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Field theory for the dynamics of the open O(N) model
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A field theory approach for the nonequilibrium relaxation dynamics in open systems at late times is developed.
In the absence of conservation laws, all excitations are subject to dissipation. Nevertheless, ordered stationary
states satisfy Goldstone’s theorem. It implies a vanishing damping rate at small momenta, which in turn allows
for competition between environment-induced dissipation and thermalization due to collisions. We derive the
dynamic theory in the symmetry-broken phase of an O(N )-symmetric field theory based on an expansion of the
two-particle irreducible (2PI) effective action to next-to-leading order in 1/N and highlight the analogies and
differences to the corresponding theory for closed systems. A central result of this approach is the systematic
derivation of an open-system Boltzmann equation, which takes a very different form from its closed-system
counterpart due to the absence of well-defined quasiparticles. As a consequence of the general structure of its
derivation, it applies to open, gapless field theories that satisfy certain testable conditions, which we identify here.
Specifically for the O(N ) model, we use scaling analysis and numerical simulations to show that interactions are
screened efficiently at small momenta and, therefore, the late-time evolution is effectively collisionless. This
implies that fluctuations induced by a quench dissipate into the environment before they thermalize. Goldstone’s
theorem also constrains the dynamics far from equilibrium, which is used to show that the order parameter
equilibrates more quickly for quenches preserving the O(N ) symmetry than those breaking it explicitly.
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I. INTRODUCTION

In recent years, progress in pump-probe experiments has
revealed long-lived states far from equilibrium in strongly
correlated materials [1–3]. Furthermore, the order parameter
dynamics and low energy excitations have been found to
exhibit nonthermal critical behavior in a variety of different
systems [4–14], with slow recovery of phase coherence re-
ported also in the absence of topological defects [15–17].
Contrary to experiments in cold atoms [18–21], which are suc-
cessfully described by nonequilibrium field theory for closed
systems [22], the order parameter and low-lying excitations in
solids strongly couple to a variety of other relevant excitations
(e.g., phonons, magnons, polarons, etc.). The latter form an
effective thermal bath, necessitating the order parameter and
its fluctuations to be treated as an open system.

Despite the mounting experimental evidence of scaling
dynamics in out-of-equilibrium correlated materials, the the-
oretical description of the phenomenon is still in its infancy.
Most approaches to quench dynamics to date are based on or-
der parameter dynamics in time-dependent effective potentials
[23–28]. Such pictures generally disregard the continuum of
gapless modes, which strictly limits them to the short-time
evolution; they inevitably predict exponential relaxation, ex-
cept at a dynamical critical point. Disregarding the gapless
modes hence lacks the possibility of the scaling dynamics that
were observed in experiments and that are expected in the
vicinity of a nonthermal fixed point [22].
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A common approach, which takes into account order pa-
rameter fluctuations within a near-thermal framework, is the
so-called three-temperature model (3-TM) [29–33] and its
generalizations [34]. It treats electrons, phonons, and order
parameter fluctuations as thermal, albeit at different tempera-
tures. This assumption can be made plausible when collision
rates are high and the coupling between subsystems is weak.
However, it is generally unclear under which conditions
highly nonthermal order parameter fluctuations induced by
a quench would approach an effective thermal equilibrium
before dissipating.

A different strategy to step away from a pure mean-field
description of the order parameter dynamics recently has been
taken by the inclusion of Gaussian fluctuations [35,36]. In
the case of spontaneous symmetry breaking, the existence of
gapless Goldstone modes then leads to self-similar scaling
dynamics near the thermal fixed point. However, the role of
collisions between long-lived excitations has remained unex-
plored with no unbiased discussion of internal equilibration
due to scattering and equilibration as a result of a thermal
background reported in the literature.

Here we are going to close that gap by developing the
dynamic theory of an O(N )-symmetric field theory in the
spontaneously symmetry-broken phase by a two-particle irre-
ducible (2PI) expansion to next-to-leading order in the control
parameter 1/N (NLO(1/N)). The approach follows a similar
strategy as has previously proven successful in closed systems
[22], with important modifications to account for the open
nature of the system. This technical development culminates
in the formulation of the open-system Boltzmann equation,
which applies in the absence of proper quasiparticles. Al-
though our calculations are performed on the O(N ) model,
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the arguments on the validity of the applied approximations
directly translate to other models.

As a result, we obtain testable conditions on the appli-
cability of key approximations. Specifically for quenches of
the O(N )-symmetric theory in the symmetry-broken phase,
this systematic way of proceeding allows us to show that
strong screening leads to effectively collisionless dynamics. In
particular, this implies that redistribution and thus thermaliza-
tion is slow compared to equilibration with the environment.
Consequently, excess fluctuations induced by a quench remain
nonthermal until they dissipate.

We proceed as follows. We discuss an intuitive picture of
the origin of slow dynamics in the symmetry-broken phase
in Sec. II. We then provide a guide on how to derive the
open-system Boltzmann equation starting from the micro-
scopic model in Sec. III—we emphasize the simplifications
made and discuss their structure and necessary conditions.
We start providing an in-depth discussion of our work in
Sec. IV, where we introduce the 2PI effective action as a
suitable foundation for our analysis. The conditions for the
dynamics to be captured by a memoryless description are
derived in Sec. V. In each section, emphasis is put on a
physical motivation followed by detailed calculations in the
later subsections. Application of this general framework in its
minimal form yields the collisionless approximation analyzed
in Sec. VI. The stability of its results against collisions leading
to redistribution is investigated in Sec. VII. To complete the
parallel with the theory of closed system dynamics, the condi-
tions for a formulation in terms of a Boltzmann equation are
derived in Sec. VIII. We conclude with an outlook concerning
the applicability of our results to other systems in Sec. IX

II. SLOW THERMALIZATION OF QUENCHED
OPEN SYSTEMS

A. Physical setup

We consider the evolution of open many-body systems,
which at low frequencies are described by an O(N )-symmetric
field theory with different values of N and no conserved
quantities. This covers a large class of condensed matter sys-
tems, like superconductors, charge-density-wave compounds,
or antiferromagnets [37–40]. Following a strong quench, the
order is destroyed. Since in most cases N is no larger than
the dimension, topological defects can be created during the
quench, leading to a slow recovery of the order parameter
following the Kibble-Zurek mechanism [41,42]. Here instead,
we will discuss the late-time dynamics, where either a homo-
geneous order has already been restored or the quench was
too weak to induce defects in the first place. As the following
qualitative discussion shows, this case is by no means triv-
ial since a quick relaxation is precluded by the existence of
overdamped but gapless Goldstone modes. Their dynamical
mass and collisions provide two competing mechanisms, both
leading to an algebraic recovery of the thermal state.

