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Recent experiments have reported that novel physics emerge in open quantum many-body systems due to
an interplay of interactions and dissipation, which stimulate theoretical studies of the many-body Lindblad
equation. Although the strong dissipation regime receives considerable interest in this context, this work
focuses on the weak bulk dissipation. By examining the spectral property of the many-body Lindblad generator
for specific models, we find that its spectral gap shows singularity in the weak dissipation limit when the
thermodynamic limit is taken first. Based on analytical arguments and numerical calculations, we conjecture
that such a singularity is generic in bulk-dissipated quantum many-body systems and is related to the concept of
the Ruelle-Pollicott resonance in chaos theory, which determines the timescale of thermalization of an isolated
system. This conjecture suggests that the many-body Lindblad equation in the weak dissipation regime contains
nontrivial information on intrinsic properties of a quantum many-body system.
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I. INTRODUCTION

Through recent experimental and theoretical studies, it is
recognized that open quantum many-body systems exhibit
intriguing nonequilibrium dynamics and steady states, which
are different from those in isolated systems. Because of the
controllability of both the many-body Hamiltonian and dis-
sipation, ultracold atoms provide an excellent experimental
platform to study novel physics emerging in open quantum
many-body systems, including entanglement generation [1,2],
dissipative quantum phase transitions [3], anomalous decays
of correlations [4], continuous time crystals [5], and entan-
glement transitions under continuous quantum measurements
[6,7], to name a few. Those interesting physics due to an
interplay of many-body interactions and dissipation give rise
to the concept of dissipation engineering, which is an attempt
at controlling quantum many-body systems by utilizing well-
designed dissipation [8].

Novel physics mentioned above typically emerge in the
strong dissipation regime. In contrast, the weak dissipation
regime of open quantum many-body systems has been less
explored, in spite of the fact that the Lindblad equation, which
is a fundamental equation for Markovian open quantum sys-
tems, is usually justified in the weak dissipation regime [9].
The aim of this work is to draw attention to generic properties
of many-body Lindblad equations in the weak dissipation
regime.

Generally speaking, sufficiently weak dissipation enables
us to probe intrinsic properties of a quantum many-body
system. For example, a recent work [10] proposed the
non-Hermitian linear-response theory, which utilizes weak
dissipation to get information about intrinsic correlations of
a given quantum many-body system. In this work, we show
that the eigenvalue analysis of the Lindblad generator, which
is often referred to as the Liouvillian or the Lindbladian in
literature, in the weak dissipation limit leads to a better un-
derstanding of thermalization dynamics in isolated quantum
many-body systems.

One of the essential problems in the study of isolated quan-
tum systems is to elucidate how irreversibility emerges from
pure Hamiltonian dynamics. Theoretical studies have clari-
fied that concepts from chaos theory are helpful to describe
thermalization of isolated quantum systems: the eigenstate
thermalization hypothesis (ETH) [11–15] is an important con-
cept emerging from the quantum chaos. The ETH states that
every individual energy eigenstate is locally indistinguishable
from thermal equilibrium, whose validity has been numeri-
cally tested for various nonintegrable models [16–18].

Although the ETH provides sufficient criteria of quantum
ergodicity, it does not tell us much about the timescale of the
onset of thermalization. Since the time evolution operator is
unitary, all of its eigenvalues lie on the unit circle in the com-
plex plane. When the system size increases, the eigenvalue
spectrum becomes more and more dense, and such quasi-
continuous spectrum is responsible for irreversible relaxation.
It is however difficult to gain insights on the thermalization
timescale from the quasicontinuous spectrum on the unit cir-
cle. So far, there are some previous attempts to figure out
the thermalization timescale along the typicality approach
[19,20], where we consider a random Hamiltonian, instead
of analyzing a concrete system. However, the typicality ap-
proach is too general and often fails to give a correct estimate
of the thermalization time, especially in systems with slow
relaxation called prethermalization [15].

The main message of this work is that eigenvalue analysis
of the dissipative Liouvillian in the weak dissipation limit
allows us to extract exponential decays from the unitary dy-
namics of the isolated system. More precisely, by examining
the operator-spreading dynamics, we argue that the spectral
gap of the Liouvillian (or its variant) does not simply vanish
even in the weak dissipation limit when the thermodynamic
limit is taken first. We conjecture that this nonzero Liouvillian
gap in the weak dissipation limit is related to the timescale
of thermalization of the isolated system. We also discuss the
relation to the Ruelle-Pollicott (RP) resonance [21,22], which
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is a fundamental concept in the theory of classical chaos
[23,24]. The conjecture is verified by numerical calculations.

The Liouvillian gap has been studied intensively so far
because it is an essential quantity characterizing an open
quantum system [25–34]. This work sheds new light on
this problem by revealing a general connection between the
many-body Liouvillian gap and the chaotic property of an
underlying isolated quantum system.

