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Bulk photovoltaic effect in antiferromagnet: Role of collective spin dynamics
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Inspired by recent advancements in the bulk photovoltaic effect which can extend beyond the independent-
particle approximation (IPA), this study delves into the influence of collective spin dynamics in an
antiferromagnet on photocurrent generation using a time domain calculation. In the linear and photocurrent
conductivity spectra, we observe peaks below the band gap regime, attributed to the resonant contributions of
collective modes, alongside broadband modifications resulting from off-resonant spin dynamics. Notably, the
emergence of spin dynamics allows various types of photocurrent, which are absent in the IPA framework.
Furthermore, we emphasize the importance of energy scale proximity between electronic and spin degrees of
freedom in enabling efficient feedback. These findings offer new avenues for efficient energy harvesting and
optoelectronic applications.
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I. INTRODUCTION

The photovoltaic effect is a phenomenon in which light
is converted into an electric current known as a photocur-
rent. It can be understood as an even-order optical response,
hence requires inversion breaking in the system. This ef-
fect is commonly observed in heterostructures such as p-n
junctions [1], where inversion symmetry is artificially bro-
ken. Recently, the growing demand for energy harvesting has
provoked the exploration for photocurrent generation in bulk
single-phase crystals without inversion symmetry, termed the
bulk photovoltaic effect (BPVE) [2,3]. BPVE has attracted
much attention due to its distinct features. For instance, unlike
conventional PVE, photovoltage is not limited by the band
gap energy, and the Shockley-Queisser limit [4] could be
overcome [5].

Extensive studies have revealed the complete classification
of BPVE in nonmagnetic and magnetic systems based on
the independent-particle approximation (IPA) [6–8]. For a
representative example, BPVE in insulators can be classified
into two contributions: shift current and injection current. The
shift current [9–12] arises from the difference in intracell
coordinates of excited carriers and is related to the geometric
quantity called Berry connection. On the other hand, injec-
tion current results from the group velocity difference of
the excited electron-hole pair. Based on this classification,
extensive searches for efficient BPVE have been carried out
across a wide range of materials, including Weyl semimet-
als [13], topological insulators [14], and transition metal
dichalcogenides [15].
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This classification is based on the IPA with the rigid-band
picture. However, recent progress in theoretical studies of
BPVE has revealed that electron correlation effects in solids
also play an important role in photocurrent generation [16,17].
In particular, photocurrent can originate from elementary ex-
citations below the band gap, such as excitons [18,19], soft
phonons in ferroelectrics [20], electromagnons in multifer-
roics [21], and collective modes in excitonic insulators [22].
Understanding these phenomena requires explicit considera-
tion of collective dynamics beyond the IPA.

In this paper, we focus on the BPVE in an antiferromag-
netic system and discuss the effects of the collective spin
dynamics, exploring BPVE beyond IPA. BPVE in magnetic
materials is particularly intriguing for several reasons. First,
there are various kinds of magnetic textures, in some of
which the magnetic order breaks the inversion symmetry and
thereby ties the charge degree of freedom with spins. This
strong spin-charge coupling is also attracting much attention
from the field of multiferroics [23–25] and antiferromagnetic
spintronics [26–29]. Second, the spin textures accompany the
breaking of time-reversal symmetry, which may allow the
nonzero contribution from injection current under linearly
polarized and unpolarized light. This is advantageous because
the amplitude of the linear injection can dominate that of
the shift currents, particularly in clean systems, potentially
enabling highly efficient photovoltaic devices. Third, not lim-
ited to the antiferromagnetic system, the external magnetic
field can tune the magnetic structures, and we can expect
a significant modulation of photocurrent response. In fact, a
recent study on the BPVE effect in magnetic systems within
the IPA shows that photocurrent direction can be controlled
by external field [30,31], demonstrating the high tunability of
the photocurrent in magnets [32]. As illustrated, BPVE phe-
nomena in magnetic systems exhibit rich characteristics, even
within the IPA framework. In such systems, the role of spin
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dynamics on BPVE remains largely unexplored. Especially in
antiferromagnetic systems, the energy scale of the collective
spin dynamics typically lies in the THz regime, which is
proximate to that of the electronic system. Hence, we expect
that the spin dynamics significantly affects the response of
the electronic systems. Moreover, the emergence of fictitious
fields by the spin dynamics may lead to richer optoelectronic
properties, which are absent within IPA [22]. By investigating
the effects of spin dynamics on PVE, we aim to provide a
more comprehensive understanding of BPVE, moving beyond
the IPA.

In this paper, we investigate the role of collective spin
dynamics in BPVE in a simple model representing a one-
dimensional antiferromagnet. We employ a unified framework
for a real-time simulation of conduction electrons and lo-
calized spin moments based on the methods introduced in
previous studies [22,33]. This approach allows us to inves-
tigate the influence of collective modes on BPVE and gives
a comprehensive understanding of their impact on the optical
response. By employing the symmetry analysis, we identify
an optically active collective mode and investigate its role in
both linear and nonlinear optical responses. In the conductiv-
ity spectrum, we observe a peak below the band gap regime
stemming from resonant contributions of collective modes
and broadband modifications resulting from off-resonant con-
tributions of collective spin dynamics. Additionally, we found
that photocurrent arising from the spin dynamics can be clas-
sified into several types, which are absent in the IPA. Here,
the symmetry and the phase degrees of freedom of the driven
forces play crucial roles. Furthermore, we demonstrate the
significance of proximity in energy scales between collec-
tive modes and electronic excitations. This insight provides
a guiding principle for harnessing substantial photocurrents
from spin dynamics.

II. METHOD

In this section, we elaborate on the model and explain
how we incorporate the effect of collective spin dynamics on
optical responses. First, we introduce the model used in this
study, then move on to our time-dependent simulation scheme.

A. Model

This study focuses on a locally noncentrosymmetric sys-
tem in one dimension, where conduction electrons are coupled
to localized spin moments with a canted antiferromagnetic
structure (see Fig. 1). This model is a simple representative
example of magnetoelectric materials [34], where we expect
large spin and charge coupling.

The Hamiltonian of the model is expressed as

Ĥ = Ĥele + Ĥexc + Hspin + ĤE . (1)

The first term,

Ĥele = − 2th
∑

k

∑
σ

cos k[ĉ†
Aσ (k)ĉBσ (k) + ĉ†

Bσ (k)ĉAσ (k)]

− λ
∑

k

∑
σσ ′

[g(k) · σ]σσ ′
[ĉ†

Aσ (k)ĉAσ ′ (k)

− ĉ†
Bσ (k)ĉBσ ′ (k)], (2)

FIG. 1. (a) One-dimensional chain model with canted antifer-
romagnetic order. (b) Band dispersion of the system with the
parameters th = 1, λ = 0.8, J = 0.6, Kz = 0.2, hy = 0.2.

is the Hamiltonian of the electronic system, consisting of the
nearest-neighbor hopping th and the sublattice-dependent an-
tisymmetric spin-orbit coupling λ (sASOC). ĉ†

ασ (k) [ĉασ (k)]
is the creation (annihilation) operator of the electron on sub-
lattice α (α = A, B) having spin σ (σ =↑,↓), and k is the
wave vector. g(k) is called the g vector, and satisfies g(−k) =
−g(k). We set g(k) = (0, 0, sin 2k), implicitly assuming the
presence of ligand structure around each sublattice which
breaks the local inversion symmetry. This sASOC is the essen-
tial ingredient to enhance magnetoelectric coupling [34–36].
The second term

Ĥexc = −J
∑

k

∑
α

∑
σσ ′

ĉ†
ασ (k)[σ · Sα (t )]σσ ′

ĉασ ′ (k) (3)

corresponds to the interaction between electronic degrees of
freedom and localized spin moments with coupling constant
J . Here we assume that the localized spins Sα are classical
spins and set |Sα| = 1. We note that, in Eq. (3), we assume
that the spin configuration is commensurate with the lattice
structure as in Fig. 1 and the local spins can be classified only
by the sublattices.

The third term

Hspin = −
∑

α

[
Kz

(
Sz

α

)2 − hySy
α

]
(4)

is the Hamiltonian for the localized spins. To stabilize the
antiferromagnetic order along the chain direction (z direction),
we consider the uniaxial anisotropy Kz. We also apply the
external magnetic field perpendicular to the chain direction
(y direction) to induce the canted configurations. This is be-
cause, without this canted moment, the light-induced spin
accumulation on each sublattice, which acts as spin transfer
torque for the localized spin moments, would be parallel to
Sα . Therefore, there would be no spin dynamics induced by
light irradiation.
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The last term

ĤE = −Ez(t )
∑
kk′

∑
α

∑
σ

[
i
∂

∂k
δ(k − k′)

]
ĉ†

kασ
ĉk′ασ (5)

describes the light-matter coupling in the length gauge, where
Ez(t ) is a time-dependent light field along the chain direction,
where we set lattice constant a = 1, and elementary charge
e = 1. In the expression Eq. (5), we assume that the Wannier
state of a conducting electron is well localized at a given
site and ignore the light-matter coupling originating from its
spatial extension. This light-matter coupling is the same as the
celebrated Peierls substitution in the dipolar gauge [37]. The
difficulty of dealing with the k derivative of the delta function
in Eq. (5) can be resolved in the following subsection.