B. Minimal model

Focusing on late times, we can drop terms, which are irrele-
vant in the renormalization group sense (RG-irrelevant). Then
the dynamics in the O(N ) model is given by the Langevin

equation for the real N-component order-parameter field ϕ(
∂2

t + γ ∂t − D∇2 + m + λ

6N
ϕ2

)
ϕ + √

γ ξ = 0. (1)

Here γ parametrizes the coupling to a thermal bath at tem-
perature T (we set h̄ = kB = 1), which is composed of the
environmental modes (e.g., phonons, etc.). The fluctuations
imprinted on the order parameter by the environment are
covered by the fluctuation-dissipation relation of the noise
field ξ

〈ξa(t )ξb(t ′)〉 = πT 2/ sinh2 (πT (t − t ′)) → 2T δ(t − t ′). (2)

The final limit is justified if we consider the evolution of ϕ

on timescales much larger than β = 1/T . Under these condi-
tions, the memory of the bath with a typical correlation time
or order 1/T can be neglected, leading to an effective model
with white noise. In the overdamped regime (γ � √

D|k|),
the term ∼∂2

t in Eq. (1) can be dropped, such that this equa-
tion corresponds to the model in Ref. [35], there studied
with fluctuations treated in Hartree-Fock approximation. In
the limit γ → 0, on the other hand, with the inertial term ∼∂2

t
taken into account, it reduces to the closed system discussed in
Ref. [22]. We note that the crossover between these two cases
takes place at short time and length scales t ∼ |r|/√D ∼ γ −1.
For the late-time evolution studied here, the open character
always prevails. At these late times, there is hence no smooth
crossover but a qualitative difference in the time evolution for
γ 
= 0 and generic interacting closed systems. This difference
is made evident by considering the stationary state approached
by the dynamics. While in a closed system, the initial energy
density fully determines the final (thermal) distribution, the
open system exchanges particles and energy with its environ-
ment. It therefore must equilibrate to a thermal distribution
at the temperature of the bath and satisfy the fluctuation-
dissipation relation

iGK (ω, k) ≡ 〈ϕ(ω, k)ϕ(−ω,−k)〉

= coth
ω

2T

1

2
√

γ

×
(

δ

δξ(−ω, k)
〈ϕ(ω, k)〉 − (ω ↔ −ω)

)
. (3)

This is a consequence of pump-probe experiments breaking
detailed balance only by the initial quench, which results in
much stronger constraints on the Langevin equation at late
times than in driven open systems [43,44].

For sufficiently negative values of the bare mass m1 and
at dimensions above the lower critical one d = 2, the sys-
tem spontaneously breaks the O(N ) symmetry: it acquires a
nonzero expectation value for the order parameter φ. With-
out loss of generality, we choose 〈ϕα〉 = δα1φ. Goldstone’s
theorem still holds out of equilibrium. It states that in the
stationary state, interactions lead to effectively massless exci-
tations perpendicular to the order parameter [45], which also
affects the relaxation towards this state. The Fourier transform

1Note that fluctuations increase the effective mass compared to its
bare value.
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FIG. 1. Decay rate and excitation energy of the Goldstone mode
of the open O(N ) model. At short times excitations at high momenta
are well described by the closed system. However, the finite decay
rate at high momenta at times t � 1/γ only leaves long-lived, over-
damped excitations at small momenta. The resulting slow dynamics
is qualitatively different from that of the closed system, as is evident
from the change of the dynamical exponent from z = 1 to z = 2.

of the linear response function of the transversal modes (with
1 < α � N)

GR
⊥(t − t ′, r − r′) = − 1

2
√

γ

δ

δξα (t ′, r′)
〈ϕα (t, r)〉

∼ θ (t − t ′) (4)

in a mean-field description has two complex poles shown in
Fig. 1. The poles reveal a separation of the dynamics into two
different momentum regimes: at high momenta, the dispersion
is linear with a constant decay rate, ω ∝ ±|k| + iγ . At long
wavelengths, however, fluctuations become overdamped, and
the real part of the dispersion, describing reversible dynamics,
vanishes identically. This allows the generation of excitations
without energy cost. Focusing only on the slowly decaying
mode with a vanishing decay rate ≈D|k|2/γ , the response
function for long wavelengths takes the simple form

G⊥(ω, k) = Z

ω + iDk2 (5)

with quasiparticle weight Z . We, therefore, expect high-
momentum excitations to decay on a timescale t ∼ 1/γ

followed by algebraic relaxation due to long-wavelength fluc-
tuations.

On top of this single-particle picture of relaxation, one
needs to consider the effect of interactions. They describe col-
lisions, which cause a redistribution of excitations and pose an
additional source for thermalization: typical states generated
by a sudden quench involve an excess of fluctuations at high
momenta. These scatter to lower momenta, thereby restoring
a thermal distribution. If the growth rate for extremely long
wavelengths due to relaxation from higher momenta is larger
than the (possibly renormalized) decay rate, excitations will
accumulate at small momenta, leading to an effectively even
slower equilibration with modified exponents governing the
algebraic decay. To check if the quenched open O(N ) model
realizes this scenario, we need to treat the decay rate and
collisions on equal footing.

We emphasize that the Goldstone modes persist, despite
the absence of any conserved quantity, due to the exchange
of excitations with finite energy and momentum between the
system and its environment. On the one hand, this implies
the algebraic relaxation discussed above. On the other hand,
on a technical level it requires approximations that introduce
no new scales. These might either enter as a gap in Eq. (5)
or as an additional term breaking conservation laws. For ex-
ample, collisions that change the particle number effectively
describe two-body loss or gain. They will thus generically
violate the fluctuation-dissipation relation Eq. (3) [46] and
hence introduce a timescale on which the deviation from the
actual equilibrium begins to dominate the evolution.

III. A SYSTEMATIC APPROACH TO TIME EVOLUTION

With the physical picture from the previous section in
mind, we now state the general conditions for a faithful theory
of the evolution of gapless open systems:

(1) Once a nonzero order parameter breaks the symme-
try and the excitations become gapless, interactions can no
longer be considered to be weak: in the absence of scales a
perturbative expansion in the interaction strength is no longer
controlled. Truncating such an expansion at a finite order
would inevitably introduce a bias between intrinsic collisions
and particle or energy exchange with the bath. Instead, one
needs an ordering principle that applies to strongly interacting
systems. Here we will use an expansion in the inverse number
of components of the order parameter field 1/N . This expan-
sion has proven surprisingly accurate already for moderate
values of N [47]. It does however fail to resolve topological
defects, which can be generated in systems with N � d and
for strong quenches as the order parameter has to vanish
locally [48]. Hence, for the weak quenches considered here,
they can be safely neglected.

