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Stability of a quantum skyrmion: Projective measurements and the quantum Zeno effect
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Magnetic skyrmions are vortexlike quasiparticles characterized by long lifetime and remarkable topological
properties. That makes them a promising candidate for the role of information carriers in magnetic information
storage and processing devices. Although considerable progress has been made in studying skyrmions in classical
systems, little is known about the quantum case: quantum skyrmions cannot be directly observed by probing the
local magnetization of the system, and the notion of topological protection is elusive in the quantum realm.
Here we explore the potential robustness of quantum skyrmions in comparison to their classical counterparts.
We theoretically analyze the dynamics of a quantum skyrmion subject to local projective measurements and
demonstrate that the properties of the skyrmionic quantum state change very little upon external perturbations.
We further show that by performing repetitive measurements on a quantum skyrmion, it can be completely

stabilized through an analog of the quantum Zeno effect.
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I. INTRODUCTION

Magnetic skyrmions are nanometer-size topological spin
textures with integer topological charges and long lifetimes
[1-6]. Topological Hall effect and current-driven motion of
skyrmions with low-power consumption can be exploited for
future applications of memory devices as well as information
carriers [7,8]. The general contemporary tendency to ultra-
miniaturization of such elements results naturally in attempts
to study the regime when quantum effects become decisive,
and that brings us to the topic of quantum skyrmions [9—-17].
Contrary to classical skyrmions, quantum skyrmions are not
topologically protected in a rigorous sense by the existence
of a conserving topological charge. Nonetheless, a quantum
analog of the topological invariant has been proposed [10,17].
By studying the scalar chirality, defined as a local three-spin
correlation function, it is indeed possible to characterize a
quantum skyrmion, but the scalar chirality is, formally, not
a topological charge [18]. The relation between a quantum
skyrmion state and its classical counterpart turns out to be
highly nontrivial [17], and the robustness of the quantum
skyrmion phase is not guaranteed. However, for any potential
applications, the robustness property is crucial and its analysis
in the quantum case deserves special attention.

In this paper, we study the effect of a few consecutive pro-
jective measurements on the stability of a quantum skyrmion
state on the 19-site triangular lattice [10,16,17]. We demon-
strate the robustness of the quantum skyrmion in terms of
chirality as well as the spin-spin correlation function, which
is, in principle, easier accessible experimentally. This is an
encouraging result since a projective measurement [19] is an
idealization of the real physical process of reading informa-
tion from a quantum device.
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Another aim of our paper is to use quantum skyrmions as
a model system to study the general issues of the theory of
quantum measurements. Here we focus on one concept from
this theory, namely, the quantum Zero effect [20-22], which is
a counterintuitive effect of repeating projective measurements
stabilizing an excited state of the quantum system. Discrete-
ness of the energy spectrum of the system is very important
for the quantum Zeno effect (QZE), and its applicability for
a 19-site quantum skyrmion, that is large enough to consider
its spectrum quasicontinuous, is not clear. We show that, nev-
ertheless, an analog of the QZE exists in this situation, and
discuss possible reasons.

II. DYNAMICS OF A QUANTUM SKYRMION
A. Model

In this paper, we consider the quantum spin Heisenberg
model with Dzyaloshinskii-Moriya interaction (DMI) and ex-
ternal magnetic field. Its Hamiltonian reads

H=Y 78-S+ Dy-[SixS]1+Y BS, (1)
(i, (i) i

where S; = %(ai", 0!, of), of for a € {x,y,z}, are the Pauli
matrices on the ith site, and (i, j) denote the pairs of the
nearest neighbors. D;; is an in-plane vector perpendicular to
the bond (i, j). We will focus on the case of zero temperature,
that is, we will work with the ground state of the Hamiltonian.
We will characterize the quantum skyrmion by the quantum

scalar chirality (further called just chirality for brevity),

A 1
Q=1(0)=—> (Si"IS; x Sl). )
(ijk)
where the sum runs over all nonoverlapping triangular plaque-
ttes. The quantity Q is a local three-spin correlation function
defined on the neighboring lattice sites, and was introduced
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FIG. 1. Ground-state phase diagram of the Hamiltonian Eq. (1)
on the 19-site triangular lattice with periodic boundary conditions.
The chirality Q is shown in blue circles and the magnetization (S;)
is shown in red triangles, both as functions of the external magnetic
field B. In the ground state, (S7) is the same for every site i. The
quantum skyrmion phase is highlighted in yellow.

