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Signature of quantum phase transition manifested in quantum fidelity at finite temperature
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The signature of quantum phase transition is generally wiped out at finite temperature. A few quantities that
have been observed to carry this signature through a nonanalytic behavior are also limited to low temperatures
only. With an aim to identify a suitable dynamical quantity at a high temperature, we have recently constructed
a function from quantum fidelity, which has the potential to bear a nonanalytic signature at the quantum
critical point beyond low-temperature regime. In this paper, we elaborate our earlier paper and demonstrate the
behavior of the corresponding rate function and the robustness of the nonanalyticity for a number of many-body
Hamiltonians in different dimensions. We have also shown that our rate function reduces to that used in the
demonstration of the dynamical quantum phase transition (DQPT) at zero temperature. It has been further
observed that, unlike DQPT, the long-time limit of the rate function can faithfully detect the equilibrium quantum
phase transition as well.
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I. INTRODUCTION

Quantum many-body systems, when brought to nonzero
temperatures, give rise to interesting dynamical features. In
the low-temperature regime, both the quantum and the thermal
fluctuations come into play within a quantum critical region.
However, the quantum counterpart recedes when we move
towards higher temperatures. Therefore, the detection of the
phenomena driven by quantum fluctuations, for instance the
quantum criticality is generally limited to low temperatures
only [1–7]. On the other hand, such detection opens up a new
challenge for tracing the imprint of quantum critical phenom-
ena at finite temperatures [8].

Quantum fidelity has been considered to be a powerful
tool in the detection of the quantum phase transition (QPT).
Defined as a measure of the overlap between the eigenstates
of the prequench and postquench Hamiltonians, fidelity can
ideally vary from 1 to 0. For a quench across quantum critical
point, this value comes close to zero showing a sharp dip be-
cause of the structurally different ground states of two phases
[9–14]. Different forms of fidelity has been studied at finite
temperatures as well [15–22] and some of them have been able
to detect the quantum critical point by showing nonanalyticity
in their logarithms at low temperatures [15,16].

As the QPT cannot be observed beyond zero temperature,
several investigations have been made in search of its trace
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in different response functions. Quantum coherence has been
one of the important functional candidates [23]. At low tem-
peratures, the absorbed energy is reported to be able to detect
the quantum critical region [24]. Another related study shows
that the expectation values of local order parameters at infinite
time exhibiting nonanalytic behavior at critical points at low
temperatures [25]. However, it vanishes as the temperature
increases. Recently a form of rate function for Loschmidt
amplitude studied at finite temperature, has been shown to
detect the presence of QPT [26]. The time dependencies of
the work distribution function, or the magnetization following
quantum quenches or pulses across quantum critical points
also bear signatures of QPT [27–32]. Another quantity, the out
of time ordered correlations (OTOC) is found to detect quan-
tum critical point through its time averaged form at infinite
temperature for 1D ANNNI model [33]. Quantum telepor-
tation protocol applied on 1D XXZ model can also signal
quantum critical point at finite temperatures [34,35].

The above findings motivated us to look for a quantity,
which will be able to bear signatures of QPT at appreciable
temperatures in a d-dimensional system. In an earlier paper,
we had defined a form of fidelity in which we could trace
down a nonanalytic signature in its rate function at the QCP
(quantum critical point) even at high temperatures [36]. At
zero temperature, the fidelity reduces to Loschmidt echo,
which is used to define dynamical quantum phase transition
[27,37–48]. Here in this paper, we extend our earlier study
and report a comprehensive extended study on the response
of the detector in 1D, 2D, and 3D systems. We confined
ourselves to the search for dynamical characteristics at high
temperatures.
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In three dimension, the topological Weyl semimetals have
recently emerged as a novel material with unique electronic
structures. Here the electrons effectively behave as relativistic
Weyl fermions when the Fermi energy is near the crossing
points of valence and conduction bands. Unlike topolog-
ical insulators or topological Dirac semimetals, the Weyl
semimetals have broken time reversal symmetry, which leads
to a topological phase transition. At zero temperature, Weyl
semimetals exhibit a gapped to gapless phase transition. A
similar phase transition also occurs in topological nodal line
semimetals as well. The only difference between the two
is that the Hamiltonian of the Weyl semimetals consists of
isolated gapless points in the fermionic momentum space
whereas in case of the nodal line semimetals, they form gap-
less lines. We demonstrate numerically that the rate function
mentioned above shows nonanalyticity right at the critical
points in both the cases even at finite temperatures.

We also apply our methodology to the quantum spin Hall
insulator Bi4Br4 using the k · p Hamiltonian proposed for this
material [49,50] and find that our (numerically computed)
rate function predicts the location of quantum phase transition
correctly for this material at low and high temperature.

This paper is organized as follows. In Sec. II we provide
the definition of the functional form of the fidelity along
with the rate function and derive the expressions for a gen-
eral d-dimensional system. We study the rate function for
one-dimensional XY model in Sec. III and for the 1D Su-
Schrieffer-Heeger (SSH) model in Sec. IV. Section V contains
the same for the 2D Kitaev model on a honeycomb lattice. The
results for 3D systems namely, Weyl semimetal, topological
nodal line semimetal and the material Bi4Br4 are presented in
Sec. VI. In Sec. VII, we discuss the behavior of the detector
at zero temperature. This is followed by concluding remarks
in Sec. VIII.