(2) When the decay of excess fluctuations at late times
becomes algebraically slow, it is vital that none of the used ap-
proximations introduces an additional, unphysical timescale
for relaxation. One way to guarantee this is through the use
of conserving approximations [49], which satisfy the same
conservation laws as the microscopic model. Although the
open O(N ) model has no conserved quantities, their absence is
a result of the coupling to a thermal bath. Collisions, however,
conserve energy and particle number. A nonconserving ap-
proximation could introduce a timescale beyond which this is
violated and qualitatively change the approach to equilibrium.
The use of a conserving approximation furthermore has the
advantage that our approach easily generalizes to models with
conserved quantities.2

(3) The approximation must not break the O(N )-
symmetry explicitly. It needs to satisfy Goldstone’s theorem,
necessary for the algebraic slow-down of the relaxation at late

2Although irrelevant for weak quenches, conserving interactions
are known to exhibit self-organized criticality in the Olami-
Feder-Christensen model [95]. This is not true for nonconserving
interactions [96–99], which exemplifies the nontrivial role conser-
vation laws play in local collisions, even in the absence of conserved
quantities.
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FIG. 2. The theory of open system dynamics is developed along
the same lines as that for closed systems. While the semiclassical
limit of high occupations is the same for both cases, gapless dissipa-
tive modes in open systems require a separate treatment from closed
systems for all further steps towards a simple, physically insightful
theory of the time evolution, see Sec. III. This schematic can be taken
as a guide to this paper: Sec. IV deals with the semiclassical action.
Sections V A and V B explain the steps to the memoryless equa-
tions of motion. Although numerically validated in some cases, there
is no simple condition for this step in closed systems. A projection to
an open-system Boltzmann equation is discussed in Sec. VIII.

times. This condition, which relates to the spectrum of the
model, has to be viewed independently of the previous one
concerning the stationary distribution.

(4) For practical purposes, it is highly beneficial if the
evolution equations can be simulated with an effort that scales
at most linear in time.

In the following, we develop a theory for the late-time
evolution in the spontaneously symmetry-broken phase. To
this end, we systematically eliminate processes that are ir-
relevant at long times and at large distances, which leads
to simplifications in the evolution equations. Although this
process follows the same general logic as the corresponding
theory for closed systems, the performed approximations and
the resulting equations contain crucial differences. The sim-
ilarities and differences in the approach to closed or open
systems are visualized in Fig. 2.

A major consequence of combining gapless modes and
thermal fluctuations is that the microscopic model at small
momenta can be reduced to the semiclassical one stated in
Eq. (1), which describes the evolution of open systems at late
times. We stress in Sec. V A, that for closed systems or open
systems at early times, a different semiclassical evolution
emerges, that cannot be connected to the late time evolution
of open systems by a smooth crossover. As a result, the sub-
sequent simplifications require different arguments for open
systems at late times compared to closed systems or early
times.

Along these lines, we demonstrate an intriguing and useful
feature of open, gapless systems: if collisions are dominated
by a time-dependent momentum scale kColl(t ) � t−1/z with z
the dynamical exponent, the overdamped evolution will no
longer depend on the entire history of correlation functions. In
other words, the evolution becomes Markovian (memoryless),
such that interactions—to a good approximation—include

only correlation functions that are local in time. In particular,
it implies that the system evolution becomes independent of
the details of the initial quench. This drastically simplifies any
numerical treatment and is a prerequisite of scaling dynamics.

Although the system is coupled to a bath modeled as
uncorrelated, white noise, the Markovian evolution is not a
direct consequence of the latter. Instead, it results from a
slow evolution compared to the lifetime of the participating
excitations. As such it is sensitive to the rate of collisions
and the distribution of long-lived modes. Such an effective
Markovian evolution has also been confirmed numerically
for some observables in closed systems [50]. There exists,
however, no rigorous justification for this behavior in closed
systems.

The final result of our strategy will be the derivation of
an open-system Boltzmann equation. Due to the absence of
well-defined quasiparticles, this Boltzmann equation takes a
very different form compared to its closed system counterpart.
The validity of a Boltzmann approximation in open systems
requires a 1/ω divergence in the infrared distribution function
F (ω, k). This is justified when the state obeys a near-thermal
long-wavelength distribution. However, we emphasize that
it applies significantly more generally since the momentum
dependence of F remains unconstrained, corresponding to a
momentum-dependent temperature T (k). In fact, it should be
viewed as the open-system counterpart of long-lived quasipar-
ticles, which are the theoretical foundation for the Boltzmann
approximation in closed systems.

The application of the newly derived memoryless frame-
work to the open O(N )-symmetric model (1) reveals that
collisions are heavily screened at long wavelengths by gap-
less excitations. As a result, momentum transfer between
fluctuations plays no significant role in the thermalization at
late times. Instead, the asymptotic relaxation is governed by
an effective single-particle picture, and an order parameter-
dependent dynamical mass. Consequently, the approach to
the thermal state is described by Gaussian exponents. The
behavior of the dynamical mass is further constrained by
Goldstone’s theorem. This imprints a subthermal momentum
distribution of the excess fluctuations for all quench protocols
that fulfill our initial conditions, i.e., that preserve the O(N )
symmetry. Contrary to the scenario, where the O(N ) symme-
try is explicitly broken at early times, the order parameter
fluctuations will not thermalize to an effective temperature
different from that of the environment. Instead, the long wave-
length fluctuations retain their subthermal distribution until
they decay into the bath. This process leads to a thermal dis-
tribution with the temperature of the bath. Absent significant
redistribution no intermediate regime of different tempera-
tures for the order parameter fluctuations and the environment
exists at late times. This is in contrast to the general as-
sumption underlying the three temperature models. The latter
instead qualitatively overestimate the slowing down of the
order parameter relaxation.

IV. CONSERVING AND GAPLESS EFFECTIVE ACTIONS

Our goal is to construct a controlled, nonperturbative
expansion and thus we turn to the field-theoretic de-
scription of Eq. (1). This gives access to the tools of
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nonequilibrium field theory, which facilitates a systematic
formulation. The corresponding Martin-Siggia-Rose-Janssen-
DeDominicis (MSRJD) action [51–53] can be obtained from
the full quantum mechanical description of the system at low
frequencies, where the large amount of thermal fluctuations
allows one to neglect quantum fluctuations coth ω/(2T ) � 1.
This justifies the classical description employed in Eq. (1)
[46,54]. As a technical side note, we point out that in the
dissipationless case, the classical action describes a determin-
istic evolution of the field ϕcl [55], which can be simulated
efficiently [56]. For the open system, however, even in the
absence of quantum fluctuations, thermal fluctuations from
the bath significantly increase the numerical cost of such
simulations.