The rest of this work is organized as follows. In Sec. II,
we describe the theoretical setup of open quantum many-body
systems. In Sec. III, we discuss the generic feature of the
Liouvillian eigenvalue spectrum in the weak dissipation limit.
Based on an analogy with the RP resonance in classical chaos,
we present our conjecture that the Liouvillian gap in the weak
dissipation limit, which should be taken after the thermo-
dynamic limit, gives the intrinsic decay rate of the isolated
system. The conjecture is verified by numerical calculations
for the kicked Ising model under bulk dephasing. In Sec. IV,
we discuss the Liouvillian eigenvalue spectrum in static sys-
tems. In contrast to Floquet systems, the Liouvillian gap in a
static system is not related to the intrinsic decay rate of the iso-
lated system, but it turns out that some other eigenvalues of the
Liouvillian can be interpreted as quantum RP resonances. We
introduce a projection superoperator, which correctly picks up
Liouvillian eigenvalues that can be interpreted as quantum RP
resonances, and argue that the spectral gap of the projected
Liouvillian gives the intrinsic decay rate of the isolated static
system. This is also numerically verified in a specific model.
In Sec. V, we conclude this work with with a summary and an
outlook.

II. THEORETICAL SETUP

In this work, we consider quantum many-body systems
under bulk dissipation. To be specific, we consider a spin-1/2
chain with L sites, although our argument is not restricted to
this specific model. Each site is labeled by i = 1, 2, . . . , L,
and Pauli operators at site i are denoted by σ̂ α

i (α = x, y, z).
Let us denote by Ĥ (t ) the Hamiltonian of the system

that may explicitly depend on time with period τ : Ĥ (t ) =
Ĥ (t + τ ). The static system is included as a special case.
The Markovian bulk dissipation is described by the following
quantum master equation of the Lindblad form [35]:

dρ

dt
= −i[Ĥ (t ), ρ] + γ

L∑
i=1

(
L̂iρL̂†

i − 1

2
{L̂†

i L̂i, ρ}
)

=: L(t )ρ, (1)

where ρ(t ) is the density matrix at time t , γ > 0 stands for
the strength of dissipation, and L̂i is a jump operator at site i,
which characterizes the type of dissipation. Figure 1 illustrates
the theoretical setting.

In this work, we mainly consider bulk dephasing corre-
sponding to L̂i = σ̂ z

i , but our main result does not depend on
this specific choice of jump operators, which is demonstrated
in Sec. III E.

The superoperator L(t ) defined in Eq. (1) is called the
Liouvillian or the Lindbladian. For static systems with no time
dependence, L(t ) = L, we denote by {λα} eigenvalues of L.
The Liouvillian has zero eigenvalue λ0 = 0 that corresponds

FIG. 1. Theoretical setting. We consider an open quantum many-
body system, which is described by Ĥ (t ), under bulk dissipation of
strength γ .

to the steady state. For simplicity, we assume that the zero
eigenvalue is not degenerate: the system has a unique steady
state. It is shown that the real part of any eigenvalue is nonpos-
itive Reλα � 0. The Liouvillian gap g is defined as the largest
real part of nonzero eigenvalues:

g = − max
α �=0

Reλα. (2)

In open Floquet systems with the time-periodic Liouvillian
L(t ) = L(t + τ ), we define the Liouvillian gap in the follow-
ing way. We introduce the time evolution operator over one
cycle (the Floquet operator)

UF = T e
∫ τ

0 L(t )dt , (3)

where T denotes the time-ordering operation. Let us denote
by eλατ the eigenvalues of UF. We simply call {λα} “Liou-
villian eigenvalues” in Floquet systems. The unique periodic
steady state corresponds to the right eigenmode with zero
eigenvalue λ0 = 0. Any other eigenvalue has a nonpositive
real part, where −Reλα is the decay rate of the corresponding
eigenmode. The Liouvillian gap is then defined by Eq. (2),
which is the smallest decay rate among all the nonstationary
eigenmodes.

In previous works, the Liouvillian gap has been inves-
tigated for various models because it has some important
properties. First, the Liouvillian gap gives the asymptotic
decay rate of the open system [25]. It is obvious that the
slowest eigenmode is dominant in the long-time limit. Strictly
speaking, the Liouvillian gap gives a lower bound on the
asymptotic decay rate. Here, it is remarked that the Liouvillian
gap in general does not give a lower bound on the decay rate
in a transient regime [28,36,37]. The symmetrized Liouvillian
gap, which is a variant of the usual Liouvillian gap, gives a
correct lower bound [33,34]. Second, the Liouvillian gap is
related to the property of the steady state. It was shown that
a finite Liouvillian gap in the thermodynamic limit implies
exponential decays of spatial correlations in the steady state
[27]. Third, the closing of the Liouvillian gap in the thermo-
dynamic limit is a signature of dissipative phase transitions
[29,30]. In this way, the Liouvillian gap is a fundamental
quantity, which contains rich physical information.