II. THEORY

Let us consider a system with Hamiltonian H, dependent
on a parameter, which will be quenched from p0 to p at time
t = 0 so that the Hamiltonian is quenched from H0 = H(p0)
to H′ = H(p). We assume that the system was initially in
thermal equilibrium at inverse temperature β. We now define
quantum fidelity as

Ft ≡ Tr[ρt · ρ0]

Tr[ρt ] Tr[ρ0]
(1)

where ρ0 is the density matrix at t = 0 and ρt is the same after
the system has evolved through time t ,

ρ0 = exp (−βH0),

ρt = exp (−iH′t ) exp (−βH0) exp (iH′t ). (2)

One may note that the probability of overlap between ini-
tial and time-evolved states namely |〈ψ (0)|ψ (t )〉|2, is known
as the Loschmidt echo, which shows nonanalytic kinks in
its logarithm as a function of time when the Hamiltonian
is quenched across a QCP [51]. Our expression for fidelity
reduces to this Loschmidt echo, when brought to zero tem-
perature. We may define a measurable quantity called rate
function as

r(t, β, p0, p) ≡ − lim
N→∞

1

N
logFt (3)

where N is the system size. The quantity of our interest is the
long-time average of this rate function, defined as

ra(β, p0, p) ≡ lim
τ→∞

1

τ

∫ τ

0
r(t, β, p0, p) dt . (4)

This is the detector we shall use to locate the presence of QCP
at a finite temperature. We shall investigate if the behavior of
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FIG. 1. Transverse XY chain. First derivative of rate function with respect to the quench parameter, computed numerically for quench of
transverse field parameter � for h = 0.3 at (a) β = 10, (b) β = 1, and (c) β = 0.1 and for quench of anisotropy parameter h for � = 0.3 at (d)
β = 10, (e) β = 1, and (f) β = 0.1 In both cases the quantity ∂ra/∂� is discontinuous at the critical point � = 1 and h = 0.
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FIG. 2. 1D SSH model. The plots are the rate function and derivative of rate function with respect to postquench parameter h for h0 = 0.5
in (a) and (b) and h0 = 1.5 in (c) and (d) at inverse temperature β = 0.1.

this quantity, at zero and nonzero temperatures bears a signa-
ture of QCP. In order to study this rate function we consider
a class of systems with a generic Hamiltonian expressible as
a sum of commuting 2×2 Hamiltonians in the space of wave
vectors �q

H =
∑

�q
H�q (5)

yyxx

zz

FIG. 3. Kitaev model on honeycomb lattice. The continuous,
dashed, and dotted lines correspond to xx, yy, and zz interactions,
with interaction strengths J1, J2, J3 respectively.

and express H�q as

H�q = a�qσ1 + b�qσ2 + c�qσ3 = λ�q(V̂�q · �σ ). (6)

Here σi are the Pauli spin matrices, λ�q =
√

a2
�q + b2

�q + c2
�q,

V̂�q = (a�q/λ�q, b�q/λ�q, c�q/λ�q) where �q is d-dimensional wave
vector. After quenching p0 → p, the Hamiltonian becomes

H′
�q = H�q(p) = λ′

�q(V ′
�q · �σ ).

FIG. 4. The phase diagram of Kitaev model in honeycomb lat-
tice. The regions marked A are gapped regions and B is the gapless
region [63].
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FIG. 5. Kitaev model on honeycomb lattice. Plots of ra, ∂ra/∂J , ∂2ra/∂J2 vs J . We have fixed J1 = 2 and J2 = 1. We have plotted for three
different temperatures β = 1 in (a), (b), and (c), β = 0.1 in (c), (d), and (e) and β = 2 in (g), (h), and (i). The initial value of J3 is J0 = 2. It is
evident from the plots that the rate function is showing nonanalyticities at QCPs at J = 1 and J = 3.

Here λ′ �q =
√

a′2
�q + b′2

�q + c′2
�q, V̂ ′ �q = (a′ �q/λ′ �q, b′ �q/λ′ �q, c′ �q/λ′ �q)

and the primed quantities are the postquench values. We can
calculate the exponentials in ρ0 and ρt by exploiting the prop-
erty that

H2
�q = λ2

�q1 and H′
�q
2 = λ′

�q
21,

(V̂�q · �σ )2 = 1 and obtain the fidelity in Eq. (1) as

Ft (t, β, p0, p) = 1
2

(
1 + tanh2(βλ�q)

× [1 − 2 sin2(λ′
�qt ){1 − (V̂ ′ �q.V̂�q)2}]). (7)

Hence the rate function (3) of the generic Hamiltonian (5) can
be written as

r(t, β, p0, p) = log 2 − 1

V

∫
�q

d �q log

× [1 + tanh2(βλ�q){1 − 2 sin2(λ′
�qt )L�q}]

(8)

in d dimensions where the volume of the d-dimensional
first Brillouin zone is written as V = ∫

�q d �q, L�q = 1 − (V̂�q ·
V̂ ′ �q)2 = sin2(φ�q), φ�q is the angle between V̂�q and V̂ ′ �q. We can

calculate the long-time average of the rate function from the
Eq. (4) using standard results [52],

ra(β, p0, p) = 3 log 2 − 1

V

∫
�q
log(1 + α�q)d �q

− 2

V

∫
�q
log[1 + √

1 − γ�qL�q]d �q (9)

where α�q = tanh2(βλ�q), γ�q = 2α�q/(1 + α�q) = 1 −sech(2βλ�q).
Since both γ�q and L�q have values between 0 and 1, we can

expand the integrand in the third term of Eq. (9),

ra(β, p0, p) = log 2 − 1

V

∫
�q
log(1 + α�q)d �q

+ 1

2V

∞∑
n=1

cn

∫
�q
γ n

�q L
n
�qd �q (10)

where cn are constants generated from the expansion and
c1 = 1, c2 = 3

8 , c3 = 5
24 etc. For detailed derivation of Eqs. (8),

(9), and (10), see Appendix A. Our objective is to study
the quantity ra(β, p0, p) as a function of the postquench
value p of this parameter. Actually we shall look for non-
analytic behavior of the quantities ∂ra(β, p0, p)/∂ p and/or