In the following, we are using Einstein notation, such that
the MSRJD action takes the form

S[ϕ] = S0[ϕ] + Sint[ϕ],

S0[ϕ] = 1

2

∫
dt
∫

d3r(ϕα,cl ϕα,q)G−1
0 (t, r)

(
ϕα,cl

ϕα,q

)
,

Sint[ϕ] = − λ

3N

∫
dt
∫

d3r ϕα,qϕα,clϕβ,clϕβ,cl (6)

with the matrix-valued inverse Green’s function

G−1
0 (t, r) =

(
0

[
GA

0

]−1
(t, r)[

GR
0

]−1
(t, r) 8iT γ

)
,

[
GA

0,αβ

]−1
(t, r) = 2

(− ∂A
t

2 − γ ∂A
t + D∇2

r − m
)
δαβ,[

GR
0,αβ

]−1
(t, r) = 2

(− ∂R
t

2 − γ ∂R
t + D∇2

r − m
)
δαβ. (7)

Here ∂
R/A
t denote the retarded/advanced time derivatives and

GR/A
0 are the bare retarded/advanced Green’s functions. They

are diagonal in the space of field components, which we label
by Greek indices.

In the symmetry-broken phase, it is convenient to directly
expand in fluctuations around the proper saddle-point 〈ϕα〉 =
δα1φ. We therefore define the generating function Z[J, R]
as the partition function of a nonequilibrium system in the
presence of source fields J (x) and R(x, y). Here and in the
following, we use the shorthand notation x = (t, r). One then
finds [22,54]

Z[J, R] ≡ exp (iW [J, R])

=
∫

Dϕ exp i

{
S[ϕ] +

∫
x

Jα,ā(x)ϕα,a(x)

+1

2

∫
x,y

ϕα,a(x)Rαβ,āb̄(x, y)ϕβ,b(y)

}
, (8)

where Roman indices run over Keldysh space (cl, q) and ā
represents the complement of a. All properties of the system
can be obtained by taking functional derivatives of Z[J, R] or
the Legendre transformations of W [J, R]. The latter is often
more convenient due to the direct dependence on physical
quantities, namely the order parameter expectation value and
correlation functions.

For example, the one-particle irreducible (1PI) action �[φ]
is obtained by a Legendre transformation with respect to the

linear source J [57–62]

�[φ] = W [J, 0] −
∫

x
Jα,a(x)φα,ā(x)

= S[φ] + i

2
TrC ln

[
G−1

0 (φ)
]+ �1[φ], (9)

where S[φ] represents the saddle-point action, i.e., the ac-
tion evaluated at the classical field φ = 〈ϕ〉, and the TrC
corresponds to an integration over space-time together with
a summation over field components and a trace in Keldysh
space. The bare, inverse propagator is given by

[
G−1

0 (x, y, φ)
]ab

αβ
= δ2S[φ]

δφα,ā(x)δφβ,b̄(y)
. (10)

Since �1[φ] contains all one-particle irreducible diagrams,

[G−1(x, y, φ)]ab
αβ = δ2�[φ]

δφα,ā(x)δφβ,b̄(y)
(11)

is the inverse of the connected two-point function (see, for
example, Ref. [63]).

We notice, that the effective action achieves our goal of
expanding around the classical field φ. It thus expands around
the true vacuum and has the advantage of naturally capturing
the symmetry-broken phase φ 
= 0, where it additionally al-
lows the derivation of Ward-Takahashi identities [64,65] and
thus the Goldstone theorem [45]. However, it turns out that
theories derived from �[φ] are not conserving, meaning that
independently of the coupling to the bath, collisions alone
will violate macroscopic conservation laws. This artifact of
the approximation is elaborated on in Sec. IV A. Intuitively,
one may say that a conserving approximation needs to derive
from a functional that evolves the order parameter and its fluc-
tuations with a consistent set of equations. Particles removed
from one part of the system by collisions must consistently
be added elsewhere. It is therefore not allowed to refer to
any particular, inert state, which requires an expansion in G
instead of G0 in the interacting part of the effective action [66].
This can be achieved by a second Legendre transformation
with respect to the two-point source R(x, y), which leads to
the two-particle irreducible (2PI) action (12). This moreover
has the pleasant, purely technical advantage of significantly
reducing the number of Feynman diagrams that need to be
evaluated.

The result of this procedure is the nonequilibrium equiv-
alent of the Luttinger-Ward functional [67] known as 2PI
effective action [49,68]

�[φ, G] = S[φ] + i

2
TrC ln G−1 + i

2
TrC

(
G−1

0 (φ)G
)

+ �2[φ, G]. (12)

Here �2[φ, G] includes all two-particle irreducible diagrams
written in terms of the dressed propagator

Gαβ (x, y) = [
G−1

0 (x, y) − �(x, y, φ, G)
]−1

αβ
, (13)
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where the proper self-energy

�ab
αβ (x, y, φ, G) = 2i

δ�2[φ, G]

δGāb̄
αβ (x, y)

(14)

involves only one-particle irreducible diagrams. In the last
equation, we have made the Keldysh structure explicit with
Keldysh index (a, b) ∈ {cl, q} and the identification Gq,cl =
GR, Gcl,q = GA, Gcl,cl = GK and the vanishing component
Gq,q = GV .

If a partition function Z possesses a spontaneously broken
continuous symmetry, massless Goldstone modes exist to all
orders in perturbation theory. This implies a divergent corre-
lation length [45], which in turn results in the breakdown of
perturbation theory. A systematic, nonperturbative expansion
is instead obtained by truncating the infinite set of diagrams
contributing to �2 at a given order in 1/N . This corresponds
to the summation of select interactions to infinite order. It is,
however, not a priori clear, whether a nonperturbative approx-
imation to Z retains its global symmetry. As we have stated
before, the latter is a prerequisite of the Goldstone theorem
and therefore a massless transverse mode in the stationary
state. Hence, we need to check if the mass of the transverse
mode of the O(N ) model vanishes in 1PI and 2PI in next-to-
leading order in 1/N (NLO(1/N)).

We show in Sec. IV A that the masslessness of the trans-
verse mode is preserved for the 1PI effective action, but not
the 2PI effective action. The latter is, however, required for
a conserving approximation, see Sec. IV B. This is a well-
known, long-standing problem for conserving approximations
[69,70]. In general, one finds that in 2PI the mass only van-
ishes up to the order of the expansion, i.e., for an expansion
to NLO(1/N) one finds a Goldstone mass ∼N−2. In the fol-
lowing, we will avoid this problem by using a low-energy
quasiparticle parametrization of the transverse Green’s func-
tion GR

⊥ as in Eq. (5) that is explicitly massless.

A. 1PI effective action

The 1/N expansion of the 1PI effective action truncates all
equations of motion in the same order in 1/N and therefore
exactly preserves the symmetry of the O(N ) model. Although
this statement is more general, we show it explicitly up to
next-to-leading order in 1/N . To make the discussion more
tangible, we will provide the results here, relegating the details
of their derivation to Appendix A.