[10,23] as the quantum analog of the skyrmion topological
index:

1
Qlop = — / m - [me X va]dx dy
4r ’

However, Q is not a topological invariant in a mathemat-
ically rigorous sense. Physically speaking, it is subjected to
quantum spin fluctuations. Nevertheless, it does character-
ize the quantum skyrmion phase since, in the corresponding
state, it displays unambiguously a nonzero and nearly constant
value as a function of the external parameters, see Fig. 1.

Exact diagonalization code [24] has been applied to numer-
ically solve the Hamiltonian Eq. (1) for a 19-site triangular
lattice with periodic boundary conditions. Following the pre-
vious works [10,16], we set J;; =J = —0.5D, where D =1
is the length of the DMI vectors D;;. Figure 1 is in excellent
agreement with previous studies, but we nevertheless show it
here as a basis for further calculations.

In Fig. 1, we show the dependence of the chirality on the
external magnetic field. For 0.30 < B < 0.64, Q is nonzero
and nearly constant, and we associate this region with the
quantum skyrmion phase. Below B = 0.30, the system will
slowly approach the helical spin state configuration at B = 0,
where both chirality and magnetization go to zero. Above B =
0.64, a first-order transition happens and the system becomes
a saturated ferromagnet. Full characterization of these phases
can be found in Ref. [10], and in this paper we use these results
as a starting point for studying the robustness of a quantum
skyrmion state.

B. Quench dynamics following a projective measurement

In any practical sense, robustness of a physical system
should be understood as (partial) stability of its relevant
properties under external deformations and environmental

FIG. 2. Tllustration of the projective measurement. The projec-
tion operator P, (where y is either 1 or |) acts on the center site of
the lattice, and the center spin becomes either | 1) or ||) after the
projection.

effects. For a quantum skyrmion, although there is no no-
tion of topological protection, if it is possible to show that
its characteristic features do not change significantly upon
strong perturbations, one can claim that the quantum skyrmion
indeed shares the property of stability with its classical coun-
terpart. In light of great hope that skyrmions can provide a
physical ground for dense information storage, it is natural
to analyze their stability upon the act of reading information.
The latter, in its minimal form, can be modeled as a projective
measurement of components of one or a few spins [25-27].
The single site measurement protocol is shown in Fig. 2.
Two natural cases to be considered are the measurement of
the z and x components of a single spin (i.e., the o° and o*
operators). The former can be regarded as the most classical
measurement, since it is aligned with the external magnetic
field and has a clear classical counterpart, and the latter, which
is transversal to the magnetic field, can be viewed as the most
quantum one.

Formally, the single-site projective measurement [19,28—
32] can be described with the following operator acting on the
quantum skyrmion ground-state wave function |¥gs):

PP=1,® Q) ® - &L,

where k is the index of the measured site, y is either 1 or
J along the x or z axis, and 1, is the 2 x 2 identity matrix.
Immediately after the projective measurement, the kth spin of
the cluster will be oriented along the chosen axis as shown
in Fig. 2. In what follows, we will always consider the mea-
surement of the central site and will omit the index k in the
expressions.

Since |Y¥gs) is a pure state, its density matrix is simply
p = |¥ags){¥asl- Then, by denoting the state right after the
measurement as

Py|¥cs)

VWaslP, [Vgs)

and according to the von Neumann theory of measurements
[19], the two possible outcomes of the measurement can be
combined into the new density matrix:

p= 3 U)Wyl where Y py =1 ()
reit.d} reit.d)

[¥y)

and the probabilities p, are given by
py = (Vas|Py[¥as). “
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FIG. 3. Time evolution of the chirality Q (dark green dots) and overlap ¢, (blue dots) after one o* projective measurement. The top panel
shows the projection onto |4,) and the bottom panel—onto || ;). Lines and shades are a guide to eye.