B. Calculation scheme

Here, we introduce two coupled equations that describe the
dynamics of electronic degrees of freedom and localized spin
moment. First, the time evolution of the conduction electrons
can be described by the single-particle density matrix (SPDM)
ρσσ ′

αβ (k) = 〈ĉ†
βσ ′ (k)ĉασ (k)〉, and SPDM satisfies the following

equation called the von Neumann equation [38],

∂ρ(k, t )

∂t
= − i[H (k, t ), ρ(k, t )] − Ez(t )

∂ρ(k, t )

∂k

− γ (ρ(k, t ) − ρeq(k)). (6)

Second, the time evolution of the localized spin system is
described by the Landau-Lifshitz-Gilbert (LLG) equation,

dSα

dt
= 1

1 + α2
G

[
Heff

α × Sα + αGSα × (
Sα × Heff

α

)]
, (7)

Heff
α = −J〈σα〉 + δHspin

δSα

. (8)

In Eq. (6), H (k, t ) is the time-dependent electronic Hamilto-
nian at each k point defined as follows:

Ĥele + Ĥexc =
∑

k

∑
αβ

∑
σσ ′

[H (k, t )]σσ ′
αβ ĉ†

ασ (k)ĉβσ ′ (k). (9)

The k derivative of the delta function in Eq. (5) becomes
the k derivative of the SPDM, which is computationally
manageable. In the LLG equation Eq. (7), 〈σα〉 is the
sublattice-dependent spin density of itinerant electrons, and
this can be calculated from SPDM. This method allows us to
capture both the dynamics of electronic and spin systems in
the time domain.

Additionally, real materials exhibit relaxation of excited
carriers due to electron-electron correlations, electron-phonon
interactions, and impurity scattering. To ensure a physically
reasonable response to light, we account for these effects
phenomenologically by using the relaxation time approxima-
tion in the von Neumann equation as γ (ρ(k, t ) − ρeq(k)) in
Eq. (6), and the Gilbert damping αG in Eq. (7). Here ρeq(k)
is the SPDM in the equilibrium at the temperature T = 0 as
shown below.

The SPDM at equilibrium ρeq(k) represents the SPDM in
the initial state at temperature T = 0. SPDM in the band basis
ρ̃eq(k) is diagonal, and the diagonal component represents the
occupation number 
(μ − εnk ), with εnk being the eigenvalue

of the Hamiltonian H (k). Therefore ρ̃eq(k) is written as

[ρ̃eq(k)]nn′ = δnn′
(μ − εnk ). (10)

By using this expression, the SPDM in the original basis
ρeq(k) can be calculated by

ρeq(k) = U (k)ρ̃eq(k)U†(k) (11)

with U being a unitary matrix which diagonalizes the Hamil-
tonian as

U†(k)H (k)U (k) = E(k), (12)

[E(k)]nn′ = δnn′εnk . (13)

To obtain initial spin configuration, where the localized spin
moment Sα (t = 0) is parallel to the effective field Heff

α acting
on Sα (t = 0), we perform the self-consistent calculation.

In each time step, the current density is evaluated from
SPDM as follows. The current operator in the length gauge
is expressed as

Ĵ (t ) =
∑

k

∑
αβ

∑
σσ ′

∂[H (k, t )]σσ ′
αβ

∂k
ĉ†
ασ (k)ĉβσ ′ (k) (14)

≡
∑

k

∑
αβ

∑
σσ ′

[J(k)]σσ ′
αβ ĉ†

ασ (k)ĉβσ ′ (k). (15)

It is noteworthy that since the Ĥexc term in the Hamiltonian
does not depend on momentum k, the current operator is
independent of local spin dynamics.

We solve the coupled equations Eq. (6) and Eq. (7) by the
fourth-order Runge-Kutta method. In each time step, we cal-
culate the sublattice-dependent spin density using the SPDM
and update the exchange Hamiltonian with the newly obtained
spin configurations. Additionally, the expectation value of the
current operator is obtained by using the density matrix as

Jz(t ) =
∑

k

Tr [J(k)ρ(k, t )]. (16)

To evaluate the ∂ρ(k, t )/∂k in von Neumann equation Eq. (6),
we use symmetric derivative

∂ρ(k, t )

∂k
= ρ(k + dk, t ) − ρ(k − dk, t )

2dk
, (17)

where dk = π/N , with N = 5000.
Based on this scheme, we calculate the linear and nonlin-

ear susceptibility to the light field from the obtained current
response, which will be shown in the next section. In the
following calculations, we use the parameters th = 1, λ =
0.8, J = 0.6, Kz = 0.2, hy = 0.2, αG = 0.01, γ = 0.01, oth-
erwise explicitly mentioned. In Fig. 1(b), we show the band
structure of the system in equilibrium. Due to the inversion
breaking and time-reversal breaking in the system, the band
structure is asymmetric about k, namely ε(k) �= ε(−k). We
set the chemical potential μ to be 0 within the band gap.

III. RESULTS

This section presents the result of the light-induced dynam-
ics of the system. Starting from the symmetry analysis, we
clarify the optically active collective excitations in Sec. III A.
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FIG. 2. Collective mode of canted antiferromagnetic moment.
The red (blue) arrow indicates the spin moment in the A (B) sub-
lattice, respectively. The black arrow denotes the summation of the
sublattice spin moment.

Second, in Sec. III B, we investigate the effect of spin dy-
namics on optical response in the linear response regime. In
Secs. III C and III D, we study the effect of collective mode on
photocurrent conductivity. Here, we decompose the photocur-
rent into different processes, where the linear susceptibility
of spins to light field obtained in Sec. III B plays a crucial
role in photocurrent generation. The last subsection, Sec. III E,
is dedicated to demonstrating the tunability of photocurrent
generation by changing the canted angle of the local spin
moments.

A. Symmetry analysis

In this subsection, we analyze the collective spin dynamics
that is linearly coupled to the external light field based on
the symmetry analysis. Since photocurrent response is largely
restricted by the symmetry of the system and the external field,
symmetry analysis of collective dynamics lays the foundation
of our study.

The system has the following symmetries and belongs to
the magnetic point group G = 2′mm′, explicitly given by

G = {1, θ2x, 2̄y, θ 2̄z}. (18)

Here, 1, θ, 2a, and 2̄a are the identity operator, time-reversal
operator, twofold rotation around the a axis, and rotatory
inversion about the a axis, respectively.

Let us identify the collective modes in the canted anti-
ferromagnetic moments. Since our method is based on the
momentum-space formulation, we only consider the k = 0
magnon or antiferromagnetic resonance. As we show in Fig. 2,
two collective modes exist in our system, named the α mode
and β mode [39]. In the α mode, the total spin moment
oscillates along the y direction, whereas the β mode denotes
the precession of net spin moment around the y axis.

To determine which mode is optically active, we analyze
the sign of observables under the symmetry operation of G.
For example, the 2̄y operation can be explicitly expressed as

2̄y = (−iσy) ⊗ τx, (19)

where σ and τ are Pauli matrices representing the spin and
sublattice degrees of freedom. Under this operation, staggered
spin moment along the x direction σx ⊗ τz can be transformed
as

2̄y(σx ⊗ τz )2̄−1
y = σx ⊗ τz. (20)

TABLE I. Sign under symmetry operation of magnetic point
group G. Ma means ferroic configurations of spin moment along the a
direction, while La means staggered spin moments along a direction.
+ means the observable does not change its sign, while − means the
observable flips its sign under the operation.

1 θ2x 2̄y θ 2̄z

Ez + − + −
Jz + + + +
Mx + − − +
Lx + − + −
My + + + +
Ly + + − −
Mz + + − −
Lz + + + +

Therefore, σx ⊗ τz does not change its sign under the 2̄y op-
eration. In Table I, we summarize how the physical quantities
change their sign under the operation in G. Here Ez, Jz are
light field and electric current along the z direction, respec-
tively. Ma means ferroic configurations of spin moment along
the a direction, while La means staggered spin moments along
the a direction. Owing to the incompatibility of the exter-
nal light field Ez and Mx, Ly, Mz, under 2̄y operation, the β

mode is not linearly coupled to the light field. Although the
symmetry of My, Lz, and Ez are different under the θ2x, θ 2̄z

operations, these can be linearly excited by electric current Jz.
This is because, in nonequilibrium phenomena, time-reversal
symmetry is effectively broken by the dissipation process.
This can be viewed as an extension of the frequency response
of the magnetoelectric effect and Edelstein effect [40,41].
Consequently, only components related to Lx, My, and Lz

can be linearly excited by light, indicating that the α mode
can be linearly coupled to the light field. Since the symmetry
argument does not depend on frequency profile, it is valid for
both the resonant and off-resonant conditions.

There is no symmetry operation inverting the electric cur-
rent Jz since the model shows the polar symmetry along the
z axis similar to that of the typical photodiodes. Notably, the
electric current changes its sign under the time-reversal oper-
ation, coinciding with the symmetry of the toroidal moment.
At the same time, the electric polarization is forbidden to be
in the chain direction due to the antiunitary symmetry. This
unique combination of magnetic and polar symmetries leads
to the absence of shift current and the presence of injection
current within the IPA, as proved in Appendix C.