For later convenience, it is useful to introduce the Li-
ouvillian in the Heisenberg picture. For any operator Â, its
expectation value at time t is written as 〈Â(t )〉 = Tr[Âρ(t )],
where ρ(t ) obeys Eq. (1). The same quantity is also expressed
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as 〈Â(t )〉 = Tr[Â(t )ρ(0)], where Â(t ) obeys

dÂ

dt
= i[Ĥ (t ), Â(t )] + γ

L∑
i=1

(
L̂†

i Â(t )L̂i − 1

2
{L̂†

i L̂i, Â(t )}
)

=: L†(t )Â(t ). (4)

Here, L†(t ) is the Liouvillian in the Heisenberg picture. This
notation stems from the fact that L†(t ) is the Hermitian con-
jugate of L(t ) under the inner product 〈Â, B̂〉 = Tr[Â†B̂], i.e.,
〈Â,L(t )B̂〉 = 〈L†(t )Â, B̂〉.

Correspondingly, we define the Floquet operator in the
Heisenberg picture U†

F = T̄ e
∫ τ

0 L†(t )dt (T̄ is the anti-time or-
dering). By using the Hermiticity-preserving property of the
Liouvillian, (L(t )Â)† = L(t )Â†, it is shown that the eigen-
value spectrum of U†

F coincides with that of UF.
In the following sections, we investigate the weak dissipa-

tion limit γ → +0. We emphasize that the limit of γ → +0
should be taken after taking the thermodynamic limit. If we
take the limit of γ → +0 first, the Liouvillian becomes anti-
Hermitian, limγ→+0 L(t ) = −i[Ĥ (t ), ·], and the Liouvillian
gap is trivially zero. We will see that the interplay of the
thermodynamic limit and the limit of weak bulk dissipation
leads to unexpected behavior.

III. MAIN IDEA FOR FLOQUET SYSTEMS

In this section, the main result is presented for open
many-body Floquet systems. Since special care is needed for
static systems, discussion on static systems is postponed until
Sec. IV.

The following argument is valid for generic lattice systems,
but for concreteness, we consider the kicked Ising chain under
bulk dephasing. The Hamiltonian is given by Ĥ (t ) = Ĥ0 +
V̂ (t ), where

Ĥ0 = −
L∑

i=1

(
Jσ̂ z

i σ̂ z
i+1 + hzσ̂

z
i

)
,

V̂ (t ) = −hxτ

∞∑
n=−∞

δ(t − nτ )
L∑

i=1

σ̂ x
i . (5)

The bulk dephasing is expressed by jump operators

L̂i = σ̂ z
i (6)

for each site i = 1, 2, . . . , L. In numerical calculations, we fix
J = 1, hz = 0.8090, hx = 0.9045 throughout this section, and
consider three different values of τ : τ = 0.65, 0.7, and 0.75.

A. Operator growth under unitary time evolution

We begin our discussion with the unitary time evolution
of a Hermitian operator Â(t ) in the Heisenberg picture, which
obeys Eq. (4) with γ = 0, i.e., dÂ(t )/dt = i[Ĥ (t ), Â(t )]. The
effect of dissipation is taken into account in Sec. III B.

Due to spin-spin interactions, even if Â(0) is a local op-
erator, Â(t ) at t > 0 will spread over the system. In order to
describe such operator growth, we introduce the notion of the

average operator size S[Â] of Â [38–41]. It is given by

S[Â] := Tr[ÂS (Â)]

Tr[Â2]
, (7)

where

S (Â) = 1

4

L∑
i=1

∑
α=x,y,z}

(
Â − σ̂ α

i Âσ̂ α
i

)
. (8)

According to this definition, a Pauli string σ̂
α1
i1

σ̂
α2
i2

. . . σ̂
α	

i	
with

1 � i1 < i2 < · · · < i	 < L and αi ∈ {x, y, z} has the operator
size 	. The average operator size of σ x

i σ x
j + σ z

k with i �= j,
for example, is 1.5. The relation between the average operator
size of Eq. (7) and out-of-time-ordered correlations (OTOCs)
[42–44] is discussed in Refs. [38,39,41].

In a short-range interacting spin chain, S[Â(t )] usually
increases in a linear way: S[Â(t )] ∼ vt with v > 0 being a
constant that is independent of the system size (its upper
bound is given by the Lieb-Robinson velocity [45]). Even-
tually, the operator will spread over the entire system for
t � L/v, and the operator size will be saturated at a value that
is proportional to L, which is called the operator scrambling.

B. Singularity at γ = 0

In the absence of dissipation, the time evolution is unitary
and Liouvillian eigenvalues {λα} are purely imaginary. There-
fore, g = 0 at γ = 0 for any finite system. It would be a bit of
a surprise if we have g > 0 in the limit of γ → +0, which is
indeed the case as we argue below.