064312-4



SIGNATURE OF QUANTUM PHASE TRANSITION … PHYSICAL REVIEW B 109, 064312 (2024)

∂2ra(β, p0, p)/∂ p2. While differentiating Eq. (10), the first
two terms become zero as they are not functions of p. There-
fore the third term is our subject of interest.

For all the Hamiltonians considered below, we have ver-
ified numerically that the predominant contribution to the
nonanalytic behavior (if any) in the double derivative comes
from the point (called node) where λ′

�q becomes zero. There-
fore, in the second integral in Eq. (10), λ�q and γ�q are brought
out of the integral by replacing λ�q by its value at the node. So
we can write

ra(β, p0, p) = log 2 − 1

V

∫
log(1 + α�q)d �q

+ 1

2V

∑
n

cn
γ n

λ2n
In (11)

where λ and γ are the value of λ�q and γ�q at the node, and

In(p0, p) =
∫

�q
λ�q

2nL�q
n d �q.

Following our earlier paper [36], we shall show below that
the nonanalyticity comes from the integral In and since In is
independent of temperature, the signature of the existence of
QCP is expected to show up at all temperatures.

We shall apply the above prescription to several integrable
quantum spin models, namely the XY chain, 1D SSH model,
the Kitaev model on a honeycomb lattice, Weyl semimetals,
and topological nodal line semimetals. Each of these models
shows a QCP at absolute zero temperature. We shall show that
the quantity ra shows a nonanalytic behavior at the QCP at
any finite temperature. Indeed, it does not imply that there
is actually a phase transition at a finite temperature but that
the detector, namely, the long-time fidelity, bears a signature
of criticality, which exists at zero temperature. Furthermore,
since the evaluation of the relevant quantity only involves
the evaluation of an integral, we can study numerically the
three-dimensional systems also. We shall report that for Weyl
semimetals and topological nodal line semimetals, at low tem-
peratures the long-time fidelity shows nonanalytic behavior at
the phase boundary.

III. TRANSVERSE FIELD XY MODEL

The XY model in 1D is defined by

HXY = −1

2
(1 + h)

N∑
i=1

sx
i sx

i+1

− 1

2
(1 − h)

N∑
i=1

sy
i sy

i+1 − �

N∑
i=1

sz
i (12)

where h is the anisotropy parameter and � is the transverse
field and si are Pauli matrices. One can show by using Jordan-
Wigner transformation [1,53,54] that this Hamiltonian can be
written in the form of Eq. (5), where

Hq = aqσ1 + bqσ3. (13)

Here aq = −h sin(q) and bq = � + cos(q) with 0 < q < π .
There is a disordered phase in the region |�| > 1 and two
ordered phases for h > 0, |�| < 1 and h < 0, |�| < 1.

FIG. 6. Kitaev model on honeycomb lattice. (a) −∂2ra/∂J vs
J − 1 is plotted for J1 = 2 and J2 = 1. As it approaches critical
point J = 1, it coincides with the blue line, which diverges as x−1/2.
(b) −∂2ra/∂J2 vs 3 − J is plotted. As it approaches critical point
J = 3, it starts diverging as x−1/2.

The long-time average of the rate function is now given by
Eq. (9) with �q as a scalar. We will study two quench protocols,
one for the quench of external field (�) and the other for
quench of the anisotropy parameter (h).

A. Quench of external field

We quench � instantaneously from some initial value �0

to � keeping h constant. The derivative ∂ra/∂�, calculated
numerically shows a discontinuity at � = 1, which is the
quantum critical point at the temperature T = 0 (Fig. 1). This
proves that our detector ra can successfully detect the QCP
even at a large temperature as we have reported in our previous
paper [36].

We can also derive an analytic expression for the amount of
discontinuity at high temperatures from Eq. (9). The parame-
ter p becomes � in this case, V becomes π as the system is
one-dimensional and q ranges from 0 to π . The quantity Lq

becomes

Lq = (� − �0)2

(
aq

λqλ′
q

)2

.
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FIG. 7. 3D Weyl semimetal. Rate function ra and its two derivatives computed numerically from Eqs. (9) for quench of the parameter
J0 → J at β = 4. For (a), (b), and (c), the prequench value is within the gapless phase J0 = 2, while for (d), (e), and (f) it is within the gapped
phase J0 = 3.8. In both cases the quantity ∂2ra/∂J2 diverges at the phase boundary J = 3.

Following Eq. (11) we express In as

In = (� − �0)2n
∫ π

0

(
aq

λ′
q

)2n

dq. (14)

For n = 1, one can calculate the integral directly,

I1 = π

4
(� − �0)2

(
1 + 1

�4

)
for � > 1 (15)

and

I1 = π

4
(� − �0)2

(
�2 + 1

�2

)
for � < 1. (16)
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FIG. 8. 3D Weyl semimetal. (a) −∂2ra/∂J vs J is plotted very
close to the quantum critical point at J = 3. It is evident from
the figure that double derivative diverges algebraically both from
left (a) and from right (b) of the critical point with a critical
exponent −1/3.