The state [y, (0)) = [,) then undergoes a unitary evolution
with the Hamiltonian Eq. (1),

1Y, () = e[, (0)) = U@, (0)), &)

where we have introduced the time evolution operator U () =
exp(—itH). To compute the quantum state evolution, we ex-
pand U (¢) in terms of the Chebyshev polynomials [33,34],

U@) = exp(~i1G) = Y (=D (DT(G).  (6)

k=0

where 7; are the Chebyshev polynomials of order
k, Ji(tr) are the Bessel functions, T = Ep.xt/2 —
T = (FEmax — Emin)t/2, ax=1 for k=0 and o =2
for k > 1, and G is a rescaled Hamiltonian defined as
g _ 2H — (Emax + Emin)
B 2(Emax - Emin) '

with Eyi, and Eja being the minimal and maximal eigenval-
ues of H, respectively. The spectrum of G then lies in the range
[—1, 1], which ensures the convergence of the series Eq. (6).

High accuracy of this method is guaranteed by the super-
exponential decay of the Bessel functions, and truncating the
series at 40 Chebyshev polyniomals lead to numerically exact
results for the time intervals considered in this paper.

III. ROBUSTNESS

Let us now discuss the results of numerical simulations.
We fix the magnetic field B = 0.5 such that the ground state
lies deep in the skyrmionic phase. A projective measurement
is then performed on the center site at time ¢ = 0, and the two
possible outcomes are [+ (0)) and |¢, (0)). The Hamiltonian
remains unchanged, and the states undergo a time evolution
for around 300 D!,

In Fig. 3, we show the time dependence of two quantities in
the case of o* measurement. First, for both states, we compute
the time-dependent expectation value of the chirality Eq. (2)
normalized by the ground-state chirality Qgs = (Vgs|O|¥as).
Second, we analyze how much the quantum states change in
time by computing the overlap g, () between the state at time

t with the state right after the projection:

qy (1) = [{¥y (0) [ ¥, ()], where y € {1, }. (7

Here, |, (0)) should not be confused with [¥gs): the for-
mer denotes the state right after the projection, whereas the
latter is the state before the projection.

For both |/4(?)) and | (¢)), the chirality, which is shown
with dark green dots, decreases slightly right after the mea-
surement and then flattens, oscillating within a narrow range
of values. The small fluctuations around the average value
hint towards spin decoherence waves propagating through the
system after the measurement [31,35-37].

The overlap ¢, (¢) exhibits highly nontrivial dynamics for
both measurement outcomes. Once perturbed by the local
projective measurement, the system can eventually strongly
deviate from the original skyrmion ground state while approx-
imately retaining its spin texture as encoded in Q. This is the
first indication that quantum skyrmions indeed demonstrate
stability in a certain sense. Although the external perturbation
destroys the original state, throughout the evolution, the sys-
tem remains within a manifold of states that, on the level of
operator expectation values, can be regarded as the quantum
skyrmion phase.

How does the dynamics change if the projection is now
performed along an axis orthogonal to the external magnetic
field? In that case, one might expect a stronger effect of
quantum fluctuations on the structure of the skyrmion. In
Appendix A, we show the time-dependent expectation value
of the normalized chirality Q/Qgs and the overlap ¢, (¢) for
the case of o* measurement. The data is very similar to Fig. 3.
For both [1,) and ||,) measurement outcomes, the chirality
decreases after the projection and then stabilizes at a new
level within a narrow range of values. Compared to the o*
case, the decrease of Q/Qgs is bigger and is not instantaneous
anymore, but still very rapid. We again observe small fluctu-
ations in Q that might be the result of spin decoherence wave
propagation. The dynamics of the overlap g, (¢) indicates that
the quantum state changes drastically, but the skyrmion does
not break down completely.
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FIG. 4. Averaged normalized chirality for one and repetitive
measurements as a function of time interval §¢ between measure-
ments. Quantum Zeno effect stabilizes the quantum skyrmion when
projective measurements are performed for time intervals below
8t <0.1D7!

IV. MULTIPLE MEASUREMENTS AND THE QUANTUM
ZENO EFFECT

In the previous section, we have shown that the quantum
skyrmion phase is robust with respect to a single local mea-
surement. A natural question to ask is what happens to the
quantum system when multiple measurements are performed
sequentially: Will the measurements eventually destroy the
quantum skyrmion or will they keep the system pinned to the
manifold of states that can be regarded as the skyrmion phase?
Here, we answer this question by systematically analyzing the
effect of up to three consecutive measurements.

We start with the same ground state at B = 0.5 and perform
up to three projective measurements of the z component of
the central spin (additional data for the measurements of the x
component are provided in Appendix A). The measurements
are separated by a time interval §¢ during which the system
undergoes the unitary evolution with Hamiltonian Eq. (1). We
analyze how the resulting dynamics depends on the value of
8t. As before, we start by discussing the scalar chirality Q.