In the previous subsection, we discuss the operator spread-
ing under the unitary time evolution. Now we consider the
effect of very weak bulk dissipation γ > 0 to this operator
dynamics. In this section, we assume that the system is in-
trinsically chaotic and has no local conserved quantity when
it is completely isolated from the environment (i.e., γ = 0).
When γ t 	 1, it is expected that dissipation has essentially
no effect. Therefore, if γ 	 v/L, the system undergoes dis-
sipative relaxation after the saturation of the operator size
S[Â(t )] ∼ L. A crucial observation is that the influence of the
bulk dissipation on Â(t ) is proportional to its operator size
S[Â(t )] [34]. It is understood from the fact that the dissipator
D = ∑L

i=1 Di of Eq. (4) with

DiÂ = γ
(
L̂†

i ÂL̂i − 1
2 {L̂†

i L̂i, Â}) (9)

has the property DiÂ = 0 if [Â, L̂i] = [Â, L̂†
i ] = 0. If the sup-

port of Â does not contain the site i, DiÂ vanishes. As a result,
we have

‖D̂Â‖
‖Â‖ =

∥∥∑L
i=1 DiÂ

∥∥
‖Â‖ ∼ γ S[Â]. (10)

Since S[Â(t )] ∼ L after the operator scrambling, the effective
dissipation strength for Â(t ) is proportional to γ L. This con-
clusion is valid for an arbitrary local operator Â under the
assumption that the many-body Hamiltonian Ĥ (t ) is chaotic
and has no local conserved quantity. It implies that the asymp-
totic decay rate, which is nothing but the Liouvillian gap g, is
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also proportional to γ L:

g ∝ γ L for γ 	 v

L
. (11)

When v/L 	 γ 	 v, dissipation takes place before the
operator spreads over the entire system. The operator size
approximately grows without dissipation up to tγ ∼ γ −1 and
reaches S[Â(tγ )] ∼ vtγ ∼ γ −1. Afterward, the operator-size
growth stops due to dissipation: S[Â(t )] ≈ S[Â(tγ )] for t > tγ .
As a result, the asymptotic decay rate is given by

g ∼ γ S[Â(tγ )] ∼ 1, (12)

which is independent of L and γ .
The above argument implies discontinuity of the Liouvil-

lian gap at γ = 0 in the thermodynamic limit. We have argued
that there are two different regimes: g ∼ γ L for γ � v/L
and g ∼ 1 for v/L 	 γ 	 v. In the thermodynamic limit, the
former regime disappears. We therefore expect that

lim
γ→+0

lim
L→∞

g =: ḡ > 0. (13)

The Liouvillian gap remains finite in the weak dissipation
limit if the thermodynamic limit is taken first. As we have
already mentioned, we have g = 0 if we put γ = 0 before
the thermodynamic limit. Equation (13) thus manifests a
singularity (discontinuity) of the Liouvillian gap in the ther-
modynamic limit, which is a generic feature of chaotic open
many-body Floquet systems.

It should be noted that a similar observation was reported
in the dissipative Sachdev-Ye-Kitaev model [46,47].

This theoretical prediction is validated by numerical cal-
culations for the kicked Ising chain under bulk dephasing.
Numerical results on the Liouvillian gap are presented in
Fig. 2 for τ = 0.65, 0.7, and 0.75. We see that the Liouvillian
gap increases with L at a sufficiently small γ , but is almost in-
dependent of L for larger γ , which is consistent with the above
theoretical prediction. The dashed lines in Fig. 2 are quadratic
functions fitted to the data of (a) γ � 0.015, (b) γ � 0.03, and
(c) γ � 0.05 for L = 14. Extrapolated values to γ = 0 are our
numerical estimates of ḡ. We obtain ḡ = 0.0682, 0.157, and
0.268 for τ = 0.65, 0.7, and 0.75, respectively.

The reason why a quadratic fitting is used is that an accu-
rate extrapolation requires numerical data for relatively large
values of γ (� 0.2) in the largest system size (L = 14) ac-
cessible in our numerical calculations. If we could perform
numerical calculations for larger system sizes, an accurate
extrapolation using numerical data for smaller values of γ

would be possible, and then a linear fitting would be enough.

C. Ruelle-Pollicott resonances

In Sec. III B, we have seen that the Liouvillian gap shows
singularity at γ = 0: the Liouvillian gap converges to a
nonzero value ḡ in the weak dissipation limit. A natural ques-
tion is what its physical meaning is. In Sec. III D, we will
argue that ḡ is interpreted as a quantum RP resonance. Before
that, we begin with a brief exposition of RP resonances of the
Hamiltonian dynamics.

FIG. 2. Liouvillian gap as a function of γ for L = 10, 12, and 14.
We consider three different values of τ : (a) τ = 0.65, (b) τ = 0.7,
and (c) τ = 0.75. Dashed lines are quadratic functions fitted to the
data of L = 14 with γ greater than a certain value (see the text).
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Suppose a classical system with the Hamiltonian Ht (
),
where


 = (q1, q2, . . . , qN , p1, p2, . . . , pN ) (14)

denotes a point in the classical phase space. Here, {qi} and
{pi} are canonical variables, and the Hamiltonian may ex-
plicitly depend on t with period τ , i.e., Ht (
) = Ht+τ (
).
A dynamical trajectory is given by a one-parameter family

t of phase-space points, where the canonical variables obey
the Hamilton equations of motion: q̇i = ∂H (
t )/∂ pi and ṗi =
−∂H (
t )/∂qi. Let us denote by P(
) the phase-space proba-
bility density. Its time evolution Pt (
) is formally expressed
as

Pt (
) = P(
−t ) =: Ut P(
), (15)

where 
 = 
0 and Ut is the time evolution operator of the
phase-space density, which is referred to as the Frobenius-
Perron operator [23,24]. We can generally write Ut =
T e

∫ t
0 Lcl (t ′ )dt ′

, where the generator Lcl(t ) is the classical Liou-
villian in the absence of dissipation:

Lcl(t ) = {Ht (
), ·}PB, (16)

where {·, ·}PB denotes the Poisson bracket. It corresponds to
−i[Ĥ (t ), ·] in quantum mechanics.