When the temperature is high, β is small and I1 is the most
dominant term (refer to Appendix C). The amount of discon-
tinuity at the QCP � = 1 is then

(∂ra/∂�)�=1+ − (∂ra/∂�)�=1− = β2
(
1 − �2

0

)
/h. (17)

At high temperatures, we have calculated numerically the
discontinuity in ∂ra/∂� keeping all values of n, and found the
result to be of the same order of magnitude as that obtained
by keeping the n = 1 term only (refer to Appendix C).

B. Quench of anisotropy parameter

In this case, we quench h instantaneously from some initial
value h0 to h keeping � constant. The derivative ∂ra/∂h,
calculated numerically shows a discontinuity at the phase
boundary h = 0 (Fig. 1). Thus, here also our detector ra can
successfully detect the QCP even at a large temperature as we
have reported in our previous paper [36].

The parameter p of Eq. (9) becomes h in this case and V
becomes π for the reason mentioned in the previous subsec-
tion. Lq then becomes

Lq = (h − h0)2

(
b′

q sin(q)

λ′
qλq

)2

.

We write the integral in the third term of Eq. (11) as

In = (h − h0)2n
∫ (

b′
q sin(q)

λ′
q

)2n

dq. (18)

The term I1 can be obtained as

I1 = −π

4
(h − h0)2{6h2(2�2 − 1) + 4h(�2 − 1) − 2}

for h < 0 (19)

and

I1 = −π

4
(h − h0)2{2h2(4�2 − 1) − 4h(�2 − 1) − 2}

for h > 0. (20)

This gives the amount of discontinuity at the QCP h = 0 at
high temperatures as

(∂ra/∂h)h=0+ − (∂ra/∂h)h=0− = 2β2h2
0(1 − �2). (21)

As before, the discontinuity calculated by keeping all values
of n turns out to be of the same order of magnitude as that ob-
tained by keeping the n = 1 term only (refer to Appendix C).

IV. 1D SSH MODEL

The Su-Schrieffer-Heeger (SSH) model can be thought of
as a chain of N unit cells with each unit cell consisting of two
different sites labeled as c and d [55,56]. The Hamiltonian in
position space can be written as

H = −
∑

n

[c†
ndn + hc†

n+1dn + H.c] (22)

where cn and dn are the fermionic annihilation operators at
site c and site d respectively at the nth unit cell and c†, d†

are the corresponding creation operators. After Fourier trans-
formation, the Hamiltonian is transformed into the form of
Eq. (5),

H =
∑

q

Hq where Hq = aqσ1 + bqσ2 (23)

with aq = (1 + h cos(q)) and bq = h sin(q) where q ranges
from −π to π . This model shows phase transition at h = ±1.

The parameter h is quenched from h0 to h and the system
is allowed to evolve. Using Eq. (9), one can calculate numeri-
cally the rate function ra and its derivatives ∂ra/∂h. One finds
(Fig. 2) a discontinuity in ∂ra/∂h at h = 1, which shows that
the ra detects the QCP even at finite temperatures. We can
analytically calculate the amount of discontinuity in ∂ra/∂h
at the QCP. The quantity p becomes h in this case, V is equal
to 2π and Lq is

Lq =
(

aqb′
q − bqa′

q

λqλ′
q

)2

(24)

with the primed quantities being the postquench parameters.
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FIG. 9. 3D topological nodal line semimetal. First and second derivatives of the rate function computed numerically from Eqs. (9) for
quench of the parameter J0 = 2 → J at β = 4 [(a) and (b)] and β = 1 [(c) and (d)]. In both cases the quantity ∂2ra/∂J2 is discontinuous at the
phase boundary J = 3.

We can now write the integral in the the third term of
Eq. (11) as

In =
∫ π

q=−π

(
aqb′

q − bqa′
q

λ′
q

)2n

dq

= (h − h0)2n
∫ π

q=−π

(
sin2(q)

1 + h2 + 2h sin(q)

)n

dq. (25)

At high temperature, the most dominant contribution
comes from I1, which can be calculated easily,

I1 = π (h − h0)2 for h < 1 (26)

and

I1 = π
(h − h0)2

h2
for h > 1. (27)

Hence, the amount of discontinuity in the first derivative of ra

at h = 1 (at high temperature) is

∂ra/∂h|h=1+ − ∂ra/∂h|h=1− = −2β2(h0 − 1)2. (28)

As before, the discontinuity calculated by keeping all values
of n turns out to be of the same order of magnitude as that ob-
tained by keeping the n = 1 term only (refer to Appendix C).

V. TWO-DIMENSIONAL CASE: KITAEV MODEL

The Hamiltonian of the Kitaev model on a honeycomb
lattice is defined as

H =
∑
i, j

3∑
α=1

Jασα
i σα

j (29)

where i, j run over all the nearest-neighboring pairs on the
lattice. This model contains three interaction parameters J1,2,3

(Fig. 3). It can be shown [57–59] that in the “vortex-free”
sector this Hamiltonian can again be written like Eq. (5) with

H�q = a�qσ1 + b�qσ3. (30)

Here �q = (qx, qy) where −π < (qx, qy) < π and the coeffi-
cients are [60,61]

a�q = −J1 sin(qx ) + J2 sin(qy),

b�q = J3 − J1 cos(qx ) − J2 cos(qy). (31)

The phase diagram of the system in the vortex free state
is given in Fig. 4. There is a gapless region for the parameter
values satisfying the inequality |J1 − J2| � J3 � J1 + J2 and a
gapped region elsewhere. These two phases are topologically
different [57–59] and cannot always be detected by studying
Loschmidt echo [62].
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FIG. 10. 3D topological nodal line semimetal. Double derivative
with respect to J vs J is plotted very close to the quantum critical
point at J = 3 for β = 1 and J0 = 2. It is evident from the figure that
there is a finite discontinuity. The reason behind the oscillation in the
curve is computational limitation.