B. Linear response functions

Before we move on to the nonlinear optical response, we
examine the optical response in the linear response regime,
which provides valuable insights into the mutual interaction
between charge and spin degrees of freedom. Here, we in-
vestigate the two types of linear response functions. The first
one is the electromagnetic susceptibility, which has direct
information on the spin collective mode induced by light. The
second one is the linear optical conductivity of the system,
by which we can understand how the collective excitation of
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the local spin affects the optical response of the electronic
systems. Electromagnetic susceptibility is defined as

χMaE (ω) = �Ma(ω)

Ez(ω)
, (21)

χLaE (ω) = �La(ω)

Ez(ω)
. (22)

Here, �Ma(ω),�La(ω) are the Fourier components of the de-
viation of the spin configurations from the equilibrium states,
which are defined as

�Ma(t ) = 1
2

[
�Sa

A(t ) + �Sa
B(t )

]
, (23)

�La(t ) = 1
2

[
�Sa

A(t ) − �Sa
B(t )

]
. (24)

We define the spin dynamics and electromagnetic susceptibil-
ities related to the α-mode component as

�S(ω) = (�Lx(ω),�My(ω),�Lz(ω))T , (25)

χSE (ω) = (χLxE (ω), χMyE (ω), χLzE (ω))T . (26)

By using these quantities, spin dynamics linearly coupled to
the light field are characterized by

�S(ω) = χSE (ω)Ez(ω). (27)

Additionally, linear conductivity is defined as

Jz(ω) = σ (ω)Ez(ω). (28)

Here, Jz(ω) is the Fourier transform of the Jz(t ).
To calculate these response functions, we applied a Gaus-

sian pulse light field

Ez(t ) = E0√
2πσ 2

exp

(
− (t − t0)2

2σ 2

)
. (29)

We choose t0 so that E (t ) ∼ 0 at t � 0. In the limit of σ → 0,
the Gaussian pulse Eq. (29) becomes Ez(t ) = E0δ(t ), contain-
ing all the frequencies. The linear response functions can be
calculated by the Fourier transform of the resulting response
in the time domain. For example, the linear optical conductiv-
ity is obtained as

σ (ω) = 1

E0
eσ 2ω2/2eiωt0

∫ ∞

0
eiωt Jz(t )dt . (30)

We plot the frequency dependence of the linear response
functions χSE (ω) and σ (ω) in Fig. 3. In Figs. 3(a-1)–3(a-3),
we show the electromagnetic susceptibility χSE (ω). Electro-
magnetic susceptibility exhibits the resonance structure below
the optical gap of the electronic system. This resonant struc-
ture corresponds to the optically active α mode. Additionally,
there are off-resonant contributions in the above-band-gap
regime, coming from electronic excitation. Moreover, in the
higher frequency around ω ∼ 1.5, χSE shows small ampli-
tude, indicating that the local spins are unaffected by the
light field. This is because the local spin moments with small
resonance frequency cannot follow the fast oscillations by the
external field. In the linear response calculations, we con-
firmed that only the α mode is linearly coupled to the light
field, in agreement with the symmetry analysis.

In Fig. 3(b), we show the linear optical conductiv-
ity Re σ zz(ω). The blue dashed line, denoted as without

FIG. 3. (a) Linear electromagnetic susceptibility to the external
light field. (b) Linear optical conductivity of the system. The red solid
line and the blue dashed line indicate the calculation with and without
updating the spin configurations, respectively. The black dashed line
indicates the band gap frequency.

LLG, shows the linear conductivity spectra without updating
the spin configuration, which corresponds to the IPA. The red
solid line, denoted as with LLG, indicates the conductivity
spectrum with the effect of spin dynamics. There are three
characteristics of the effect of spin dynamics. First, Re σ (ω)
with LLG simulation shows the resonant peak in the in-gap
regime, which is absent in the IPA. The frequency of this peak
corresponds to that of the α mode we saw in the electromag-
netic susceptibility. Second, the presence of spin dynamics
introduces a suppression of optical conductivity within the
regime above the band gap. This suppression arises due to
off-resonant contribution from collective spin dynamics. It is
noteworthy that due to the sum rule

∫
Re σ (ω)dω = constant,

the emergence of the in-gap peak results in the suppression of
conductivity in the above-gap regime. Lastly, deviations from
the IPA calculation become negligible in the higher frequency
region around ω ∼ 1.5, as Im χSE loses its amplitude.

C. Photocurrent spectra

Now, we show the result of photocurrent spectra, revealing
the effect of collective spin dynamics on the BPVE. The
second-order BPVE can be described as1

Jz(ω = 0, ωp) = σ z;zz(0; ωp,−ωp)Ez(ωp)Ez(−ωp)

+ σ z;zz(0; −ωp, ωp)Ez(−ωp)Ez(ωp). (31)

Here Jz(ω = 0, ωp) is the DC component of output current
along chain direction z induced by the light field with fre-
quency ωp. To calculate the photocurrent spectra, we apply

1Here σ z;zz(0, ωp,−ωp) = σ z;zz(0, −ωp, ωp)∗ = σ z;zz(0, −ωp, ωp)
holds.
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FIG. 4. (a) Photocurrent spectra. The blue dashed and red solid lines indicate the IPA calculation and calculation incorporating the spin
dynamics, respectively. (b), (c) Dependence of photocurrent conductivity at the above-band-gap frequency (ωp = 0.8) on (b) electric-field
strength E0 and (c) relaxation time τ . The blue and red lines indicated the IPA calculation and calculation incorporating the spin dynamics,
respectively. The black solid line in (b) indicates the line which is proportional to E 2

0 .

the continuous light field Ez(t ) = E0 sin ωpt . Here we define
the photocurrent conductivity σ (0; ωp) as

σ (ω = 0; ωp) = 1
2 [σ z;zz(0; ωp,−ωp) + σ z;zz(0; −ωp, ωp)].

(32)

In this definition, the photocurrent conductivity is calculated
by the following formula [22]:

σ (ω = 0; ωp) = 2

E2
0 NTp

∫ tsat+NTp

tsat

Jz(t )dt . (33)

Here Tp = 2π/ωp is the period of the external light. We set
tsat large enough so that the system reaches the time-periodic
steady state and use N > 10 to get the average.

In Fig. 4(a), we show the photocurrent spectra, with and
without the contributions from spin dynamics. The blue
dashed line indicates the IPA calculation, and the red solid
line indicates the photocurrent spectra with the effect of spin
dynamics.

First, we observed the sharp resonant contribution from
collective spin dynamics in the in-gap regime. This corre-
sponds to the α-mode resonance we observed in the linear
response functions in Fig. 3. Second, we confirmed the
substantial enhancement above the band gap regime, which
comes from off-resonant spin dynamics. Moreover, we ob-
served the dip structure at the band edge frequency, which
comes from the interference effect of the external field and
internal spin dynamics, as shown below. Unlike the case of
linear optical conductivity in Fig. 3(b), there is no sum rule
regarding photocurrent conductivity [42]. Therefore, the pho-
tocurrent response in the in-gap regime is not subject to a
trade-off relation with that in the above gap. In Figs. 4(b)
and 4(c), we show the field amplitude and the relaxation time
τ = γ −1 dependence of the photocurrent at the above-band-
gap frequency ωp = 0.8. Although the photocurrent response
obtained in our method includes a higher-order nonlinear
optical response to the light field in principle, we confirmed
that the second-order response is dominant. Additionally, the
relaxation time dependence of the photocurrent spectra scal-
ing linearly to the relaxation time indicates that the injection
current contribution is dominant, which agrees with symmetry
analysis. It is noteworthy that our time-dependent calculation
captures photocurrent not only from resonant contributions

but also from off-resonant contributions of collective spin
dynamics, which were not discussed in the earlier studies
[21,43] of BPVE from magnetic excitation.

D. Decomposition of photocurrent

To obtain further insight into the role of spin dynamics on
the BPVE, we decompose the photocurrent contributions into
three distinct processes. Our calculation is essentially equiv-
alent to the random phase approximation [44,45], wherein
the light-induced internal spin dynamics can be considered
as an additional external field applied to the conduction elec-
trons [see Eq. (3) and Eq. (9)]. Consequently, as illustrated in
Fig. 5(a), three distinct processes contribute to the photocur-
rent response, described as

Jz(ω = 0; ωp) = Jz
0 (ωp) + Jz

col-E(ωp) + Jz
col-col(ωp), (34)

where

Jz
0 (ωp) = σ z;zz

EE (0; −ωp, ωp)Ez(−ωp)Ez(ωp)

+ σ z;zz
EE (0; ωp,−ωp)Ez(ωp)Ez(−ωp), (35)

Jz
col-E(ωp) =

∑
λ

σ z;zλ
ES (0; −ωp, ωp)Ez(−ωp)�Sλ(ωp)

+
∑

λ

σ z;zλ
ES (0; ωp,−ωp)Ez(ωp)�Sλ(−ωp),

(36)

Jz
col-col(ωp) =

∑
νλ

σ z;νλ
SS (0; −ωp, ωp)�Sν (−ωp)�Sλ(ωp)

+
∑
νλ

σ z;νλ
SS (0; ωp,−ωp)�Sν (ωp)�Sλ(−ωp).