The classical Liouvillian is anti-Hermitian, i.e.,
〈 f ,Lcl(t )g〉 = −〈Lcl(t ) f , g〉, under the inner product

〈 f , g〉 :=
∫

d
 f (
)∗g(
), (17)

where d
 = dq1dq2 . . . dqN d p1d p2 . . . d pN . It means that the
Frobenius-Perron operator Ut is unitary within the Hilbert
space of square-integrable functions, which expresses the re-
versibility of the Hamiltonian dynamics.

Because of the unitarity, the Floquet operator Uτ has a
spectrum on the unit circle in the complex plane. Moreover,
Ut has a continuous spectrum when the dynamics is chaotic.
With this in mind, let us consider the resolvent of the Floquet
operator

R(z) = (z − Uτ )−1. (18)

The resolvent is regularly behaved for any z with |z| �= 1. The
continuous spectrum of Ut gives a branch cut of R(z), and
hence we can perform an analytic continuation from |z| > 1
to |z| < 1 through the continuous spectrum [23,48]. It turns
out that R(z) may have poles inside the unit circle in the
second Riemann sheet. Those poles are written as eνiτ with
Reνi < 0, and {νi} are known as RP resonances [21–23,48].
RP resonances are not true eigenvalues in the Hilbert space of
square-integrable functions, but are understood as generalized
eigenvalues in a wider Hilbert space [23].

By using RP resonances, we can decompose the time evo-
lution of the expectation value 〈A〉t = ∫

d
 A(
)Pt (
) of a
physical quantity A(
) into the sum of exponential decays as
follows:

〈A〉t ∼
∑

νi∈RP resonances

Cie
νit , (19)

where t = nτ with n being an integer and we assume
limt→∞ 〈A〉t = 0. The long-time limit is governed by the lead-
ing RP resonance ν∗ (the RP resonance with the largest real

part):

〈A〉t ∼ eν∗t (t → ∞). (20)

RP resonances thus extract exponential decays hidden in the
unitary time evolution.

Numerically, RP resonances can be obtained by diago-
nalizing a coarse-grained Frobenius-Perron operator [49,50].
In numerical calculations, we discretize the phase space and
express the Frobenius-Perron operator as a finite-dimensional
matrix. This discretization procedure corresponds to a
coarse graining, which makes the Frobenius-Perron opera-
tor nonunitary. Therefore, if we write eigenvalues of the
Frobenius-Perron operator as eλiτ , where we call {λi} (clas-
sical) Liouvillian eigenvalues, λi have negative real part.
Interestingly, some of them still have negative real part even
in the limit of the continuous phase space [49]. It means
that even infinitesimal coarse graining drastically changes the
Liouvillian eigenvalues. Those Liouvillian eigenvalues with
negative real part in the continuous limit are nothing but RP
resonances.

A natural question is whether quantum analogs of RP
resonances exist. As we have discussed above, a continuous
spectrum of the Liouvillian for the pure Hamiltonian dynam-
ics is crucial to get RP resonances (recall that the continuous
spectrum plays the role of a branch cut of the resolvent, and an
analytic continuation of the resolvent through the continuous
spectrum brings about RP resonances as poles in the second
Riemann sheet). In classical systems, chaos ensures the exis-
tence of a continuous spectrum, whereas any finite quantum
system has only discrete energy eigenvalues. In quantum me-
chanics, a continuous spectrum appears in the semiclassical
limit, and hence quantum analogs of RP resonances may
exist in this limit. Indeed, some previous works found RP
resonances by considering the semiclassical limit of quantum
systems [51–53].

There is another limit that leads to a continuous spectrum
in quantum mechanics: that is the thermodynamic limit. It is
much less trivial whether there exist quantum RP resonances
in a quantum many-body system that is far from any classical
limit. This problem has rarely been investigated in the liter-
ature, except for Refs. [54,55], where Prosen found quantum
RP resonances of the kicked Ising chain by introducing an
appropriate coarse graining procedure in the operator space.

It should be noted that RP resonances differ from Lyapunov
exponents: the former is concerned with long-time behavior,
whereas the latter with short-time behavior. Indeed, García-
Mata et al. [56] showed that the long-time decay of OTOCs in
a semiclassical model gives a quantum RP resonance, whereas
Lyapunov exponents are related with short-time behavior of
OTOCs.