We have dealt with the case where J1 = J2 in our previous
paper [36]. Here we will deal with the more general case of
J1 
= J2. Using Eq. (9), one can calculate numerically the rate
function and its derivatives for quench of the parameter J3 for
a fixed J1 and J2 (Fig. 5). We find that a nonanalyticity occurs
at |J1 − J2| and J1 + J2 and that the double derivative of the
rate function diverges with a critical exponent of 1/2 (Fig. 6).

We shall now present an analytic treatment for the case
J1 
= J2 for a quench of J3 from J0 to J . Here, the parameter p
is J , V is 4π2 and L�q can be written as

L�q = (J − J0)2
a′2

�q
λ2

�q λ′2
�q
.

We substitute

M = J1 + J2, N = J1 − J2, u = qx + qy

2
, v = qx − qy

2
to get

a�q = −M cos(u) sin(v) − N sin(u) cos(v),

b�q = J3 − M cos(u) cos(v) + N sin(u) sin(v). (32)

We can now write the the expression of ra from Eq. (11). Since
only the third term will remain after the differentiation with
respect to J , we will calculate the integrand in the third term
of the rate function, namely,

In = 4(J − J0)2n
∫ π/2

u=0
du

∫ π

v=−π

dv

(
a′

λ′

)2n

. (33)

The analytic expression of I1 is obtained as (see Appendix B)

I1 = 2π

J
(J − J0)2

[
2Juc − (M2 − N2)

sin(2uc)

2J

+ 1

J
(M2 + N2)

(
π

2
− uc

)]
(34)

where uc = cos−1 (
√

(J2 − N2)/(M2 − N2)). If we approach
|N | from the gapless phase and approximate J close to |N | as

FIG. 11. Rate function ra (a) and its first (b) and second
(c) derivatives are plotted against M ′

0 for room temperature. Since we
have used a k.p Hamiltonian, the integration is done on a region close

to the center of the Brillouin zone, namely, 0.05 Å
−1 � qx, qy �

0.05 Å
−1

following [49].

|N | + ε, we obtain

∂2I1

∂J2
= −4π

√
2(|N | − J0)2√

|N |(M2 − N2)
ε−1/2 (35)

up to leading order.
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FIG. 12. Rate function ra (a) and its derivative (b) for 2D Kitaev Model computed from Eq. (46) at zero temperature with the prequench
parameter J0 = 2 (in gapless phase), J0 = 0.5 and J0 = 3.5 (in gapped phase). Nonanalyticity appears only at the phase boundary J = 3 and
J = 1.

In the same way, we can show that if we approach M from
the gapless phase and approximate J close to M as M − ε,

∂2I1

∂J2
= −4π

√
2(M − J0)2√

M(M2 − N2)
ε−1/2 (36)

up to leading order.
We conclude that the double derivative of In will also be

proportional to ε−1/2 up to the leading order. Hence, the dou-
ble derivative of ra diverges algebraically with the exponent
1/2 near both the critical points at any temperature (Fig. 6).
Although we have not considered vortex excitation in the
nonzero temperature, the excitation of vortices does not de-
stroy the singular behavior of the rate function ra. The vortex
excitation in 2D Kitaev model is adiabatic with temperature
and does not induce any phase transition [64]. Hence the
vortex-free configuration gives the main contribution to the
nonanalytic feature of the rate function at nonzero tempera-
tures.

VI. THREE-DIMENSIONAL CASE

In the case of applying our detector to 3D Hamiltonians,
we consider two types of topological materials, namely, the
Weyl semimetals and the topological nodal line semimetal.

A. Weyl semimetal

The commuting Hamiltonians for Weyl semimetals can be
written as [65,66],

H�q = a�qσ1 + b�qσ2 + c�qσ3 (37)

where a�q = sin(qx ), b�q = sin(qy), c�q = J3 − cos(qx ) −
cos(qy) − cos(qz ) and �q runs over a simple cubic lattice in the
range (−π < qx, qy, qz < π ).

The ground state of this Hamiltonian shows a gapless phase
for J3 < 3 and a gapped phase for J3 > 3. We consider a
quench J3 = J0 → J3 = J .

We numerically evaluate the rate function ra from Eq. (9),

ra(β, J0, J ) = 3 log 2 − 1

8π3

∫
�q
log(1 + α�q)d �q

− 1

4π3

∫
�q
log[1 + √

1 − γ�qL�q]d �q (38)

where p = J , V = 8π3 and L�q for Weyl semimetal is

L�q = (J − J0)2( sin2(qx ) + sin2(qy))/(λ�qλ
′
�q)2. (39)

We observe that the first derivative (with respect to J) of ra

shows a change of slope at the QCP J = 3 both for J0 < 3 and
>3 (Fig. 7) and the double derivative diverges algebraically
with a critical exponent 1/3 (Fig. 8). It is important to mention
that, unlike the previous two cases, this singularity is visible
only at low temperatures and we could not study the behavior
of ra analytically.

