. Actually, our data are better fit with T ∗(L) ∼
1/(ln L + c), as shown in Fig. 5(b). Furthermore, the logarith-
mic divergences of the specific heat [Fig. 5(c)] are inconsistent
with the BKT transition.

IV. PARTITION-FUNCTION ZEROS

In the previous section we observed that the Ising model
with NN and NNN interactions for R = 1/2 undergoes the
zero-temperature phase transition. In order to support our
observation, we calculated the partition-function zeros and
associated critical exponents. The partition function in Eq. (3)
can be written as

Z =
∑

E

g(E )aE , (8)

where a ≡ exp(−J1/kBT ). Let the partition-function zeros,
i.e., the solutions of the equation Z = 0, be ai. Then,
the partition function can be written as the Emax-th order
polynomial of a,

Z = A
Emax∏
i=1

(a − ai ) = 0, (9)

where A is a constant and Emax is the maximum energy.
The partition-function zeros ai can be calculated with the

MATHEMATICA package. Figure 6 shows the partition-function
zeros in the complex temperature plane; all data points lie
symmetrically with respect to the real axis because of the
pairs of complex conjugates. Among them, the zeros closest
to the positive real axis are the first zeros a1. The first zeros
will approach the positive real axis as L increases and reach
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FIG. 7. (a) Double-logarithmic plot of the real part of the first
zero Re[a1] as a function of L. The power-law fit of the dashed line
yields λ = 1.0761(65). (b) Double-logarithmic plot of the imaginary
part of the first zero Im[a1] as a function of L. The power-law fit
along the dashed line gives yt = 2.056(19).

the value that corresponds to the critical temperature in
the thermodynamic limit of L → ∞ if the system shows a
phase transition. With the data for finite-size systems, we can
estimate the value of the critical point, ac = exp(−J1/kBTc),
by using the finite-size scaling of the real parts of the first
zeros [62],

Re[a1(L)] − ac ∼ L−λ, (10)

where λ is the shift exponent [41,63,64]. For given L,
we can estimate T1(L) = −J1/kB ln a1(L). We confirm
that T1(L) is almost the same with T ∗(L) obtained from
the sharp-peak of the specific heat within the error bars.
Therefore the finite-size scaling analysis of the first zeros
supports our earlier analysis for the specific heat. We obtain
the power-law decrease of Re[a1(L)] with λ = 1.0761(65)
[41] and ac = −0.000 014(9), as shown in Fig. 7(a). Because
ac is very small, Tc becomes almost zero.

On the other hand, the imaginary parts of the first zeros
follow the finite-size scaling [13],

Im[a1(L)] ∼ L−yt , (11)

where yt is the thermal scaling exponent. yt is associated
with ν via yt = 1/ν. From the power-law plot in Fig. 7(b),
yt = 2.056(19) is obtained. It is generally known that yt = d
is a signal for the first-order transition [41,65], which is only
valid for the case of nonzero temperature. Using the Taylor
expansion, one can expand

e−1/T − e−1/Tc = T − Tc

T Tc
+ higher-order terms. (12)

The left term is proportional to T − Tc for nonzero Tc, but it
becomes exp(−1/T ) for Tc = 0. Therefore, if the correlation
length ξ diverges exponentially ξ ∼ exp(c′/T ), yt controls
only the coefficient c′.

V. SUMMARY

We have studied the Ising model with nearest-neighbor and
next-nearest-neighbor interactions for the particular case of
R = J2/J1 = 1/2 whose ground states are infinitely degener-
ate. We calculated the density of states on systems of various
sizes by using the WL Monte Carlo algorithm. The internal
energy and specific heat were calculated using the density
of states, and the critical temperature and critical exponent
were estimated from the peak values of the specific heat. The
critical temperature for finite systems showed the logarithmic
convergence toward T = 0 as the size of system increases,
and the peak values of the specific heat increased following
the logarithmic divergence of the size of the system. We also
found the round peak whose height and temperature do not
depend on the system sizes. Our result suggests that the sec-
ond round peak is similar to the specific heat of a disordered
system such as spin glass whose ground states are infinitely
degenerate.

As an alternative method, we calculated the partition-
function zeros and associated critical exponents. The real and
imaginary parts of the first zeros of the partition function fol-
low the power-law behaviors. The critical temperature Tc = 0
and the thermal scaling exponent yt ≈ 2 were extracted from
the fits. Therefore our data for the specific heat calculated
from the internal energy and those from the partition-function
zeros consistently suggested that the Ising model with NN
and NNN interactions exhibits the zero-temperature phase
transition with the logarithmic divergence of the specific heat
for the coupling constant R = 1/2.
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