D. Connection between Liouvillian gap
and Ruelle-Pollicott resonances

As we have seen in Sec. III C, RP resonances are re-
lated to instabilities against infinitesimal coarse graining.
Instead of performing a coarse graining, we can mimic it
by introducing stochastic noise to the deterministic Hamil-
tonian dynamics. As we explain below, RP resonances are
also regarded as a manifestation of instabilities against
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FIG. 3. Comparison between numerical solutions of the
Schrödinger equation in the kicked Ising model with L = 28 (solid
lines) and exponential decays ∝e−ḡt predicted by the Liouvillian gap
analysis in Fig. 2 (dashed lines).

infinitesimally weak stochastic noise [57–59] (also see
Ref. [60] for a pedagogical exposition on this and related
topics).

When white Gaussian noise is added to the Hamilto-
nian dynamics, the dynamics is described by the Langevin
equation. The corresponding time evolution equation of the
probability density Pt (
) is given by the Kramers equa-
tion (or the Fokker-Planck equation in the overdamped
limit): ∂Pt (
)/∂t = LK (t )Pt (
) with LK (t ) = LK (t + τ ).
The eigenvalues of the corresponding Floquet operator UK =
T e

∫ τ

0 LK (t )dt are expressed as eλiτ . Here, {λi} are Liouvillian
eigenvalues in the classical dynamics under stochastic noise.
In the presence of noise, Liouvillian eigenvalues have nega-
tive real part. Surprisingly, some Liouvillian eigenvalues still
have negative real part even in the weak noise limit. Those
nontrivial Liouvillian eigenvalues in the weak noise limit are
nothing but RP resonances of the deterministic Hamiltonian
dynamics.

Now an analogy between this situation and our Liouvillian
gap analysis in open quantum systems would be obvious.
What we have found in Sec. III B is that if we add weak
dissipation to the Schrödinger dynamics of a quantum many-
body system, Liouvillian eigenvalues have negative real part
even in the weak dissipation limit. Considering the analogy
with classical chaotic systems, it is natural to conjecture that
ḡ in Eq. (13) corresponds to (the real part of) the leading RP
resonance of the isolated quantum many-body system.

A numerical evidence of this interpretation for the kicked
Ising model is presented in Fig. 3. Solid lines show −E (t ) =
−〈ψ (t )|Ĥ0|ψ (t )〉 that is obtained by numerically solving the
Schrödinger equation starting with the ground state of Ĥ0 (i.e.,
the all-down state). Dashed lines show exponential decays
e−ḡt predicted by the Liouvillian gap analysis in the weak
dissipation limit. We find that ḡ excellently reproduces the
long-time exponential decay in the unitary time evolution.
In this way, thermalization dynamics of an isolated quantum
many-body system is better characterized as the weak dissipa-
tion limit of the Lindblad dynamics.

FIG. 4. Liouvillian gap for the dissipator given by Eq. (21) with
γ−/γ+ = 0.5 (circles), for the XX dissipator given by Eq. (22)
(triangles) and for the bulk dephasing (squares). At finite γ , the
Liouvillian gap depends on the dissipator, but the extrapolated value
ḡ to γ → +0 does not.

E. Dissipator independence of ḡ

Up to here, numerical results for the bulk dephasing L̂i =
σ̂ z

i have been presented. Now we numerically show that ḡ does
not depend on the choice of dissipator.

Let us consider jump operators σ̂+
i and σ̂−

i at every site
i with strength γ+ and γ−, respectively. The Lindblad equa-
tion is given as

dρ

dt
= − i[Ĥ (t ), ρ] + γ+

L∑
i=1

(
σ̂+

i ρσ̂−
i − 1

2
{σ̂−

i σ̂+
i , ρ}

)

+ γ−
L∑

i=1

(
σ̂−

i ρσ̂+
i − 1

2
{σ̂+

i σ̂−
i , ρ}

)
, (21)

where Ĥ (t ) is the Hamiltonian of the kicked Ising chain that
is given by Eq. (5). In this paper, we fix the ratio of γ± as
γ−/γ+ = 0.5 and vary the value of γ ≡ γ+.

Next, we also consider the “XX dissipator” corresponding
to the jump operator L̂i = σ̂ x

i σ̂ x
i+1 at each site i. The Lindblad

equation reads

dρ

dt
= −i[Ĥ (t ), ρ] + γ

L∑
i=1

(
σ̂ x

i σ̂ x
i+1ρσ̂ x

i σ̂ x
i+1 − ρ

)
. (22)

In Fig. 4, we compare the γ dependence of the Liouvillian
gap for the above two dissipators as well as for the bulk
dephasing. At finite γ , we see that the Liouvillian gap depends
on the dissipator, but the extrapolated value ḡ toward γ → +0
does not. This is consistent with the conjecture that ḡ describes
an intrinsic property of the system, not a property of the
dissipator.