B. Topological nodal line semimetal

When b�q = 0 in Eq. (37), one has a topological nodal line
semimetal [67]. We write the commuting Hamiltonians as

H�q = a�qσ1 + c�qσ3 (40)

where c�q = J3 − cos(qx ) − cos(qy) − cos(qz ) and a�q =
sin(qz ). Usually one uses the Hamiltonian

H0
�k = vkzσx + (

k2 − k2
0

)
σz (41)

(with v and k0 as parameters) for this type of materials
[65,68,69]. The Hamiltonian of Eq. (40) reduces to this form
on the plane kx = −ky, up to terms quadratic in �k.

The Hamiltonian (40) has a gapped phase in the region
J3 > 3 while it shows a gapless phase when J3 < 3. For a
quench J3 = J0 to J3 = J , the rate function ra is calculated
from Eq. (38) with

L�q = (J − J0)2( sin(qz ))2/(λ�qλ
′
�q)2. (42)

In this case also, one observes a change of slope at J = 3
of the curve ∂ra/∂J vs J (Fig. 9). The second derivative does
not show any divergence at the critical point but has a finite
discontinuity (Fig. 10). It is important to mention that the
discontinuity becomes smaller as temperature increases and
we could not study the behavior of ra analytically in this case.

C. A topological insulator Bi4Br4

Single-layer Bi4Br4 is a quantum spin Hall insulating ma-
terial. It has been shown that topological edge states persist in
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FIG. 13. Rate function ra (a) and its derivative (b) for 1D XY Model computed from Eq. (46) at zero temperature with the prequench
parameter h0 = 0.5. Nonanalyticity appears only at the phase boundary h = 0.

multilayer Bi4Br4 even at room temperature [49,50] and that
it is a suitable candidate for a room-temperature topological
insulator for its large band gap [49,70–74]. A low-energy ef-
fective k · p Hamiltonian for a single layer has been suggested
for this material [49], and in this section we shall show that
our rate function computed using this Hamiltonian correctly
predicts the phase transition.

The suggested Hamiltonian is

H =

⎡
⎢⎢⎣

M A1qx 0 A2qy

A∗
1qx −M A2qy 0
0 A∗

2qy M −A∗
1qx

A∗
2qy 0 −A1qx −M

⎤
⎥⎥⎦ (43)

where

M = M0 − B1q2
x − B2q2

y (44)

and A1 = −1.81 + i0.0461 eV Å, A2 = −4.15 + i0.141 eV Å,
B1 = 3.86 eV Å2, B2 = 0.0032 eV Å2. We will quench the
parameter M0 from M0 to M ′

0 as the quantum critical point is at
M0 = 0 eV. Using the fact that the square of this Hamiltonian
is a scalar times unit matrix, one can calculate the exponentials
for prequench and postquench Hamiltonian, and carry on the
calculation of rate function following Sec. II. The result is an

equation similar to Eq. (38),

ra(β, J0, J ) = 4 log 2 − 1

V

∫
�q
log(1 + α�q)d �q

− 2

V

∫
�q
log[1 + √

1 − γ�qL�q]d �q (45)

with

L�q = 1

2
− X

2λ2λ′2

X = (
MM ′ + |A1|2q2

x + |A2|2q2
y

)2 − |A1|2q2
x (M ′ − M )2

− |A2|2q2
y (M ′ − M )2

M ′ = M ′
0 − B1q2

x − B2q2
y

where V is the area of the region of integration close to origin
(see Fig. 11). The numerically computed rate function and its
derivative as obtained from Eq. (45) are plotted against the
postquench value M ′

0 in Fig. 11. It shows a divergence in its
second derivative at M ′

0 = 0 at room temperature. Divergence
in second derivative can also be obtained at other tempera-
tures. This shows that our procedure works for the material
Bi4Br4, in spite of the fact that the Hamiltonian is made up of
4×4 commuting matrices instead of 2×2 ones [see Eqs. (5)
and (43)].

FIG. 14. Rate function ra (a) and its derivative (b) for 1D SSH Model computed from Eq. (46) at zero temperature with the prequench
parameter h0 = 0.5. Nonanalyticity appears only at the phase boundary h = 1.

064312-11



NANDI, BHATTACHARYYA, AND DASGUPTA PHYSICAL REVIEW B 109, 064312 (2024)

−0.4

−0.2

0

0.2

0.4

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

∂
2
r

a
/
∂

J
2

(a)

(b)

FIG. 15. Rate function ra and its derivative for (a) 3D topolog-
ical nodal line semimetal and (b) Weyl semimetal computed from
Eq. (46) at zero temperature with J0 = 2 for TNLSM and J0 =
2.5 for Weyl semimetal. Nonanalyticity appears only at the phase
boundary J = 3. The oscillations in plot (a) is due to computational
constraint.

VII. ZERO-TEMPERATURE BEHAVIOR

At zero temperature, the rate function in Eq. (3) reduces
to the rate function used to define dynamical quantum phase
transition [37] using Loschmidt echo. The system undergoing
dynamical phase transition shows nonanalytic peaks when
rate function is plotted against time. The seminal idea was
that a system undergoes dynamical quantum phase transition
only if the system is quenched across the equilibrium quantum
critical point. Transverse Ising model shows such behavior.
But later it has been shown that there may not be nonanalyt-
icity in the rate function versus time plot when the quench
is across the critical point or there may be a nonanalyticity
when the quench is not across the critical point [48,62,75].
We show here that the long-time limit of our rate function at
T = 0 shows nonanalyticity only if the system is quenched
across the critical point. Our observation holds for all the
Hamiltonians considered in this paper. The long-time limit of
the rate function (9) at zero temperature will become

ra = 2 log 2 − 2

V

∫
�q
log[1 + √

1 − L�q]d �q. (46)

We have plotted this function and its derivative for different
cases in Figs. 12–15. The plots shows nonanalyticity only at
the the quantum critical point.