(37)

Here we use the spin dynamics �S(ω) defined in Eq. (25),
and indices ν, λ represent the components of �S(ω). First,
J0 depicts the photocurrent in the absence of collective spin
dynamics, described by the photocurrent conductivity σEE .
This contribution corresponds to the IPA. The second contri-
bution is Jcol-E, where the external light field and light-induced
spin dynamics synergistically generate the photocurrent, and
is characterized by σES. This can be understood as inter-
ference between the external light field and collective spin
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FIG. 5. (a) Schematic picture of three different processes of the
photocurrent in the presence of collective spin dynamics. The wavy
and dashed lines indicate the light field and interaction J , respec-
tively. ⊗ represents the output photocurrent. The solid triangles
describe the photocurrent susceptibility evaluated with the IPA. �S is
the light-induced spin dynamics. (b) Photocurrent spectra originating
from the three different processes. The inset shows the magnified
view of σcol-E component around the collective mode frequency ωp ∼
0.35.

dynamics. The third contribution Jcol-col involves solely the
light-induced internal spin fields, to generate the photocurrent,
and is characterized by σSS. Given that we have confirmed the
linear coupling of spin dynamics to the light field, all these
components yield a second-order response to the light field.
We emphasize that σEE , σES, σSS are calculated within the
IPA framework. The detailed expressions of them are given in
Appendix B. In linear response, the total output current with
multiple fields is simply the superposition of the individual
outputs for each field. However, in nonlinear response, the to-
tal output is influenced by interference effects that result from
the interaction of different fields. Based on the photocurrent
classification in Eq. (35), Eq. (36), and Eq. (37), we can define
photocurrent conductivity in the presence of collective spin
dynamics as

Jz
0 (ωp) = 2σ0(0; ωp)Ez(ωp)Ez(−ωp), (38)

Jz
col-E(ωp) = 2σcol-E(0; ωp)Ez(ωp)Ez(−ωp), (39)

Jz
col-col(ωp) = 2σcol-col(0; ωp)Ez(ωp)Ez(−ωp), (40)

where

σ0(0; ωp) = 1
2

[
σ z;zz

EE (0; −ωp, ωp) + σ z;zz
EE (0; ωp,−ωp)

]
, (41)

σcol-E(0; ωp) = 1

2

∑
λ

σ z;zλ
ES (0; −ωp, ωp)χSλE (ωp)

+ 1

2

∑
λ

σ z;zλ
ES (0; ωp, ωp)χSλE (−ωp), (42)

σcol-col(0; ωp) = 1

2

∑
νλ

σ z;νλ
SS (0; −ωp, ωp)χSνE (−ωp)χSλE (ωp)

+ 1

2

∑
νλ

σ z;νλ
SS (0; ωp,−ωp)χSνE (ωp)

× χSλE (−ωp). (43)

Here we use electromagnetic susceptibilities defined in
Eq. (26). Our time-dependent calculations naturally give the
decomposition as follows. First, σ0(ωp) corresponds to the
calculation without updating spin configurations. Second,
σcol-col(ωp) can be calculated by switching off the external
light field Ez(t ) and updating the Hamiltonian with S(t )
obtained in the calculations with the LLG equation. The
σcol-E(ωp) spectrum can be calculated by subtracting σ0(ωp)
and σcol-col(ωp) from σ (ωp).

In Fig. 5(b), we show the photocurrent spectra correspond-
ing to each component. σ0(ωp) is the same as the blue dashed
line in Fig. 4(a). The σcol-E(ωp) component undergoes sign
change near the band gap frequency. This sign change may
come from the interference effect between the external light
field and field-induced spin dynamics, which might give a new
way to control the photocurrent direction. In addition, we con-
firmed that the strong resonance peak mainly comes from the
σcol-col(ωp) component. Since the resonant structure of σ (ωp)
in the in-gap regime originates from the resonant structure in
χSE (ωp), σcol-col ∝ (χSE )2 gives a shaper resonance peak than
σcol-E ∝ χSE does.

It is worth noting that symmetry relations and the phase
degrees of freedom of driving fields constrain the types of
photocurrent generated. As a general case, let us focus on non-
interacting electrons and consider the photocurrent induced by
two external fields X (ωp) and Y (ωp) within the IPA frame-
work. This process can be written by using the photocurrent
conductivity σXY (0; ωp,−ωp) as

JXY (ωp) = σXY (0; −ωp, ωp)X (−ωp)Y (ωp)

+ σXY (0; ωp,−ωp)X (ωp)Y (−ωp). (44)

As we show in Appendix B, σXY can be classified into the
following four components,

σXY = σXY,shift + σXY,gyro + σXY,Mnj + σXY,Enj. (45)

Here, σXY,shift and σXY,gyro correspond to shift current and
gyration current, while σXY,Mnj and σXY,Enj correspond to
magnetic injection current and electric injection current, as
discussed in the context of normal photocurrent [7,8]. These
contributions are different in terms of relaxation time de-
pendence. σXY,shift and σXY,gyro are independent of relaxation
time, whereas σXY,Mnj and σXY,Enj are proportional to relax-
ation time. Additionally, σXY,shift, σXY,Mnj (σXY,gyro, σXY,Enj)
are the real (pure-imaginary) quantities, which describe the
counterpart of the photocurrent induced by linearly (circu-
larly) polarized light. Therefore, σXY,shift, σXY,Mnj are finite
only when two fields X (ωp),Y (ωp) are in-phase to each other,
while σXY,gyro, σXY,Enj are finite only when X (ωp),Y (ωp) are
out-of-phase to each other. Besides this restriction from phase
degrees of freedom, the symmetry of the two fields also re-
stricts the type of photocurrent.
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TABLE II. Photocurrent generation induced by the light field
and spin dynamics. For instance, light field E and uniform spin
dynamics along y direction My induce σshift and σEnj. σshift is induced
by in-phase component of E and My, while the σEnj is induced by
out-of-phase component of E and My. The detailed expressions for
σshift, σgyro, σEnj, σMnj are given in Appendix B.

E Lx My Lz

E σMnj σMnj, σgyro σshift, σEnj σshift, σEnj

Lx σMnj, σgyro σMnj σshift, σEnj σshift, σEnj

My σshift, σEnj σshift, σEnj σMnj σMnj

Lz σshift, σEnj σshift, σEnj σMnj σMnj

In our case, the field X (ωp),Y (ωp) corresponds to the light
field E (ωp) and/or the spin dynamics Sν (ωp). For instance,
we confirmed that the spin dynamics Lx(ωp) and My(ω)
have both in-phase and out-of-phase components, and their
signs under θ2x are different. This fact restricts the photocur-
rent generation from these fields to shift current and electric
injection current similar to the photocurrent response to time-
reversal-symmetric systems [8]. A similar argument can be
applied to the case of the photocurrent originating from the
interference of light field and collective spin dynamics de-
scribed by σES. We summarize the photocurrent classification
in Table II.

From this analysis, we reveal that unlike σ0, σSS and
σES can include the component of the shift-current-like con-
tribution. Moreover, although we consider the photocurrent
induced by the linearly polarized light, σSS and σES have
σEnj, σgyro components which are the counterpart of the cir-
cularly polarized induced photocurrent. Practically, we can
observe that the in-gap resonant structure in σcol-E(ωp) is
mainly coming from the injection-current-like contribution,
since Re χSνE (Im χSνE ) represents the in-phase (out-of-phase)
component of spin dynamics to the light field (Appendix C
for a more detailed discussion). Here, we reveal that the fic-
titious fields arising from the spin collective dynamics result
in various types of photocurrent, which is not allowed in the
IPA.

In Fig. 6, we show the relaxation time τ dependence of
photocurrent spectra. Photocurrent spectra increase linearly
with relaxation time, indicating the injection-current-like con-

FIG. 7. (a) Magnetic field dependence of linear electromagnetic
susceptibility Im χLxE (ω) to the external light field. (b) Photocurrent
spectra σ (ω = 0; ωp) − σ0(ω = 0; ωp) with modulating the canted
angle of antiferromagnetic moments by changing the magnetic field
along the y direction.

tribution is dominant. Although we have revealed the presence
of the shift-current-like contribution in σcol-E and σcol-col, the
primary contributions to σcol-E and σcol-col are the injection-
current-like ones, namely σEnj, σMnj.

E. Tuning of photocurrent by external magnetic field

Here, we demonstrate the tunability of photocurrent by
applying the external magnetic field perpendicular to the chain
direction, changing the canted angle of antiferromagnetic mo-
ments. In Fig. 7, we show χSE (ωp) and the photocurrent
spectra originating from spin dynamics by changing the am-
plitude of the external magnetic field.

In Fig. 7(a), we show the linear electromagnetic suscepti-
bility of Im χLxE . As we increase the magnetic field along the
y axis, the amplitude of Im χLxE gradually increases, showing
the strong modulation of feedback between charge and spin
degrees of freedom by the external field. This modulation

FIG. 6. Relaxation time dependence of photocurrent conductivity given by (a) Eq. (38), (b) Eq. (39), and (c) Eq. (40). The insets in (b) and
(c) show the magnified view of photocurrent spectra around the collective mode frequency ωp ∼ 0.35.
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arises from the fact that the alteration of the canted angle
induces changes in the optical gap of the system and the
energy scale of the collective spin mode. Consequently, this
modulation allows us to tune the strength of the feedback from
spin dynamics.