At leading order in the expansion in 1/N , the equation of
motion for the order parameter field is obtained from the
functional derivative

δ�LO

δφq(x)

∣∣∣∣
φ=〈φ̂〉

=
[

− ∂2
t − γ ∂t − m + D∇2

r

− λ

6N

(
φ2(x) + iGK

LO(x, x, φ)
)]

φ(x)
!= 0.

(15)

Here GLO denotes the full Green’s function in Hartree approx-
imation3 given by

G−1
LO,⊥/‖(x, y, φ) = G−1

0,⊥/‖(x, y, φ)

− iλ

3N
σ 1δαβδ(4)(x − y)GK

LO(x, x, φ),

(16)

where the first Pauli matrix σ 1 acts in Keldysh space and
the momentum dependence has been suppressed. To ease the
physical interpretation, we have made the distinction between
transversal (⊥) and longitudinal (‖) modes explicit. Functions
without this label are to be summed over all modes, i.e.,
N − 1 transversal and one longitudinal mode. Consequently,
Eq. (16) is to be solved self-consistently for GLO,⊥/‖. We note
that the Hartree approximation describes a dynamical shift
of the bare mass proportional to the density of fluctuations
n(x) = i/2GK

LO(x, x, φ). Even before the inclusion of any loop
corrections, in the symmetry-broken phase, the retarded and
advanced Green’s functions are shifted by the order parameter
field [

G−1
0,⊥(x, y, φ)

]R/A = [G−1
0,⊥(x, y)

]R/A

− λ

3N
δ(4)(x − y)φ2(x),

[
G−1

0,‖(x, y, φ)
]R/A = [G−1

0,‖(x, y)
]R/A

− λ

N
δ(4)(x − y)φ2(x). (17)

Similarly to the order parameter dynamics, the Green’s
functions at leading order in 1/N are obtained from the
second functional derivative of the effective action with
respect to φq,cl. To check the validity of Goldstone’s the-
orem it would be enough to find the retarded Green’s
function of the transversal mode, but for completeness, we
give the full result as G−1

⊥/‖(x, y, φ, G) = G−1
0,⊥/‖(x, y, φ, G) −

�⊥/‖(x, y, φ, G), with

�R
⊥(x, y) = iλ

3N
δ(4)(x − y)GK

LO(x, x),

�R
‖ (x, y) = iλ

3N
δ(4)(x − y)GK

LO(x, x)

+ φ(x)φ(y)

(
�̂R(x, y) − 2λ

3N
δ(4)(x − y)

)
,

�K
⊥ (x, y) = 0,

�K
‖ (x, y) = i

2

∫
z1,z2

�̂R(x, z1)�̂A(z2, y)φ(x)φ(y)

×
(

GK
LO

2 + GR
LO

2 + GA
LO

2
)

(x, y), (18)

where

�̂R(x, y) =
(

3N

2λ
δ(4)(x − y) − i

(
GK

LOGR
LO

)
(x, y)

)−1

. (19)

3Note that this is not the same as the 2PI Green’s function at leading
order in 1/N .
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The caret on �̂R is used to distinguish the screened vertex
from the related expression that will later be derived from the
2PI effective action.

We note that all self-energy contributions are of order N0,
with all diagrams of this order included. This is a general
property of the 1PI scheme. It implies, that the longitudinal
mode can decay into two transversal modes. However, be-
cause there are N − 1 transversal and only one longitudinal
mode, the corresponding term is absent in the transversal
self-energy. Consequently, the approximation cannot be con-
serving as collisions alone violate particle number and energy
conservation: longitudinal modes that decay into transverse
excitations are simply lost. On the other hand, 1PI contains
all diagrams to a given order in 1/N . Thus it is effectively
a perturbation theory in 1/N and satisfies Ward-Takahashi
identities. This is easy to check in the symmetry-broken phase.
The stationarity condition of the homogeneous field expecta-
tion value

m + λ

6N

(
φ2 + i

∫
q

GK
LO(q)

)
= 0 (20)

with G(q) = ∫
x e−iq(x−y)G(x − y) the Fourier transform of the

translation invariant Green’s function, implies [GR
⊥]−1(k =

0) = 0. Hence to leading order, the 1PI effective action sat-
isfies Goldstone’s theorem.

At next-to-leading order, the complexity of the 1PI calcula-
tion increases drastically. It is portrayed in Appendix A 2 and
we only state its conclusion here: in next-to-leading order, in
1/N the equation of motion for the order parameter can be
written as

0
!= δ�NLO

δφq(k)
= GR

⊥(k)φ(k), (21)

from which again readily follows Goldstone’s theorem.
At next-to-leading order in 1/N , the decay of longi-

tudinal excitations into transversal modes is balanced by
a corresponding process for the longitudinal mode. There
are however additional processes ∼1/N in the longitudinal
self-energies that lack a reverse process for the transversal
modes. From this, a general structure emerges: At any ex-
pansion order m the Goldstone theorem is satisfied exactly,
but conservation laws are broken by processes ∼N−m−1. At
next-to-leading order, this implies that at timescales t � N2τ ,
with τ the collision time, unbalanced collisions can become
dominant at small momenta as the equilibration rate due to
the coupling to the bath vanishes there.

B. 2PI effective action

Aiming for a conserving approximation, we now turn our
attention to the 2PI effective action, which we derive and
analyze the equations of motion at the same orders in 1/N .
Fortunately, there are far fewer two-particle irreducible dia-
grams than terms in the corresponding 1PI effective action.
Specifically at leading order, only one (bold) diagram con-
tributes (see Fig. 3). It takes the simple form

�LO
2 = λ

6N
TrC (G(x, x) · τ 1 · G(x, x)), (22)

FIG. 3. At each order in 1/N 2PI requires far fewer diagrams
than 1PI. This becomes apparent already at leading order, where due
to the restriction to skeleton diagrams (i.e., those without self-energy
insertions) only a single diagram contributes to the effective 2PI
action. Bold lines indicate dressed Green’s functions and the thin
dashed line represents the contact interaction ∼ λ

3N δ(x − x′).

where τ 1 = 1N×N ⊗ σ 1 represents the identity matrix on the
space of field components and the Pauli matrix σ 1 in Keldysh
space.

Clearly, at this level, no collisions occur and the Green’s
functions are

[G−1]R/A
αβ (x, y) = [G−1

0

]R/A

αβ
(x, y)

− iλ

3N
δ(4)(x − y)GK

γ γ (x, x),

[G−1]K
αβ (x, y) = [G−1

0

]K
αβ

(x, y),

[G−1]V
αβ (x, y) = 0, (23)

with repeated indices being summed over and the bare inverse
Green’s functions again shifted by the expectation value of the
order parameter φ. We have also introduced the superscript V
to label the upper left entry of the inverse Green’s function
in Eq. (7). Although causality implies that it must vanish for
every physical system, it still needs to be considered when
taking functional derivatives.