VIII. CONCLUSIONS

We explore the response of the fidelity at finite temper-
ature in topological systems, which can be mapped to free
fermionic Hamiltonians and observe a nonanalyticity at the
corresponding phase boundaries in different dimensions. The
rate function in this case can be written as a series, each
term of which has an integral independent of temperature,
while the prefactors of the integrals contain temperature. We
could show that the integral brings about the nonanalytic
behavior and hence the signature persists at high temperature
also.

In case of 1D and 2D Hamiltonians, the reason behind the
nonanalytic behavior of the quantity could be explained by
mapping the integral to the complex plane and identifying a
change of pole structure at the quantum critical point. The
amount of the discontinuity or the exponent of the divergence
as the case may be, could also be determined. However,
analytical explanation was not possible in the case of 3D
Hamiltonians. We suspect that the numerical limitation is the
reason behind the signature being visible at low temperatures
only. More investigation in this direction is in progress.

We have also shown that the long-time limit of the rate
function ra shows nonanalyticity only at QCP at T = 0 while
the nonanalyticity in rate function for Loschmidt echo versus
time plots may not correspond with a quench across QCP.

A question that immediately comes to mind is whether
this signature has the robustness beyond three dimension. Our
primary conjecture is that it has the robustness because the
concerned integral would just turn into a d-dimensional one.
However, more detailed studies are needed to confirm this.
It would also be interesting to explore how our rate function
behaves for other integrable and nonintegrable Hamiltonians.
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APPENDIX A

In this Appendix we present the detailed derivation for the
expressions of rate function in Eqs. (8), (9), and (10). From the
expressions for H�q and H′

�q in Eq. (6) and the equation next to

it, we can write the matrix product of (V̂�q · �σ ) and (V̂ ′
�q · �σ ) as

(V̂�q · �σ )(V̂ ′
�q · �σ ) = �V · �V ′ 1 + i[ �V × �V ′] · �σ .

Since

H2
�q = λ2

�q1 and H′
�q
2 = λ′

�q
21

we get

e−βH�q · e−itH′
�q

= [cosh(βλ) cos(λ′t ) + i sinh(βλ) sin(λ′t ) �V · �V ′]1

− �σ · [sinh(βλ) cos(λ′t ) �V + i cosh(βλ) sin(λ′t ) �V ′

+ sinh(βλ) sin(λ′t ) �V × �V ′]. (A1)
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By reversing the sign of t in this expression, one can obtain
the expression for ρ0eitH′

. One can now calculate ρ0ρt =
ρ0e−itH′

ρ0eitH′
and take the trace of it. The result is

Tr(ρ0ρt )

[Tr(ρ0)]2
= 1

2
[1 + tanh2(βλ) − 2L tanh2(βλ) sin2(λ′t )]

(A2)
where

L = 1
2 [1 + | �V × �V ′|2 − ( �V · �V ′)2]. (A3)

Since �V and �V ′ are unit vectors,

L = 1 − | �V · �V ′|2 = sin2(φ) (A4)

where φ is the angle between the vectors �V and �V ′.
Using standard results [52], we get the long-time limit as

ra(β, p0, p) = 3 log 2 − 1

V

∫
�q
log(1 + α�q)d �q

− 2

V

∫
�q
log[1 + √

1 − γ�qL�q]d �q (A5)

with α�q = tanh2(βλ�q), γ�q = 2α�q/(1 + α�q) = 1 − sech(2βλ�q)
and V = ∫

�q d �q. We now note that 0 < γ�qL�q < 1 and use the
expansion

log[1 + √
1 − x] = log 2 + 1

4

(
x + 3

8 x2 + 5
24 x3 · · · ) (A6)

to arrive at Eq. (10).

APPENDIX B

In this Appendix, we consider Kitaev model on honey-
comb lattice and show analytically that the double derivative
diverges at the critical point with an exponent 1/2 at all
temperatures. We consider the quench of J3 from J0 to J at
time t = 0.

We shall start by calculating I1, which we obtain by putting
n = 1 in Eq. (33),

I1 = 4(J − J0)2
∫ π/2

u=0
du

∫ π

v=−π

dv

(
a′

λ′

)2

(B1)

where the primed quantities are the value of b and λ after
quench. We have dropped the subscript �q for brevity.

By substituting z = eiv , we can write I1 as

I1 = − i(J − J0)2

J

∫ π
2

0
du

∮
C

dzF (z) (B2)

where C is the unit circle and

F (z) = z0
(
z2 − z̄0

z0

)2

z2
(
z − J

z0

)(
z − z̄0

J

) (B3)

with z0 = M cos(u) + iN sin(u).
The poles of F (z) are z1 = 0, z2 = J/z0 and z3 = z̄0/J and

the respective residues are

R1 = z̄0

J
+ J

z0
,

R2 = − z̄0

J
+ J

z0
,

R3 = z̄0

J
− J

z0
. (B4)

The poles z1 and z2 are inside the unit circle when u < uc

and z1 and z3 are inside the unit circle when u > uc where
uc follows the relation

cos(uc) =
√

(J + N )(J − N )

4J1J2
.