Consistent with the modulation of the electromagnetic
susceptibility, the photocurrent conductivity spectra also ex-
perience large modulation due to the external field, as shown
in Fig. 7(b). As explained in the previous subsection, χSE (ωp)
plays a critical role in photocurrent generation in the presence
of collective spin dynamics. Therefore, larger χSE (ωp) results
in a more significant modulation in photocurrent generation.

As these results demonstrate the importance of energy
scale matching between collective modes and electronic exci-
tations, we can expect substantial modulation of photocurrent
from magnetic excitation in the narrow gap system with the
higher collective mode frequencies.

IV. SUMMARY AND DISCUSSION

We investigated the effect of antiferromagnetic excitations
on linear and nonlinear optical responses by a real-time calcu-
lation method. First, we observed the optical response arising
from an electrically active antiferromagnetic resonance mode,
which aligned with our symmetry analysis. We further found
that collective spin dynamics, originating from both resonant
and off-resonant contributions, can significantly enhance the
photocurrent response. In addition, we delved into a compre-
hensive analysis by classifying it into different processes. The
component includes the unique photocurrent arising from the
interference between the light field and the internal spin field,
which is inherent to the nonlinear response. Moreover, based
on the symmetry analysis, we revealed that the emergence
of the spin dynamics allows the various types of photocur-
rent, which are totally absent in the IPA. Additionally, we
showcased the tunability of the photocurrent in our system
by varying the canted angles and emphasized the significance
of matching in the energy scales of collective modes and
electronic excitations.

Now, we estimate the strength of modulation by spin dy-
namics. We assume the energy scale of hopping th = 0.1 eV
and lattice constant a = 0.5 nm. Additionally, to compare
the obtained photocurrent conductivity in a one-dimensional
system to that of a three-dimensional system, we assume
the three-dimensional stack of one-dimensional chains with
a lattice spacing of 1.0 nm [46], and realistic spin-orbit cou-
pling λ = 0.1 [47] (see Appendix A). In this condition, the
modulation of the photocurrent conductivity by spin dynamics
σcol-E + σcol-col reaches the order of ∼1.0 mA/V2, which can
be comparable to that of Weyl semimetals [13], demonstrating
the significance of the effect of spin dynamics on photocurrent
response.

While our calculations are limited to the simple two-
sublattice model, we can extend these to more complex
systems, like skyrmions [48–50], and hedgehogs [51]. The
essential ingredient is the optically active collective spin dy-
namics, whose energy scale is close to electronic degrees of
freedom. Therefore, searching for a real material should be
in the realm of inversion broken narrow gap semiconductors
with optically active magnons, such as MnBi2Te4 [52,53].
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APPENDIX A: J, λ DEPENDENCE OF THE
PHOTOCURRENT SPECTRA

Here, we supplementally discuss the effect of collective
spin dynamics on BPVE by changing the strength of spin-
charge coupling J and spin-orbit coupling λ. As we discussed
in the main text, electromagnetic susceptibility χSE (ω) de-
termines the spin dynamics correction to the photocurrent
response. In Fig. 8, we show the J and λ dependence of
|χLxE (ω)|. White dashed lines indicate the band gap energy
of the system. First, by changing J , the resonance peak of
|χLxE (ω)| is more prominent when the energy scale of the
spin resonance and the electronic band gap are proximate to
each other. A critical insight here is that altering J affects
both the electronic structure and the frequency of collective
modes, leading to a nontrivial relationship where larger J does
not necessarily yield larger feedback from spin dynamics.

FIG. 8. (a) J, λ dependence of amplitude of electromagnetic
susceptibility. The white dashed lines indicate the band. The param-
eters th = 1, Kz = 0.2, hz = 0.2, γ = 0.01 were used. (b) Change of
Photocurrent spectra arising from spin dynamics σ (ω = 0; ωp) −
σ0(ω = 0; ωp). Parameters are th = 1, λ = 0.8, Kz = 0.2, hy = 0.2.
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FIG. 9. Photocurrent spectra with smaller spin-orbit coupling.
The parameters th = 1, λ = 0.1, J = 0.4, Kz = 0.2, hz = 0.2, γ =
0.01 were used. The blue dashed and red solid lines indicate the
IPA calculation and calculation incorporating the spin dynamics,
respectively.

Therefore, as discussed in the main text, the energy scale
proximity of the electronic and spin systems is important to
obtain a large response from the spin dynamics. This obser-
vation aligns with the result of photocurrent modulation by
spin dynamics in Fig. 8(b). Here, moderate exchange cou-
pling facilitates energy scale proximity between the electronic
band gap and collective mode frequency, thereby enhancing
photocurrent generation from spin dynamics. Additionally,
comparing the |χLxE |(ω) with different spin-orbit coupling
in Fig. 8(a), we can see the tendency that the value of
spin-orbit coupling λ determines the amplitude of the light-
field-induced spin dynamics. In the case of large spin-orbit
coupling, we observe a large amplitude of light-induced
spin dynamics. Note that with smaller J , we cannot dis-
tinguish the in-gap resonant excitation from the above-gap
off-resonant excitation since the resonant frequency of local
spin dynamics overlaps the continuum excitation of electronic
systems.

Furthermore, we estimate the photocurrent generation with
the smaller value of spin-orbit coupling to make a realistic
estimation. In Fig. 9, we show the photocurrent spectra with
and without the effect of spin dynamics. Here the param-
eters th = 1, λ = 0.1, J = 0.4, Kz = 0.2, hz = 0.2, γ = 0.01
are used. Contrary to the photocurrent spectra in Fig. 4(a), the
resonant structure below the band gap regime is suppressed
due to the smaller magnetoelectric coupling. However, even
with the small spin-orbit coupling, we can see significant
modification from off-resonant spin dynamics above the band
gap spectra. Using these parameters and assuming the re-
laxation time τ ∼ 60 fs, we can estimate that the enhanced
photocurrent response can reach the order of ∼1.0 mA/V2,
which is comparable to Weyl semimetals [13].

APPENDIX B: NONLINEAR OPTICAL RESPONSE
FUNCTIONS BASED ON DENSITY MATRIX FORMALISM

This section is dedicated to showing the formalism of
perturbative expansion of the von Neumann equation Eq. (6)
in the presence of both the light field and light-induced spin

dynamics. The Hamiltonian for electrons under an external
light field and effective magnetic fields from the spin dynam-
ics is expressed as

H(t ) = H0 + �H(t ). (B1)

�H(t ) is the perturbative Hamiltonian and consists of
an external light field and light-induced spin dynamics
defined as

�H(t ) = �HE (t ) + �Hspin(t ), (B2)

�HE = −rμEμ, (B3)

�Hspin(t ) = −JAμ�Sμ(t ), (B4)

�S(t ) = (�Lx(t ),�My(t ),�Lz(t ))T , (B5)

A = (σxτz, σyτ0, σzτz )T . (B6)

Here, σμ, τμ are the Pauli matrices that describe the spin
and sublattice degrees of freedom, respectively. H0 is the
nonperturbative Hamiltonian given by

H0 =
∫

dk
(2π )d

∑
a

εkac†
kacka. (B7)

Here c†
ka (cka) is the creation (annihilation) operators of the

Bloch state |ψka〉 = exp(ik · r)|uka〉. |uka〉 is the cell-periodic
part of the Bloch state and satisfies the following equation:

H0(k)|uka〉 = εka|uka〉. (B8)

According to [54], in the infinite-volume limit the position
operator in Eq. (B3) is written in the Bloch representation as

[rk]ab = i∇kδab + ξab. (B9)

Here ξab is the Berry connection defined as ξab =
i〈uka|∇k|ukb〉. In the following calculation, k dependence is
omitted, otherwise explicitly mentioned.

As we explained in the main text, the von Neumann equa-
tion of SPDM ρab = 〈c†

kbcka〉 is given by

i
∂ρab(t )

∂t
= [H, ρ]ab = [H0, ρ]ab + [�H(t ), ρ]ab. (B10)

We define the Fourier transformation as

f (t ) =
∫

dω

2π
f (ω)e−i(ω+iη)t , (B11)

and we get the frequency-space representation of the von
Neumann equation,

(ω + iη − εab)ρab(ω) =
∫

dω1

2π
[�H(ω1), ρ(ω − ω1)]ab.

(B12)

Here, we introduced the infinitesimal parameter η to describe
the adiabatic application of the external field. We can pertur-
batively expand this equation by introducing the ρ (n), which
is the nth order with respect to the external field,

(ω + iη−εab)ρ (n+1)
ab (ω)=

∫
dω1

2π
[�H(ω1), ρ (n)(ω − ω1)]ab.

(B13)
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We introduce matrix d (ω) as

dab(ω) = 1

ω + iη − εab
= P 1

ω − εab
− iπδ(ω − εab),

(B14)

and by using the Hadamard product (A � B)ab = AabBab [55],
the von Neumann equation Eq. (B13) can be recast as

ρ
(n+1)
ab (ω) =

∫
dω1

2π
{d (ω) � [�H(ω1), ρ (n)(ω − ω1)]}ab.