IV. STATIC SYSTEMS

In this section, we consider static many-body systems
under bulk dissipation. In contrast to open Floquet systems
discussed in Sec. III, the Liouvillian gap in a static system
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FIG. 5. Eigenvalues of L (blue points) and LP (orange circles).

does not show discontinuity at γ = 0 as is discussed in
Sec. IV A. In Sec. IV B, we explain how to extract the intrinsic
decay rate of a static system from the dissipative Liouvillian.
We propose a projection technique which identifies
the leading RP resonance in the Liouvillian spectrum:
the spectral gap of the projected Liouvillian determines the
intrinsic decay rate of a static quantum many-body system.

The discussion below is valid for generic static systems
under bulk dissipation, but numerical calculations are carried
out for the quantum Ising model under bulk dephasing. Its
Hamiltonian is given by

Ĥ = −J
L−1∑
i=1

σ̂ z
i σ̂ z

i+1 −
L∑

i=1

(
hxσ̂

x
i + hzσ̂

z
i

)
(23)

with (J, hx, hz ) = (1, 0.8090, 0.9045). The bulk dephasing is
given by L̂i = σ̂ z

i for every site i.

A. No singularity in the Liouvillian gap at γ = 0

In Sec. III, it is pointed out that the operator spreading
under the unitary time evolution of a Floquet system results
in a large asymptotic decay rate under weak bulk dissipation.
More precisely, we have g ∼ Lγ when γ � v/L, which im-
plies a singularity of the Liouvillian gap at γ = 0.

However, we now argue that a static system does not ex-
hibit such a singularity. In Sec. III B, we have seen that the
operator spreading under the unitary time evolution is a key
ingredient to have a large asymptotic decay rate g ∼ Lγ for
γ → +0 with a fixed system size L. In static systems, the
Hamiltonian is invariant under the unitary time evolution at
γ = 0, and hence the Hamiltonian does not undergo the op-
erator spreading. As a consequence, if we consider the effect
of weak bulk dissipation, the decay rate of the Hamiltonian
under weak bulk dissipation does not increase with time, and
the asymptotic decay rate will behave regularly at γ = 0 in
the thermodynamic limit.

This argument is consistent with previous studies on the Li-
ouvillian gap in static systems under bulk dissipation [31,32].
For example, Shibata and Katsura [31] analytically calculated
the thermodynamic limit of the Liouvillian gap in the quantum
compass model, and obtained g = 2γ when γ is smaller than a
certain critical value. Obviously, limγ→+0 limL→∞ g = 0, and
thus no singularity appears at γ = 0. The discontinuity of the
Liouvillian gap in the weak dissipation limit is a generic fea-
ture of open Floquet systems, but not of open static systems.

In general, when there is a local conserved quantity Q̂ in
the absence of dissipation (in static systems, we generically
have Q̂ = Ĥ ), the Liouvillian gap does not show singularity
in the limit of γ → +0 because the conserved quantity does
not undergo the operator spreading. The Liouvillian gap in the
weak dissipation regime describes the relaxation of Q̂ under
dissipation, which is not related to the intrinsic relaxation
process of the isolated system. The Liouvillian gap therefore
does not give the leading RP resonance in static systems.

B. Projected Liouvillian and its spectral gap

One may ask whether some Liouvillian eigenvalues with
smaller real part (i.e., higher decay rates) can be interpreted
as RP resonances. Because the suppression of the singularity
is due to the presence of local conserved quantities, it would
be expected that one can extract the information of intrinsic
decay rates (i.e., RP resonances) by discarding the effect of
conserved quantities. In the energy basis, it is encoded in
diagonal matrix elements. Therefore, we can discard it by
applying the following projection superoperator P:

Pρ := ρ −
∑

n

〈n|ρ|n〉|n〉〈n|, (24)

where Ĥ |n〉 = En|n〉. Let us define the projected Liouvillian
as

LP := PLP (25)

and its spectral gap as

gP := − max
α

ReλP
α, (26)
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FIG. 6. Projected Liouvillian gap for various system sizes. (a) gP

is plotted as a function of γ . (b) LgP is plotted as a function of γ .
Dashed lines are quadratic functions fitted to the data with γ � γ ∗ =
0.05. In (b), the dashed lines cross at γ = 0, which defines LḡP.

where λP
α are eigenvalues of LP corresponding to right eigen-

vectors within the projected subspace, i.e., LPρ
P
α = λP

αρP
α and

PρP
α = ρP

α .
In Fig. 5, we compare the Liouvillian eigenvalues {λα}

and the projected Liouvillian eigenvalues {λP
α} in the quantum

Ising model under bulk dissipation for L = 4. Interestingly,
we find that each λP

α is almost identical to one of the Liou-
villian eigenvalues, and hence we find approximately {λP

α} ⊂
{λα}. The projection thus picks up selective eigenvalues of the
Liouvillian, and it is plausible to expect that they are related
to intrinsic decay rates of the isolated system. In particular,
we expect that the projected Liouvillian gap gP corresponds
to (the real part of) the leading RP resonance.