Here, we compute Q immediately after the last mea-
surement and average over all possible outcomes of the
measurements

Q = Tr[Qpl,
p= > pult) Wy, ®)
vie{t,1}®

where p is the von Neumann density matrix of rank 2¢ similar
to Eq. (3), and |v/,,) is the state immediately after the sequence
of measurements y;. The probabilities p,, are given by the
products of the individual outcome probabilities. For instance,
Priy = P14 - P2y - P3s-

In Fig. 4, we show Q/Qgs as a function of the time interval
8t.For §t > 0.1 D~', each subsequent measurement decreases
the value of Q by around 10% of its original ground-state
value, which implies that the quantum skyrmion is not robust

FIG. 5. Time evolution of the scalar chirality Q/Qgs (green
squares) and the overlap § (blue circles) for three consecutive mea-
surements. The measurements take place att = 0, ¢ = 0.1 D~', and
t = 0.2 D!, The inset zooms in on the oscillations of the chirality.

upon multiple perturbations if they occur rarely enough. How-
ever, for shorter time intervals between the measurements,
8t <0.1D7!, the subsequent measurements after the first one
do not affect the value of Q.

Naively, one may suppose that the chirality expectation
value does not really change in the regime of short inter-
measurement intervals because the quantum state does not
have time to significantly evolve between the measurements.
To test whether this is the case or whether the roots of the
robustness of Q are less trivial, consider the evolution of the
wave function. For that, we define a weighted sum of overlaps

as
Z Py Gy (D), t €10, 8t]
yie{t,}®!
Y ppan =), tes,28]
Gt) = { netr, 1) ©)
> Py @t —260), € [261,351)
y3€{1,}®3

Here, g,,(t) is defined just as in Eq. (7), but with multiple
consecutive projections. For 8t = 0.1 D~', the dynamics of
this overlap is shown in Fig. 5 alongside the evolution of the
scalar chirality. Note that after each measurement, the overlap
is reset to 1 because we compute it with respect to not the
original ground state but the state right after the correspond-
ing projective measurement. It can be seen that the weighted
overlap quickly deviates from 1, and the time-evolved states
can essentially become orthogonal to the states of the system
right after the measurement. After the first measurement, the
relative change of Q is negligibly small, around 107>, In other
words, the chirality is affected by neither measurements nor
the interim unitary evolution. We suggest that this can be
interpreted as a certain type of the QZE.
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FIG. 6. The lowest part of the energy spectrum of the system. Energy levels are indicated with thin black lines. (a) Energies of different
outcomes of projective measurements. (b) Energy of the system (i.e., weighted average the possible outcomes) for one, two, and three

consecutive measurements of o¢ and o*.

In its simplest form, QZE means that a quantum system
with a discrete spectrum that is monitored continuously (or, in
practical terms, frequently enough) with von Neumann pro-
jective measurements cannot undergo a transition to another
state even when its initial state is not stable [20]. Here, it is
not quite the case since, after each measurement, the system
rapidly evolves away from the initial state and the subsequent
measurements do not bring it back. However, a broader class
of QZE-like phenomena allows the system to nontrivially
evolve in such a way that its state remains within a Zeno
subspace defined by the measurement [21,22], and the studied
case appears to fall into this category. In what follows, we
will examine the process of Zeno stabilization in more detail
and argue that QZE can be used to amplify the robustness of
quantum skyrmions.

A similar analysis can be done for a few sequential same-
site measurements in the o*-basis. As before, we compute
Q immediately after each of the measurements by averaging
over all possible outcomes of the sequence of preceding mea-
surements. We again find (see Appendix A) that if the time

between measurements is small enough, i.e., ¢ < 0.1D7',
the quantum skyrmion remains robust. The robustness of the
chirality is nontrivial as the weighted sum of overlaps Eq. (9)
indicates that the system evolves far away from its original
state—even becoming orthogonal to it—while retaining its
skyrmionic nature. This behavior mirrors the scenario of mul-
tiple measurements in the o basis, but whether it can be
interpreted as a manifestation of the QZE will be discussed
later.