(B15)

In the following calculation, we solve this equation with the
boundary condition of ρ

(0)
ab (ω) = 2πδ(ω) fabδab. Since we fo-

cus on the second-order response to the external field, we
solve the equation

ρ
(2)
ab (ω) =

∫
dω1

2π
{d (ω) � [�H(ω1), ρ (1)(ω − ω1)]}ab

=
∫

dω1dω2

(2π )2
{d (ω) � [�H(ω1), d (ω − ω1)�

× [�H(ω2), ρ (0)(ω − ω1 − ω2)]]}ab. (B16)

Considering both the light field and the spin dynamics, ρ (2)
ab (ω)

can be divided into three components as

ρ
(2)
ab (ω) = ρEE ,ab(ω) + ρES,ab(ω) + ρSS,ab(ω), (B17)

where

ρEE ,ab(ω) = 1

2

∫
dω1dω2

(2π )2
E ν (ω1)Eλ(ω2){d (ω) � [rν, d (ω − ω1) � [rλ, ρ (0)(ω − ω1 − ω2)]]}ab + [(ν, ω1) ↔ (λ, ω2)],

(B18)

ρES,ab(ω) = J

2

∫
dω1dω2

(2π )2
E ν (ω1)Sλ(ω2){d (ω) � [rν, d (ω − ω1) � [Aλ, ρ (0)(ω − ω1 − ω2)]]}ab

+ J

2

∫
dω1dω2

(2π )2
Sλ(ω1)E ν (ω2){d (ω) � [Aλ, d (ω − ω1) � [rν, ρ (0)(ω − ω1 − ω2)]]}ab, (B19)

ρSS,ab(ω) = J2

2

∫
dω1dω2

(2π )2
Sν (ω1)Sλ(ω2){d (ω) � [Aν, d (ω − ω1) � [Aλ, ρ (0)(ω − ω1 − ω2)]]}ab + [(ν, ω1) ↔ (λ, ω2)].

(B20)

Here, we symmetrize the expression of ρ since the perturbative calculation should be invariant under the arbitrary exchange of
external field. Based on this decomposition, we formulate the photocurrent formula in the presence of spin dynamics.

1. Light-field-induced photocurrent

Here we derive the light-field-induced photocurrent based on the ρEE . It is convenient to decompose the position operator in
Eq. (B9) into inter- (re) and intraband (ri) components as

(ri )ab = δab(i∇k + ξaa),

(re)ab = (1 − δab)ξab. (B21)

Based on this decomposition, ρEE (ω) can be classified into the following four components,

ρEE ,ab(ω) = ρ
(ii)
EE ,ab + ρ

(ie)
EE ,ab + ρ

(ei)
EE ,ab + ρ

(ee)
EE ,ab. (B22)

Each term is explicitly written as

ρ
(ii)
EE ,ab = 1

2

∫
dω1dω2

(2π )2
E ν (ω1)Eλ(ω2)

{
d (ω) � [

rν
i , d (ω − ω1) � [

rλ
i , ρ (0)(ω − ω1 − ω2)

]]}
ab + [(ν, ω1) ↔ (λ, ω2)]

= −
∫

dω1dω2

(2π )2
E ν (ω1)Eλ(ω2)dab(ω)dab(ω − ω1)∂ν∂λ f (εka)δab2πδ(ω − ω1 − ω2) + [(ν, ω1) ↔ (λ, ω2)], (B23)

ρ
(ie)
EE ,ab = 1

2

∫
dω1dω2

(2π )2
E ν (ω1)Eλ(ω2)

{
d (ω) � [

rν
i , d (ω − ω1) � [

rλ
e , ρ (0)(ω − ω1 − ω2)

]]}
ab + [(ν, ω1) ↔ (λ, ω2)]

= − i

2

∫
dω1ω1

(2π )2
E ν (ω1)Eλ(ω2)dab(ω)

[
∂ν

(
dab(ω − ω1)ξλ

ab fab
) − i

(
ξν

aa − ξν
bb

)
dab(ω − ω1)ξλ

ab fab
] + [(ν, ω1) ↔ (λ, ω2)],

(B24)

ρ
(ei)
EE ,ab = 1

2

∫
dω1dω2

(2π )2
E ν (ω1)Eλ(ω2)

{
d (ω) � [

rν
e , d (ω − ω1) � [

rλ
i , ρ (0)(ω − ω1 − ω2)

]]}
ab + [(ν, ω1) ↔ (λ, ω2)]

= − i

2

∫
dω1dω2

(2π )2
E ν (ω1)Eλ(ω2)dab(ω)daa(ω − ω1)ξν

ab∂λ fab2πδ(ω − ω1 − ω2) + [(ν, ω1) ↔ (λ, ω2)], (B25)
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ρ
(ee)
EE ,ab = 1

2

∫
dω1dω2

(2π )2
E ν (ω1)Eλ(ω2)

{
d (ω) � [

rν
e , d (ω − ω1) � [

rλ
e , ρ (0)(ω − ω1 − ω2)

]]}
ab

+ [(ν, ω1) ↔ (λ, ω2)]

= 1

2

∑
c

∫
dω1dω2

(2π )2
E ν (ω1)Eλ(ω2)dab(ω)

[
dcb(ω − ω1)ξμ

acξ
μ

cb fbc − dac(ω − ω1)ξμ

cbξ
ν
ac fca

]
2πδ(ω − ω1 − ω2)

+ [(ν, ω1) ↔ (λ, ω2)]. (B26)

Due to the Fermi surface factor ∂ν f , ρ
(ii)
EE , ρ

(ei)
EE vanish in the limit of cold insulators. In the following calculation, we neglect

these components and derive the shift and injection current formula.
Using ρEE ,ab, we can get the following second-order current response,

Jμ
EE (ω) =

∫
dk

(2π )d

∑
abc

Jμ

abρEE ,ba(ω)

=:
∫

dω1dω2

(2π )2
σ

μ;νλ
EE (ω,ω1, ω2)E ν (ω1)Eλ(ω2)2πδ(ω − ω1 − ω2). (B27)

As we divide the SPDM into the four different contributions, σ
μ;νλ
EE (ω,ω1, ω2) is also decomposed into the corresponding four

components defined as

σ
μ;νλ
EE = σ

μ;νλ
EE ,(ii) + σ

μ;νλ
EE ,(ie) + σ

μ;νλ
EE ,(ei) + σ

μ;νλ
EE ,(ee). (B28)

Photocurrent conductivity can be obtained by setting

ω = 0, ω1 = −�,ω2 = �. (B29)

In the following calculation, we focus on σ
μ;νλ
EE ,(ie), σ

μ;νλ
EE ,(ee), from which we will derive shift current and injection current

conductivity.

2. Injection current

First, we focus on σ
μ;νλ
EE ,(ee) with the diagonal component of the current matrix denoted as σ

μ;νλ

EE ,(ee;d ):

σ
μ;νλ

EE ,(ee;d )(ω,ω1, ω2) = 1

2

∫
dk

(2π )d

∑
a �=c

Jμ
aadaa(ω)

[
dca(ω − ω1)ξν

acξ
λ
ca fac − dac(ω − ω1)ξν

caξ
λ
ac fcb

] + [(ν, ω1) ↔ (λ, ω2)]

= 1

2

1

ω + iη

∫
dk

(2π )d

∑
a �=c

(
Jμ

aa − Jμ
cc

)[
dca(ω − ω1)ξν

acξ
λ
ca fac

] + [(ν, ω1) ↔ (λ, ω2)]

= 1

2

1

ω + iη

∫
dk

(2π )d

∑
a �=c

(
Jμ

aa − Jμ
cc

)
ξν

acξ
λ
ca fac[dca(ω − ω1) + dac(ω − ω2)]

= 1

2

1

ω + iη

∫
dk

(2π )d

∑
a �=c

�μ
acξ

ν
acξ

λ
ca fac[dca(ω − ω1) + dac(ω − ω2)]. (B30)

Here we introduced velocity difference matrix �μ
ac = Jμ

aa − Jμ
cc = ∂μεa − ∂μεb. In the ω → 0 limit, the expression diverges due

to the factor of 1/ω + iη. We can eliminate this unphysical divergence by considering the infinitesimal parameter η as finite
system relaxation γ . By using this method and relation Eq. (B14), we can obtain the injection current formula as

σ
μ;νλ

EE ,inj = π

γ

∫
dk

(2π )d

∑
a �=c

�μ
acξ

ν
acξ

λ
ca facδ(� − εca). (B31)

Here we decompose the σ
μ;νλ

EE ,inj into real and imaginary parts as

σ
μ;νλ

EE ,Mnj = π

γ

∫
dk

(2π )d

∑
a �=c

�μ
ac Re

[
ξν

acξ
λ
ca

]
facδ(� − εca), (B32)

σ
μ;νλ

EE ,Enj = i
π

γ

∫
dk

(2π )d

∑
a �=c

�μ
ac Im

[
ξν

acξ
λ
ca

]
facδ(� − εca). (B33)

σMnj (σEnj) is called the magnetic (electric) injection current, which is induced by linearly (circularly) polarized light.
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3. Shift current

Here we derive the shift current formula based on σ
μ;νλ
EE ,(ee) and σ

μ;νλ
EE ,(ie). First, we consider σ

μ;νλ
EE ,(ee) with the off-diagonal

component of the velocity operator denoted as σ
μ;νλ
EE ,(ee;o):