C. Projected Liouvillian gap as a quantum
Ruelle-Pollicott resonance

We now numerically test our conjecture on the correspon-
dence between the projected Liouvillian gap and the leading

FIG. 7. Comparison between the numerical solution of the
Schrödinger equation in the static quantum Ising model with L = 26
(the solid line) and the exponential decay ∝e−ḡPt predicted by the
Liouvillian gap analysis in Fig. 6.

RP resonance. In a static isolated system, the long-time relax-
ation is governed by hydrodynamic modes which are related
to the transport of the energy. It is expected that the decay rate
of the hydrodynamic model of the wavelength L vanishes as
L−z in the thermodynamic limit, where z > 0 is the dynamical
exponent. We therefore expect that the leading RP resonance
also vanishes in the thermodynamic limit.

We numerically compute the projected Liouvillian gap gP

as a function of γ for various system sizes. Our numerical
results are given in Fig. 6. As in Floquet systems, we have a
nonzero value by extrapolating the data of gP only for γ � γ∗
into γ = 0. This finite value is identified as the leading RP
resonance. In numerical calculations, we set γ∗ = 0.05.

As expected, the extrapolated value ḡP decreases as the
system size increases. Our numerical results suggest the scal-
ing ḡP ∼ L−1. Figure 6(b) demonstrates that the extrapolated
curves for different system sizes cross at γ = 0 if we plot
LgP as a function of γ . This scaling is rather counterintuitive
because the diffusive transport of the energy, which occurs
in quantum chaotic systems, implies that the decay rate of
the slowest hydrodynamic mode is proportional to L−2 (i.e.,
z = 2). Indeed, in classical Hamiltonian dynamics, Gaspard
[61] found that in strongly chaotic systems, the leading RP
resonance is proportional to L−2, which is called the determin-
istic diffusion. The scaling ḡP ∼ L−1 indicates the difference
between classical and quantum Hamiltonian dynamics. This
apparent discrepancy between transport properties and the
dynamical exponent of the projected Liouvillian gap might
be related to the gap discrepancy problem in open quantum
systems [28,36].

The L−1 scaling of ḡP is more strongly evidenced by com-
paring the intrinsic decay rate of the isolated system with ḡP.
In Fig. 7, we plot

δmz = 1

L
|〈ψ (t )|M̂z|ψ (t )〉 − 〈ψ (t )|M̂z|ψ (t )〉| (27)

with the solid line, where |ψ (t )〉 is a numerical solution of the
Schrödinger equation id|ψ (t )〉/dt = Ĥ |ψ (t )〉 starting with
the all-down initial state for L = 26, and M̂z = ∑L

i=1 σ̂ z
i is
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the total magnetization. The overline in Eq. (27) denotes the
long-time average. The dashed line of Fig. 7 is e−ḡPt , where
ḡP for L = 24 is estimated as follows: By using numerical
data for L = 9, 10, 11, 12, and 13, and assuming ḡP ∝ L−1,
we obtain ḡP ≈ 0.247/L, which gives an estimate at L = 26
as ḡP ≈ 0.0095. We find that the projected Liouvillian gap
extrapolated to γ → +0 excellently reproduces the intrinsic
decay rate. Thus, in static systems, the projected Liouvillian
gap gives the leading RP resonance, and our numerical results
strongly support an unexpected scaling ḡP ∼ L−1.

V. CONCLUSION

We have investigated generic properties of the many-body
Liouvillian in the weak dissipation regime. Although recent
studies on open quantum many-body systems mainly focus
on novel phenomena in the strong dissipation regime, we find
that spectral properties of the Liouvillian in the weak dissi-
pation regime have an interesting connection to irreversible
relaxation under the intrinsic unitary time evolution of the
system.

In Floquet systems under weak bulk dissipation, it turns
out that the Liouvillian gap g has discontinuity at γ = 0 in
the thermodynamic limit, which is explained by the operator
spreading under the intrinsic time evolution. The nonzero
value of ḡ = limγ→+0 limL→∞ g gives the intrinsic decay rate
of the isolated system, which is interpreted as the leading

Ruelle-Pollicott resonance. In static systems under weak bulk
dissipation, the Liouvillian gap does not show singularity at
γ = 0 and is not related to intrinsic irreversible dynamics of
the system. Instead, the projected Liouvillian gap, which is
almost identical to another eigenvalue of the original Liouvil-
lian, gives the leading Ruelle-Pollicott resonance.

Those findings clarify unknown general properties of the
many-body Lindbladian in the weak dissipation regime, and
will trigger further studies on the theory of open quan-
tum many-body systems. Our work also brings about a new
perspective on theoretical description of thermalization of
isolated quantum systems. The Liouvillian-gap analysis dis-
cussed in this work allows us to directly access exponentially
decaying eigenmodes of an isolated quantum system, which
cannot be obtained by just diagonalizing the many-body
Hamiltonian.

In this work, we focus on short-range interacting systems.
It is an important future problem to extend the present theory
to a wider class of quantum many-body systems. In partic-
ular, long-range interacting systems are paid much attention
in recent studies [62,63]. Long-range interactions alter the
dynamical scaling of the operator spreading [40,64,65], which
will force us to modify general discussion in Secs. III and IV.
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