As for the one-particle irreducible formulation, the field
expectation value satisfies

0
!= δ�LO

δφq(x)
, (24)

with the subtle distinction, that δG/δφ = 0 since �2 is a
functional of both φ and G. Hence to leading order in 1/N(

∂2
t + γ ∂t + m − D∇2

+ λ

6N

(
φ2(x) + iGK (x, x)

))
φ(x) = 0 (25)

and the condition for a symmetry-broken state is formally the
same as in 1PI. Since the same is true for the transversal
Green’s function GR

⊥, we find that Goldstone’s theorem is
satisfied exactly for an expansion to leading order in 1/N .
However, contrary to there, the longitudinal self-energy con-
tains no collision effects, which as we discussed before would
lead to the violation of conservation laws.

Without collisions, the theory is unable to describe re-
distribution and thus thermalization in the absence of a
bath. We therefore must proceed to include the next-to-
leading order in 1/N . The diagrams involved are shown
in Fig. 4. The translation into an integral expression in-
cluding the Keldysh structure can be written in the fairly
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FIG. 4. The diagrammatic representation of �2 up to NLO(1/N)
is the sum of all interaction rings with any number of screening
bubbles inserted. In each diagram, one bubble may be opened with
one Green’s function being replaced by two fields if the cut diagram
involves at least two loops. Here we show the first three terms of this
series.

compact form

�NLO
2 =

∫
x,y

(
1 − iφq(x)φcl(y)

(
δ

δGR
‖ (x, y)

+ δ

δGA
‖ (x, y)

)

− iφcl(x)φcl(y)
δ

δGK
‖ (x, y)

)
�RPA

2

+ i
λ

3N

∫
x

(
2φcl(x)φq(x)GK

‖ (x, x)

+φ2
cl(x)

(
GR

‖ (x, x) + GA
‖ (x, x)

))
, (26)

with

�RPA
2 = i

2
TrC ln

[
1 − 2λ

3N
Ṽ

]
(27)

and the polarization bubble

Ṽα,β (x, y) = i

2

(
Tr(Gα,β (x, y) · G�

α,β (x, y)) Tr(Gα,β (x, y) · σ 1 · G�
α,β (x, y))

Tr(Gα,β (x, y) · G�
α,β (x, y) · σ 1) Tr(Gα,β (x, y) · σ 1 · G�

α,β (x, y) · σ 1)

)
. (28)

In the last expression, the trace and matrix multiplication as
well as the matrix act in Keldysh space. In Eq. (27), 1 denotes
the identity with respect to space-time, Keldysh space, and
field index. The last line in Eq. (26) subtracts the one-loop
diagrams created by the derivatives in the first line as these
contributions are already included in i

2 TrC (G−1
0 [φ]G).

The evaluation of the Dyson equation obtained from �NLO
2

is numerically very expensive with a computational cost
that scales as O(t3

sim), where tsim is the simulated time. In
Sec. V, we therefore justify approximations that allow us to
use time-local expressions that only depend on the relative
coordinate x − y. Since these are the equations solved in
Sec. VII, we directly state the equations of motion in terms
of the four-momentum k conjugate to x − y. Similar to the
1PI calculation, we introduce the screened vertex

�̃R/A(p) = 1
3N
2λ

− Ṽ R/A(p)
,

�̃K (p) = |�̃R(p)|2Ṽ K (p), (29)

dressed by repeated transversal and longitudinal fluctuation
bubbles

Ṽ R/A(k) = i
(
GR/A � GK + GA/R � GV

)
(k),

Ṽ K (k) = i

2

(
GK � GK + GV � GV

+GR � GR + GA � GA
)
(k),

Ṽ V (k) = i
(
GK � GV + GR � GA

)
(k). (30)

Here (A � B)(k) = ∫
q A(k − q)B(q) indicates the convolution

in frequency and momentum space. Furthermore, the tilde
indicates that the projection to causal Green’s functions has
not been taken yet. We also note, that the diagrams contribut-
ing to �̃ are the same that dress the vertex in random phase
approximation and those found in leading order in 1/N for
the 1PI transversal self-energy [see Eq. (19)]. Here, however,

the Green’s functions within the fluctuation bubble are them-
selves dressed by fluctuation bubbles. With this notation, and
expanding the logarithm to linear order in Ṽ V one finds the
simple expression

�RPA
2 = − i

2

∫
k

[
�̃K (k)Ṽ V (k) + ln �̃R(k) + ln �̃A(k)

]
, (31)

which, however, is accurate only up to terms of order GV 2 and
(GR � GA)2, which do not contribute to the self-energy once
evaluated for causal Green’s functions.

We again calculate the self-energies and obtain

�R
⊥(k) = iλ

3N

∫
p

GK (p) + i
(
GK

⊥ � �R + GA
⊥ � �K

)
(k),

�R
‖ (k) = iλ

3N

∫
p

GK (p) + i
(
GK

‖ � �R + GR
‖ � �K

)
(k)

+ φ2�R(k),

�K
⊥ (k) = i

(
GR

⊥ � �R + GA
⊥ � �A + GK

⊥ � �K
)
(k),

�K
‖ (k) = i

(
GA

‖ � �R + GR
‖ � �A + GK

‖ � �K
)
(k)

+ φ2�K (k), (32)

where

�R/A(k) = �R/A(k)
(
1 + φ2�R/A(k)GR/A

‖ (k)
)
,

�K (k) = �K (k) + φ2
(
�G‖�

)K
(k) (33)

represent the interactions screened by both transverse
and longitudinal fluctuations. Here we have abbreviated
the Keldysh structure with (ABC)K = ARBRCK + ARBKCA +
AK BACA. Also, � has been projected to the physical state
satisfying the causality condition GV

⊥/‖ = 0 and

GR/A
⊥/‖(k) = ([

GR/A
0,‖
]−1 − �

R/A
⊥/‖(k)

)−1
,

GK
⊥/‖(k) = |GR

⊥/‖(k)|2(�K
⊥/‖(k) − 8iγ T

)
. (34)
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FIG. 5. Coupled Dyson equations in 2PI at next-to-leading order
in 1/N with symmetry factors stated explicitly. To write the self-
energies in a compact form we distinguish between two types of
dressed interactions indicated as wavy and zigzag lines. The last line
corresponds to the equation of motion of the field expectation value
φ ≡ φcl.