σ
μ;νλ
EE ,(ee;o)(0,−�,�) = 1

2

∫
dk

(2π )d

∑
a �=b�=c

Jμ

abdba(0)
[
dca(�)ξν

bcξ
λ
ca fac − dbc(�)ξν

caξ
λ
bc fcb

] + [(ν,−�) ↔ (λ,�)]

= 1

2

∫
dk

(2π )d

∑
a �=b�=c

iεabξ
μ

abdba(0)
[
dca(�)ξν

bcξ
λ
ca fac − dbc(�)ξν

caξ
λ
bc fcb

] + [(ν,−�) ↔ (λ,�)]

= 1

2

∫
dk

(2π )d

∑
a �=b�=c

iξμ

ab

[
dca(�)ξν

bcξ
λ
ca fac − dbc(�)ξν

caξ
λ
bc fcb

] + [(ν,−�) ↔ (λ,�)]

= 1

2

∫
dk

(2π )d

∑
a �=b�=c

i
(
ξ

μ

abξ
ν
bc − ξbcξ

ν
ab

)
ξλ

ca facdac(�) + [(ν,−�) ↔ (λ,�)]

= 1

2

∫
dk

(2π )d

∑
a �=c

([Dμξν]ac − [Dνξμ]ac)ξλ
ca facdac(�) + [(ν,−�) ↔ (λ,�)]. (B34)

In the last line, we defined the U (1)-covariant derivative

[DμO]ab = ∂Oab

∂kμ
− i

(
ξμ

aa − ξ
μ

bb

)
Oab, (B35)

and applied the following formula under the condition of a �= c:

[Dμξν]ac − [Dνξμ]ac =
∑

b

i
(
ξ

μ

abξ
ν
bc − ξ

μ

bcξ
ν
ab

)
. (B36)

Next, we consider the σ
μ;νλ
EE ,(ie) component:

σ
μ;νλ
EE ,(ie)(0; −�,�) = − i

2

∫
dk

(2π )d

∑
a �=b

Jμ

abdba(ω)

[
∂

∂kν

[
dba(�) fbaξ

λ
ba − i

(
ξν

aa − ξ
μ

bb

)
dba(�) fbaξ

λ
ba

]] + [(ν,−�) ↔ (λ,�)]

= − i

2

∫
dk

(2π )d

∑
a �=b

iεabξ
μ

abdba(ω)

[
∂

∂kν

[
dba(�) fbaξ

λ
ba − i

(
ξν

aa − ξ
μ

bb

)
dba(�) fbaξ

λ
ba

]] + [(ν,−�) ↔ (λ,�)]

= 1

2

∫
dk

(2π )d

∑
a �=b

ξ
μ

ab

[
∂

∂kν

[
dba(�) fbaξ

λ
ba

] − i
(
ξν

aa − ξ
μ

bb

)
dba(�) fbaξ

λ
ba

]
+ [(ν,−�) ↔ (λ,�)]

= −1

2

∫
dk

(2π )d

∑
a �=b

[Dνξμ]abdba(�) fbaξ
λ
ba + [(ν,−�) ↔ (λ,�)]. (B37)

By summing up these contributions, we obtain

σ
μ;νλ
EE ,(ee;o)+(ie) = σ

μ;νλ
EE ,(ee;o)(0,−�,�) + σ

μ;νλ
EE ,(ie)(0; −�,�)

= 1

2

∫
dk

(2π )d

∑
a �=b

[Dμξν]abξ
λ
ba fabdba(�) + [(ν,−�) ↔ (λ,�)]

= 1

2

∫
dk

(2π )d

∑
a �=b

[Dμξν]abξ
λ
ba fabdba(�) + [Dμξλ]abξ

ν
ba fabdba(−�)

= 1

2

∫
dk

(2π )d

∑
a �=b

[
[Dμξν]abξ

λ
ba + [Dμξλ]baξ

ν
ab

]
fabP

1

� − εba

− iπ

2

∫
dk

(2π )d

∑
a �=b

[
[Dμξν]abξ

λ
ba − [Dμξλ]abξ

ν
ba

]
fabδ(� − εba). (B38)
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The absorptive part δ(� − εba) corresponds to the shift current conductivity, and we divide the real and imaginary parts as

σ
μ;νλ

EE ,shift = π

2

∫
dk

(2π )d

∑
a �=b

Im
[
[Dμξν]abξ

λ
ba − [Dμξλ]baξ

ν
ab

]
fabδ(� − εba), (B39)

σ
μ;νλ
EE ,gyro = − iπ

2

∫
dk

(2π )d

∑
a �=b

Re
[
[Dμξν]abξ

λ
ba − [Dμξλ]baξ

ν
ab

]
fabδ(� − εba). (B40)

σshift (σgyro) are called shift (gyration) currents, which are induced by linearly (circularly) polarized light.

4. Spin-dynamics-induced photocurrent

Here, we derive the photocurrent formula induced by spin dynamics. Using the SPDM ρSS, current response to the spin field
can be expressed as

Jμ
SS =

∫
dk

(2π )d

∑
abc

Jμ

abρ
(2)
SS,ba(ω) (B41)

=:
∫

dω1dω2

(2π )2
σ

μ;νλ
SS (ω,ω1, ω2)�Sν (ω1)�Sλ(ω2)2πδ(ω − ω1 − ω2). (B42)

In the previous subsection, we derive the photocurrent conductivity based on the perturbative expansion of the von Neumann
equation and obtain the shift current and injection current formula. In the same manner, we can get the shift-current- and
injection-current-like formula, using ρSS, just by replacing the Berry connection term ξ related to the external light field
appearing in the σEE by spin operator A. As a result, we get the shift-current- and injection-current-like formula induced by
spin dynamics:

σ
μ;νλ

SS,shift = J2 π

2

∫
dk

(2π )d

∑
a �=b

Im
[
[DμAν]abAλ

ba − [DμAλ]baAν
ab

]
fabδ(� − εba), (B43)

σ
μ;νλ
SS,gyro = −J2 iπ

2

∫
dk

(2π )d

∑
a �=b

Re
[
[DμAν]abAλ

ba − [DμAλ]baAν
ab

]
fabδ(� − εba), (B44)

σ
μ;νλ

SS,Mnj = J2 π

γ

∫
dk

(2π )d

∑
a �=c

�μ
ac Re

[
Aν

acAλ
ca

]
facδ(� − εca), (B45)

σ
μ;νλ

SS,Enj = J2 iπ

γ

∫
dk

(2π )d

∑
a �=c

�μ
ac Im

[
Aν

acAλ
ca

]
facδ(� − εca). (B46)

5. Interference of light field and spin dynamics

Following the previous subsection, we derive the photocurrent formula generated by the interference of the light field and
spin dynamics. Using ρES, the photocurrent formula can be written as

Jμ
ES(ω) =

∫
dk

(2π )d

∑
abc

Jμ

abρ
(2)
ES,ba(ω) (B47)

=:
∫

dω1dω2

(2π )2
σ̃

μ;νλ
ES (ω,ω1, ω2)E ν (ω1)�Sλ(ω2)2πδ(ω − ω1 − ω2), (B48)

where σ̃
μ;νλ
ES can be classified into the following four components:

σ
μ;νλ

ES,shift = J
π

2

∫
dk

(2π )d

∑
a �=b

Im
[
[Dμξν]abAλ

ba − [DμAλ]baξ
ν
ab

]
fabδ(� − εba), (B49)

σ
μ;νλ
ES,gyro = −J

iπ

2

∫
dk

(2π )d

∑
a �=b

Re
[
[Dμξν]abAλ

ba − [DμAλ]baξ
ν
ab

]
fabδ(� − εba), (B50)

σ
μ;νλ

ES,Mnj = J
π

γ

∫
dk

(2π )d

∑
a �=c

�μ
ac Re

[
ξν

acAλ
ca

]
facδ(� − εca), (B51)

σ
μ;νλ

ES,Enj = J
iπ

γ

∫
dk

(2π )d

∑
a �=c

�μ
ac Im

[
ξν

acAλ
ca

]
facδ(� − εca). (B52)
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APPENDIX C: SYMMETRY ANALYSIS OF THE
PHOTOCURRENT

In this section, we show the symmetry analysis of pho-
tocurrent in the presence of spin dynamics. Due to the θ2x

symmetry of the system and phase matching between the
different fields, the photocurrent generation is restricted. Here,
we consider a one-dimensional system, applying the light field
along the z direction and observing the photocurrent along the
z direction, as in the case of the main text. In the following
calculation, we assume the wave vector k to be scaler.