By applying the residue theorem, we can evaluate the integral
I1 as

I1 = 2π

J
(J − J0)2

[
2Juc − (M2 − N2)

sin(2uc)

2J

+ 1

J
(M2 + N2)

(
π

2
− uc

)]
. (B5)

When J approaches M from below, we can replace J by M − ε

in Eq. (B.5) where ε is very small and differentiating I1 with
respect to J we get

∂2I1

∂J2
≈ −4π

√
2(M − J0)2

(M(M2 − N2))
1
2

ε− 1
2 (B6)

up to leading order.
When J approaches |N | from below, we can replace J by

|N | + ε in Eq. (B.5) where ε is small and differentiating I1

with respect to J we get

∂2I1

∂J2
≈ −4π

√
2(|N | − J0)2

(|N |(M2 − N2))
1
2

ε− 1
2 (B7)

up to leading order.
This proves that at high temperature where I1 is the dom-

inant term, the double derivative of the rate function will
diverge with an exponent 1/2 at both the critical points. But
at lower temperature, In with n > 1 will also contribute to
the double derivative. We will show that the critical exponent
will be unchanged for In with n > 1. We need to calculate the
integral In, which after substitution z = eiv can be written as

In = −4i(J − J0)2n

(4J )n

∫ π
2

0
du

∮
F (n)dz (B8)

where

F (n) = zn
0

(
z2 − z̄0

z0

)2n

zn+1
(
z − J

z0

)n(
z − z̄0

J

)n . (B9)

By applying residue theorem, we can write the integral In as

In = 8π (J − J0)2n

(4J )n

[∫ π
2

0
R(n)

1 du +
∫ uc

0
R(n)

2 du +
∫ π

2

uc

R(n)
3 du

]

where R(n)
1 , R(n)

2 , and R(n)
3 are the residues of the poles z1 = 0,

z2 = J/z0, and z3 = z̄0/J respectively.
Since the nonanalyticity arises from the residues R(n)

2 and
R(n)

3 , we will prove that both R(n)
2 and R(n)

3 are proportional to
R2 and R3 respectively up to leading order.

We can write Rn
2 as

R(n)
2 = lim

z→z2

1

(n − 1)!

dn−1

dzn−1

zn
0

(
z2 − z̄0

z0

)2n

zn+1
(
z − z̄0

J

)n

= lim
z→z2

1

(n − 1)!

dn−1

dzn−1

Gn

z
(B10)
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FIG. 16. Transverse XY model. The plot shows that discontinuity in ∂ra/∂� comes mainly from the discontinuity in ∂I1/∂� at high
temperatures. k is the constant (c1γ )/(2V λ2), which is multiplied to I1 in Eq. (11). Panel (a) is for β = 0.1 and panel (b) is for β = 0.2. Both
the cases are for quench of � parameter.

where we define G(z) as

G(z) = z0
(
z2 − z̄0

z0

)2

z
(
z − z̄0

J

) . (B11)

We observe that

dn−1(Gn/z)

dzn−1
= G

z

[
n!

(
dG

dz

)n−1

+ �

]
(B12)

where � contains the terms, which will involve Gk or Gk/z
as a factor where k � 1. We know that (G/z)z=z2 = R1

2 and
(dG/dz)z=z2 = 2J + z0z̄0/J . Therefore(

dG

dz
|z=z2

)n−1

≈
(

2M2 + z0z̄0

M

)n−1

(1 + cε)n−1

when J = M − ε,(
dG

dz
|z=z2

)n−1

≈
(

2N2 + z0z̄0

|N |
)n−1

(1 + c′ε)n−1

when J = |N | + ε,

where c and c′ are constants. Putting the values of ( dG
dz |z=z2 )n−1

and ( G
z )z=z2 , we get

R(n)
2 ≈ n

(
2M2 + z0z̄0

M

)n−1

R(1)
2 when J = M − ε,

R(n)
2 ≈ n

(
2N2 + z0z̄0

|N |
)n−1

R(1)
2 when J = |N | + ε. (B13)

Similar calculation can be done for R(n)
3 . Thus we prove that

In will also diverge with an exponent 1/2 at both quantum
critical points.

APPENDIX C

In the Figs. 16–18 we show numerically that the disconti-
nuity in the single derivative of the rate function with respect
to the final value of the quench parameter can be approxi-
mated by the derivative of the n = 1 term in Eq (11) for the

FIG. 17. Transverse XY model. The plot shows that discontinuity in ∂ra/∂h comes mainly from the discontinuity in ∂I1/∂h at high
temperatures. k is the constant (c1γ )/(2V λ2), which is multiplied to I1 in Eq (11). Panel (a) is for β = 0.1 and panel (b) is for β = 0.2.
Both the cases are for quench of h parameter.
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FIG. 18. SSH model. The plot shows that discontinuity in ∂ra/∂h comes mainly from the discontinuity in ∂I1/∂h at high temperatures. k
is the constant (c1γ )/(2V λ2), which is multiplied to I1 in Eq. (11). Panel (a) is for β = 0.1 and panel (b) is for β = 0.2. Both the cases are for
quench of h parameter.

one-dimensional models at high temperatures. The fact that
near-critical point behavior of the rate function can be approx-

imated by I1 even for 2D Kitaev model at high temperatures
was established in [36].
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