In the absence of fluctuations, the inverse transversal Green’s
function is given by

[
GR/A

0,⊥
]−1

(k) = 2
(
ω2 + iγω − m − Dk2

)− λ

3N
φ2 (35)

and the difference between longitudinal and transversal modes
has been absorbed into the self-energy. Additionally, the equa-
tion for the field expectation value becomes([

GR/A
0,⊥
]−1

(k) − iλ

3N

∫
q

GK (q)

− i
(
GK

‖ � �A + GR
‖ � �K

)
(k)

)
φ(k) = 0. (36)

While these equations are lengthy, this is owed mostly to
the explicit distinction between longitudinal and transversal
modes. In fact, there is a simple diagrammatic representation
for these coupled Dyson equations shown in Fig. 5.

From there we immediately see that Goldstone’s theorem
reduces to equating the last diagram in the first and last lines
at vanishing external momentum. However, as opposed to
1PI, self-energies calculated from a 2PI effective action mix
between different powers of 1/N , therefore it is not at all
obvious that these diagrams are identical. Indeed, one may
compare the explicit expansions of both expressions order by
order in 1/N and find that they disagree at O(N−2) because the
diagram in Fig. 6 is missing from the transversal self-energy.
The Goldstone mass could therefore be suppressed to O(N−3)
by adding the diagrams in Fig. 7 to the effective action. By
repeating this procedure, the violation of Goldstone’s theorem
can be suppressed to higher and higher orders in 1/N at the

FIG. 6. Contribution missing from the transversal self-energy
responsible for the leading contribution to the Goldstone mass of
order O(N−2).

cost of calculating more and more increasingly complicated
diagrams.

The issue of a finite gap in the symmetry-broken phase for
conserving approximations has been known for many years
[69,70], but no solution is in sight. Fortunately, the erroneous
mass is small O(N−2). We will thus in the following use the
2PI effective action and manually set the transverse mass in
thermal equilibrium to zero as this is much more straightfor-
ward than attempting to estimate and compensate the errors of
a nonconserving approximation.

Until now the discussion has been completely generic and
equally applies to equilibrium, however (approximate) con-
servation laws due to algebraically slow decay and massless
modes will remain the central concepts for subsequent ap-
proximations needed to evolve the system to late times.

V. WIGNER EXPANSION

Within any given approximation to �2, the evolution of
the system is given by the Dyson equation (13), which can
be rewritten as a set of coupled integro-differential equations.
These are however difficult to interpret and in general nu-
merically very costly to evolve to late times. Therefore it
necessitates further approximations [71–74]. A very useful
tool in this context is the Wigner expansion, a gradient ex-
pansion on the Wigner transformed Green’s functions

G(t, ω, k) =
∫ ∞

−∞
dτeiωτ G

(
t + τ

2
, t − τ

2
, k
)
. (37)

As is usually the case, we expand to linear order in ∂t . Further-
more, spatial translation invariance is assumed at all times.
A brief summary of the Wigner expansion is provided in
Appendix B. Within the Wigner approximation the retarded
Green’s function simply becomes

GR(t, ω, k) = ([
GR

0

]−1
(ω, k) − �R(t, ω, k)

)−1
. (38)

FIG. 7. Feynman diagrams that need to be added to the effective
action to suppress the Goldstone mass in 2PI to O(N−3).
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The Keldysh Green’s function satisfies the time-local open
Kadanoff-Baym equation derived below in Sec. V A

γ ∂t G
K = −

(
2(Dk2 + m) + λ

3N
φ2

cl + ��R

)
GK

− �GR(�K − 8iγ T )

− 1

2
{��R, GK} + 1

2
{�GR, �K}

+ �R
memGK − �GR�K

mem (39)

with the Poisson bracket {A, B} = ∂ωA∂t B − ∂t A∂ωB and
�

R/K
mem representing corrections to the purely time local in-

teraction terms of the first line. They are obtained from a
Taylor expansion of the dynamic functions within the integral
expressions for �R/K and therefore correspond to memory
effects [75]. The evolution is conserving if the expressions
for the self-energies are derived from a 2PI effective action
and can be made gapless by subtracting the equilibrium gap
�R(t → ∞, ω = 0, k = 0). Note, that this only affects the
time-local terms in the first line of Eq. (39).

Scaling dynamics implies algebraic relaxation ∼t−α ,
which suggests that gradient terms are suppressed at late
times. We will analyze this argument more carefully in
Sec. V B, but for the moment will push on by dropping all
gradient terms involving the self-energy. With this, we find
the evolution equation

Z−1∂t G
K =2i�(GR−1

)GK − 2i�GR(�K − 8iγ T ) (40)

with inverse quasiparticle weight Z−1 = 2iγ . It has a simple
interpretation, with the first term corresponding to the inser-
tion of fluctuations at momentum k either from the bath or by
internal collisions leading to the redistribution of excitations
from other momenta. The second term on the other hand
describes the opposite effect of excitations decaying into the
bath or scattering to other momenta. We note that this equa-
tion differs qualitatively from its closed system equivalent

∂t G
K = −2(�(GR−1

)GK + �GR�K ), (41)

where the real part of GR is replaced with the imaginary part.
This reflects the qualitative difference in the late-time evolu-
tion we already pointed out in Sec. II. The fact that the Wigner
expansion is applicable only at late times rationalizes that
the transition from closed-system to open-system dynamics
at timescales ∼1/γ are beyond reach, leading to the observed
dichotomy between the two settings (see Sec. V A below).

The key feature of the Wigner expansion is the simpli-
fication of the memory integrals to purely time-local terms
in Wigner coordinates. We, therefore, refer to Eq. (40) as
memoryless evolution.

Before the Wigner expansion can be applied, we need to
address a few issues: firstly, we need to verify if it is actually
applicable at late times for gapless approximations, secondly,
we need to confirm that it is conserving and does not introduce
an artificial gap to the transverse modes. We address the
first issue in Sec. V B, arguing that it produces the correct
qualitative behavior at late times. That is, scaling exponents
will be captured correctly if the time-dependent momentum
scale that dominates the collisions decays as kColl � t−1/z with

z the dynamical exponent. Observables local in frequency
space on the other hand are not expected to be accurate unless
kColl � t−1/z.

The second issue has been addressed by Knoll et al. [75],
who have shown the gradient expansion to be conserving at
every order. Intuitively this is easy to understand, as for any
frequency and momentum we can consider sufficiently late
times, such that the evolution has slowed down enough such
that a scale separation between different orders of time deriva-
tives occurs.4 Since the cancellation happens independently
for each diagram in the 2PI effective action, the order of
the expansion can be chosen differently for each scattering
process. In particular, one may keep gradient corrections to the
bare dynamics but only treat the lowest order of the collision
integral as is done in Eq. (40). Following the same arguments,
it also follows that the Wigner expansion does not introduce
an artificial gap.