V. FURTHER MANIFESTATIONS OF THE QUANTUM
ZENO EFFECT AND THE SKYRMION ROBUSTNESS

A. Low-energy excitation spectrum

For the QZE scenario to be relevant, the quantum system’s
dynamics should involve states belonging to a discrete part
of the energy spectrum. Although, formally speaking, the
spectrum of a 19-spin system is discrete, some parts of it
might transform into continuous bands upon increasing the

064409-5
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FIG. 7. The longitudinal spin structural factor of the system. (a) XJ‘ in the ground state for various values of the magnetic field B. (b) X’J‘
immediately after one, two, and three measurements of o° and o*. The value of the magnetic field is B = 0.5, and the time interval between

the measurements is 8¢ = 0.1 DL,

system size to the thermodynamic limit. To see whether the
measurement-driven dynamics of the quantum skyrmion oc-
curs outside of such quasicontinuous parts of the spectrum,
we study the spectrum of the system in more detail.

We use the lattice-symmetries [24] package to reconstruct
the lowest-lying ~1500 eigenstates. The energy spectrum is
shown in Fig. 6. It has a large gap between a few nearly

degenerate low-lying states and the quasicontinuum of higher
excitations. Projective measurements drive the system from
the ground state into a higher-energy state, and the energy
after the measurements can fall into either the gap or the quasi-
continuum, depending on the specific measurement outcomes,
as shown in Figs. 6(a) and 6(c). For the ¢* measurements, the
energy of the resulting state averaged over the von Neumann

Projection T
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. . ® Qy ® Q Q S
Projection J« [ /Qas |
1077 ‘ ‘
0.5[ L4 Tt gy R
0 50 100 150 200 250 300
t [D7]

FIG. 8. Time evolution of the chirality Q (dark green dots) and overlap g, (blue dots) after one o* projective measurement. The top panel
shows the projection onto |1,) and the bottom panel onto || ). Lines and shades are a guide to eye.
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FIG. 9. Averaged normalized chirality for one and repetitive
measurements of o* as a function of time interval 8¢ between mea-
surements. Quantum Zeno effect stabilizes the quantum skyrmion,
when projective measurements are performed for time intervals be-
low 8t < 0.1D~'. Note that the value of Q/Qgs = 0.9 immediately
after the first measurement is higher than the value at which it
eventually stabilizes in Fig. 8 due to the rapid continuous dynamics
different from the observed in the o° case, and the QZE allows to
stabilize chirality at values closer to its original value.

density matrix Eqs. (8) remains within the gap, Fig. 6(b).
However, when the measurements are performed in the o*
basis, both the individual outcomes and the overall mixed
state (3) enter the part of the spectrum that can become a
quasicontinuum in the thermodynamic limit. Hence, the QZE
interpretation should be taken with care. However, there is
still an indirect argument in favor of the QZE scenario. As we
show in Appendix C, when sequential measurements are per-
formed on different lattice sites, the scalar chirality decreases
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FIG. 10. Time evolution of the scalar chirality Q/Qgs (green
squares) and the overlap ¢ (blue circles) for three consecutive mea-
surements of o*. The measurements take place att = 0,7 = 0.1 D71,
andt =0.2D7".

with each measurement at approximately the same rate for
both large and small §¢. This implies that, in the multiple
measurement setting, repeating the same measurement is crit-
ical for maintaining the robustness of the skyrmion, which is
typical for the canonical QZE.

B. Longitudinal spin structural factor

Although the scalar chirality Q is the main character-
istic feature of the quantum skyrmion phase, it cannot be
probed experimentally due to the complexity of measuring
three-point correlation functions. An alternative signature of
a quantum skyrmion is the spin structural factor [38]

X) = (Si5%,): (10)
where q is scattering wave vector. X(L‘ can be measured in
neutron scattering experiments [39], and in this section we
analyze its robustness upon local projective measurements.

In Fig. 7(a), we show the intensity profile of the spin
structural factor Eq. (10) calculated in the ground state of
the Hamiltonian Eq. (1) for several different values of the
magnetic field. Although in Ref. [10] it was argued that X(‘l‘ isa
suboptimal probe of quantum skyrmion phase due to the lack
of clear difference between the skyrmionic and helical states,
here we see that the skyrmion has a recognizable pattern of
Bragg peaks characterized by a strong zero-momentum peak
and a halo of weaker peaks. If the pattern remains unchanged
after a sequence of projective measurements, it would speak
in favor of the operational robustness of quantum skyrmions.