Under the θ2x operation, the wave vector along the z
direction transforms as k → k. Therefore, Bloch states that
momentum k is related to those with the same momentum k,

θ2x|ua(k)〉 = |uã(k)〉. (C1)

Since (θ2x )2 = 1, there is no Kramers degeneracy. Therefore,
by choosing the phase factor, we can assume

θ2x|ua(k)〉 = |ua(k)〉. (C2)

Due to the θ2x symmetry, Berry connection ξ z
ab(k) satisfies the

following relation:

ξ z
ab(k) = 〈ua(k)|i∂k|ub(k)〉

= 〈ub(k)|(θ2x )i∂k (θ2x )−1|ua(k)〉
= 〈ub(k)| − i∂k|ua(k)〉
= −ξ z

ba(k). (C3)

Moreover, the Aν under the θ2x symmetry satisfies the follow-
ing relation:

Aν
ab = 〈ua(k)|Aν |ub(k)〉

= 〈ub(k)|(θ2x )(Aν )†(θ2x )|ua(k)〉
= 〈ub(k)|(θ2x )(Aν )(θ2x )|ua(k)〉
= σAν 〈ub(k)|Aν |ua(k)〉
= σAν Aν

ba. (C4)

Here σAν is the sign under the θ2x operation. As for the spin
operator coupled to the α mode, σAν satisfies the following
relation:

σσxτz = −1, σσyτ0 = 1, σσzτz = 1. (C5)

1. Light-field-induced photocurrent

Drawing on the previous subsection, the photocurrent
along the z direction induced by the light field along the z
direction can be written as

Jz
EE =

∫
d�

2π
σ z;zz

EE (0; −�,�)Ez(−�)Ez(�), (C6)

where σ z;zz can be classified into the following four contribu-
tions,

σ z;zz
EE ,shift = π

2

∫
dk

2π

∑
a �=b

Im
{
[Dzξ z]abξ

z
ba − [Dzξ z]baξ

z
ab

}

× fabδ(� − εab), (C7)

σ z;zz
EE ,gyro = − iπ

2

∫
dk

2π

∑
a �=b

Re
{
[Dzξ z]abξ

z
ba − [Dzξ z]baξ

z
ab

}

× fabδ(� − εab), (C8)

σ z;zz
EE ,Mnj = π

γ

∫
dk

2π

∑
a �=c

�z
ab Re

[
ξ z

abξ
z
ba

]
fabδ(� − εba),

(C9)

σ z;zz
EE ,Enj = i

π

γ

∫
dk

2π

∑
a �=b

�z
ab Im

[
ξ z

abξ
z
ba

]
fabδ(� − εba).

(C10)

In Eq. (C6), since the left-hand side is real, and
Ez(�)[Ez(�)]∗ is also real, σ z;zz

EE (�) should be real. Therefore
only σ z;zz

shift, σ
z;zz
Mnj can contribute to the photocurrent generation.

Moreover due to the θ2x in the system, the covariant derivative
[Dzξ z]abξ

z
ba satisfies the following relation,

[Dzξ z]abξ
z
ba =

[
∂ξ z

ab

∂kz
− i

(
ξ z

aa − ξ z
bb

)
ξ z

ab

]
ξ z

ba

= −
[
−∂ξ z

ba

∂k
− i

(
ξ z

aa − ξ z
bb

)
ξ z

ba

]
ξ z

ab

=
[
∂ξ z

ba

∂k
− i

(
ξ z

bb − ξ z
aa

)
ξ z

ba

]
ξ z

ab

= [Dzξ z]baξ
z
ab

= (
[Dzξ z]abξ

z
ba

)∗
. (C11)

Therefore the σshift contribution vanishes under the θ2x sym-
metry, while σMnj remains intact.

2. Spin-dynamics-induced photocurrent

Photocurrent induced solely by collective spin dynamics
can be expressed as

Jμ
SS =

∫
d�

2π
σ

μ;νλ
SS (0; −�,�)�Sν (−�)�Sλ(�)

=
∫

d�

2π
σ

μ;νλ
SS (0; −�,�)[�Sν (�)]∗�Sλ(�). (C12)

Here σSS can be classified into the following four components:

σ
μ;νλ

SS,shift = J2 π

2

∫
dk

(2π )d

∑
a �=b

Im
{
[DμAν]abAλ

ba

− [DμAλ]baAν
ab

}
fabδ(� − εba), (C13)

σ
μ;νλ
SS,gyro = −J2 iπ

2

∫
dk

(2π )d

∑
a �=b

Re
{
[DμAν]abAλ

ba

− [DμAλ]baAν
ab

}
fabδ(� − εba), (C14)

σ
μ;νλ

SS,Mnj = J2 π

γ

∫
dk

(2π )d

∑
a �=c

�μ
ac Re

[
Aν

acAλ
ca

]
facδ(� − εca),

(C15)

σ
μ;νλ

SS,Enj = J2 iπ

γ

∫
dk

(2π )d

∑
a �=c

�μ
ac Im

[
Aν

acAλ
ca

]
facδ(� − εca).

(C16)
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By considering the θ2x operation, the matrix elements in each
photocurrent conductivity satisfy the following relations:

Re
{
[DzAν]abAλ

ba − [DzAλ]baAν
ab

}

= 1 + σAν σAλ

2

(
[DzAν]abAλ

ba − [DzAλ]baAν
ab

)
, (C17)

Im
{
[DzAν]abAλ

ba − [DzAλ]baAν
ab

}

= 1 − σAν σAλ

2i

(
[DzAν]abAλ

ba − [DzAλ]baAν
ab

)
, (C18)

Re
[
Aν

abAλ
ba

] = 1 + σAν σAλ

2
Aν

abAλ
ba, (C19)

Im
[
Aν

abAλ
ba

] = 1 − σAν σAλ

2
Aν

abAλ
ba. (C20)

In Eq. (C12), when two fields Sν and Sλ are in-phase (out-
of-phase), the quantity [�Sν (�)]∗�Sλ(�) becomes real (pure
imaginary). Consequently, the photocurrent induced by two
fields that are in phase with each other can be characterized by
the real part of σSS, namely σSS,shift and σSS,Mnj. Conversely,
the photocurrent induced by two fields that are out-of-phase
with each other can be characterized by the imaginary part
of σSS, namely σSS,gyro and σSS,Enj. In our calculation, we
confirmed that My and Lz are in-phase with each other, while
Lx is not perfectly in or out of phase with My and Lz. Com-
bining this phase analysis with the θ2x symmetry constraints
in Eq. (C5), we can identify the photocurrent contribution as
summarized in Table II. Although we consider the photocur-
rent response to the linearly polarized light, σSS contains the
σEnj which is the counterpart of circularly polarized induced
photocurrent. Moreover, the photocurrent induced by spin
dynamics can contain the shift current contribution, namely
σshift and σgyro, which may survive in the disordered system
[56].

3. Interference of light field and spin dynamics

Photocurrent generated by the interference of light field
and spin dynamics can be described as follows:

Jz
ES =

∫
d�

2π
σ z;zλ

ES (0; −�,�)Ez(−�)�Sλ(�). (C21)

Here σ z;zλ
ES have four contributions and are explicitly written as

follows:

σ z;zλ
ES,shift = J

π

2

∫
dk

(2π )d

∑
a �=b

Im
{
[Dzξ z]abAλ

ba − [DzAλ]baξ
z
ab

}

× fabδ(� − εba), (C22)

σ z;zλ
ES,gyro = −J

iπ

2

∫
dk

(2π )d

∑
a �=b

Re
{
[Dzξ z]abAλ

ba−[DzAλ]baξ
z
ab

}

× fabδ(� − εba), (C23)

σ z;zλ
ES,Mnj = J

π

γ

∫
dk

(2π )d

∑
a �=c

�z
ac Re

[
ξ z

acAλ
ca

]
facδ(� − εca),

(C24)

σ z;zλ
ES,Enj = J

iπ

γ

∫
dk

(2π )d

∑
a �=c

�z
ac Im

[
ξ z

acAλ
ca

]
facδ(� − εca).

(C25)

Under the θ2x operation, the matrix element related to pho-
tocurrent generation satisfies the following relations:

Im
{
[Dzξν]abAλ

ba − [DzAλ]abξ
λ
ba

}

= 1 + σAλ

2i

{
[Dzξν]abAλ

ba − [DzAλ]abξ
λ
ba

}
, (C26)

Re
{
[Dzξν]abAλ

ba − [DzAλ]abξ
λ
ba

}

= 1 − σAλ

2

{
[Dzξν]abAλ

ba − [DzAλ]abξ
λ
ba

}
, (C27)

Re
[
ξν

acAλ
ca

] = 1 − σλ
A

2
ξν

acAλ
ca, (C28)

Im
[
ξν

acAλ
ca

] = 1 + σλ
A

2
ξν

acAλ
ca. (C29)

Besides the θ2x symmetry restriction, phase degrees of free-
dom between the light field and fictitious spin field play an
important role in determining the photocurrent contribution.
Rewriting the Eq. (C21) by using the electromagnetic suscep-
tibility χSλE to the light field, we get

Jz
ES =

∫
d�

2π
σ z;zλ

ES (0; −�,�)χSλE (ω)Ez(−�)Ez(�)

=
∫

d�

2π
σ z;zλ

ES (0; −�,�)[Re χSλEz (�) + i Im χSλEz (�)]

× [Ez(�)]∗Ez(�)

=
∫

d�

2π

[
Re σ z;zλ

ES (0; −�,�) Re χSλEz (�)

− Im σ z;zλ
ES (0; −�,�) Im χSλEz (�)

]
[Ez(�)]∗Ez(�).

(C30)

Here, we used the fact that the left-hand side is real, and
[Ez(�)]∗Ez(�) is also real. By considering the symmetry
constraints, the photocurrent generation by the interference
of light field and spin dynamics is summarized in Table II.
Unlike the case of IPA, the generation of various kinds of
photocurrent can be allowed in the σES.
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