The spin structural factor averaged over the measurement
outcomes is

= Py Uy IS587 1) (11)
Yi

In Fig. 7(b), we show this quantity after one, two, and three
projective measurements for both o° and o*. The profile of the
structural factor remains nearly unchanged, with only a slight
shift of intensity of the halo. Hence, we can safely claim that,
on the level of observables (the scalar chirality and the spin
structural factor), the quantum skyrmion phase is robust upon
external local perturbations despite the absence of topological
protection.

VI. CONCLUSIONS

We studied the robustness of a quantum skyrmion state
with respect to local projective measurements using a 19-
site triangular lattice as a model system. First, we analyzed
the effect of the local projective measurements on the scalar
chirality—a three-spin correlation function that can be consid-
ered a quantum analog of the skyrmionic topological charge
[10,15]. The scalar chirality is not a topological charge and
its robustness with respect to perturbations is not guaranteed.
Nevertheless, we demonstrated that a local projective mea-
surement has a relatively weak effect on the scalar chirality
and reduces it by only around 10%.

Second, we analyzed the effect of up to three consecutive
projective measurements and found that it depends on the time
interval between the measurements. If the interval is small
enough (< 0.1 D7'), an analog of the QZE arises and the
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FIG. 11. Left: Single projective measurement in the o° basis performed on an elementary plaquette (shown with green dots). Right: Time
evolution of the chirality Q (green curve) and overlap ¢, with the initial quantum state (blue dots).

skyrmion phase is stabilized by the measurements. Finally, in
the quantum Zeno regime, we also demonstrate the robustness
of the spin structural factor—the quantity that can serve as a
signature of the skyrmion phase, but more easily accessible
experimentally than the scalar chirality.

It is interesting to note that even outside of the QZE realm,
for different types of single measurements—single-site o and
o”* projections or simultaneous multiple-site projections (see
Appendix B)—the resulting scalar chirality always stabilizes
within a narrow window of values, even if the initial decrease
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is large, and the time evolution takes the underlying quan-
tum state far away from the original wave function (up to
complete orthogonality). This apparent discrepancy between
the fragility of the quantum state and the stability of the
corresponding observables would be interesting to explore
in depth, and quantum skyrmions appear to be a good plat-
form for that. Such operational stability also indicates that
studying quantum skyrmions is a promising research direc-
tion with potential applications in reading and writing of
information.
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FIG. 12. Averaged normalized chirality after several projective measurements in the o* basis performed on different sites as a function of
time interval 8¢ between measurements. To the left of each plot, sites of measurements are shown in colors: the first measurement is on the

green site, the second one—on the yellow, and the third one—on the red.
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APPENDIX A: MEASUREMENTS OF o*

In this Appendix, we show data for the case when o is
measured instead of o*. Figure 8 is the analog of Fig. 3 from
the main text, Fig. 9—the analog of Fig. 4, and Fig. 10—the
analog of Fig. 5.

APPENDIX B: SINGLE NONLOCAL MEASUREMENT

Single-site local measurements are just a specific type of
projections that can be considered, and larger-scale or less
symmetric perturbations can give a stronger shake to the
quantum skyrmion, changing its properties in a more severe
way. To probe the limits of the skyrmion stability, we first

consider the case when a single projective measurement along
the z axis is performed on several adjacent lattice sites—an
elementary plaquette, Fig. 11. While this type of a more
invasive perturbation naturally leads to a larger decrease in
the value of chirality Q/Qgs, it still stabilizes around a fixed
value irrespective of how strongly the corresponding quantum
state deviates from its initial conditions over the course of time
evolution, as measured by the overlap ¢, (¢).

APPENDIX C: MEASUREMENTS ON DIFFERENT SITES

Another possible scenario is when several sequential local
measurements are performed across the system at different
locations. We restrict ourselves to considering o° measure-
ments. The first measurement can be performed on any site,
then the translational symmetry is broken and different config-
urations of the subsequent measurements can lead to different
results. A few options are shown in Fig. 12. In contrast with
repetitive measurements on the same site, here each subse-
quent measurement pushes the value of Q/Qgs down, and the
QZE-type dynamics does not emerge even for small intervals
ot between the measurements. This is not unexpected, since
the QZE assumes that measurements must be repetitive and
not arbitrary.
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