As a side note, we point out, that the truncation of the
collision integral at zeroth order in the Wigner expansion
necessarily fixes the inverse quasiparticle weight, i.e., the
prefactor of ∂t GK in Eq. (40) to its bare value Z−1 = 2iγ .
Attempting to improve this value to Z−1 = 2iγ + i∂ω��R as
is often done [54,76] will break conservation laws unless it
is the same for all quasiparticles. Vice versa, if the quasipar-
ticle weight differs significantly from its bare value, memory
effects and backflow terms in the form of the second line in
Eq. (39) must be kept. For the qualitative analysis that we will
get to next, the precise value of Z is insignificant.

We conclude that the quench dynamics of an open system
at late times in the symmetry-broken phase is adequately
described by the evolution equations Eqs. (38) and (40) if self-
energies are derived from a 2PI effective action, the inverse
quasiparticle weight in equilibrium is close to its bare value
Z−1 ≈ 2iγ and the characteristic scale of the momentum dis-
tribution of fluctuations kColl(t ) does not relax more quickly
than t−1/z. In the case discussed here, the dynamical exponent
takes the value z = 2.

A. Overdamped dynamics

The necessity for an explicit distinction between open and
closed evolution equations in the memoryless approximation
becomes apparent already for a noninteracting system, as will
be explained in this subsection.

For each Green’s function G(t1, t2), there are two Dyson
equations: one for the time evolution of each of its arguments.
The sum and difference of these provide two linearly indepen-
dent evolution equations. For the Keldysh Green’s function,
these are known as Kadanoff-Baym equations (◦ denotes the
convolution in time)

[GR]−1 ◦ GK ± GK ◦ [GA]−1 = �K ◦ GA ± GR ◦ �K

− 8iγ T (GA ± GR), (42)

which follow directly from the Dyson equation (13) and are
therefore exact.

4Strictly speaking this simple argument fails since the Wigner
expansion is an asymptotic series, necessitating the more involved
discussion of Knoll et al. [75].
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It is often convenient to distinguish between terms of the
self-energies that are local in time and nonlocal ones. The
former, so-called Hartree terms �

R/A
H (t, t ′) ∼ δ(t − t ′) are re-

sponsible for a dynamical modification of the spectrum. The
time nonlocal terms �

R/A
nl = �R/A − �

R/A
H on the other hand

describe the effect of collisions and cause redistribution in
momentum space. They are therefore the sole reason for
thermalization in closed systems at late times after a quench.
These two very different effects of interactions are often made
explicit in the Kadanoff-Baym equations by collecting the
nonlocal terms in the so-called collision integral I . One then
has

([GR
0 ]−1 − �R

H ) ◦ GK ± GK ◦ ([GA
0 ]−1 − �A

H )

= I − 8iγ T (GA ± GR), (43)

with the collision integral

I = �R
nl ◦ GK ± GK ◦ �A

nl + �K ◦ GA ± GR ◦ �K . (44)

The two signs in Eq. (42) lead to different dynamics in
Wigner approximation.5 To understand which is more suitable
to us, we consider a damped harmonic oscillator (i.e., the
open O(1)-model with λ = 0), for which the collision integral
vanishes. It is described by the two equations

(∂t + γ )GK (t, ω, k) = − 2iγ 2T

(ω2 − Dk2 − m)2 + γ 2ω2
, (45)[

∂2
t + 2γ ∂t − 4(ω2 − Dk2 − m)

]
GK (t, ω, k)

= 8iγ T (ω2 − Dk2 − m)

(ω2 − Dk2 − m)2 + γ 2ω2
. (46)

Surprisingly (46) is unstable for ω2 > m + Dk2, a property
that is clearly not shared by the damped harmonic oscilla-
tor, yet (46) is exact. In the exact evolution, this issue is
resolved by the initial conditions, which guarantee zero over-
lap with the unstable eigenfunctions. However, the Wigner
representation is not well suited to implement these boundary
conditions, which there take the form of integral equations that
are not easily generalized to the interacting system. We may
avoid these complications by considering the overdamped
limit, where (46) simplifies to[

∂t + 2

γ
(Dk2 + m)

]
GK (t, ω, k) = − 4iT (Dk2 + m)

(Dk2 + m)2 + γ 2ω2
.

(47)

Physically, this neglects the quickly decaying mode with life-
time ∼1/γ , leaving only the long-lived branch with decay
rate ∼k2, and is thus accurate on timescales t � 1/γ . For the
closed system, however, no such limit exists as there γ = 0+.
Consequently, the undamped harmonic oscillator needs to be
evolved with (45) in the limit γ → 0+, which only becomes
nontrivial once interactions are included. Applying this con-
clusion to the evolution of closed systems in general leads to
Eq. (41).

5For complex fields only the minus sign in (42) leads to a differen-
tial equation in time and is therefore exclusively considered.

For open systems, on the other hand, we have the choice
between Eqs. (45) and (47). To understand, which is more
suitable for systems with gapless modes, we generalize to
the driven case with time-dependent mass and temperature
and integrate over all frequencies. As long as the frequency
integral is convergent, this requires no approximation as all
gradient terms from the Wigner expansion can be written as
total derivatives. In case of Eq. (45), this is only true for a
positive mass m(t ) > 0 and the integrated equation

(∂t + γ )GK (t, k) = −i
γ T (t )

Dk2 + m(t )
(48)

diverges and becomes meaningless for m(t ) < 0. The inte-
grated, overdamped limit of (46) on the other hand becomes[

∂t + 2

γ
(Dk2 + m)

]
GK (t, k) = −2iT

γ
, (49)

which clearly has no such issues. It is stable for all times and
drives and becomes exact for quenches in the limit t → ∞.
Indeed, Eq. (49) corresponds to the time-dependent stochas-
tic Ginzburg-Landau equation in the limit λ = 0, which we
show in Sec. VI to be very accurate at late times, even for
strong interactions. We therefore conclude that at first order
in the Wigner expansion, gapless, open systems have to be
evolved with the opposite sign choice in the Kadanoff-Baym
equation (42) than closed systems.

The fact that the dynamics of the open, gapless system
is faithfully captured only by (46) introduces the previously
stated dichotomy between the kinetic theories for closed and
open systems. The kinetic theory is therefore in general ill-
suited to discuss a crossover between the dynamics of closed
and open O(N ) models.

Clearly, this argument remains valid when adding inter-
actions. However, care has to be taken when applying the
Wigner expansion to the right-hand side of Eq. (42) as the
gradient expansion needs to be applied to the loop integrals
in the self-energies as well (see [75]). With the systematic
application of the Wigner expansion also to those terms, the
Kadanoff-Baym equation for open O(N )-symmetric systems
takes the general form stated in Eq. (39).

We conclude the paragraph with a technical remark. As we
argued, the overdamped approximation is accurate at small
momenta. The frequency integrals of loop diagrams however
are unrestricted. It is, therefore, necessary to first use exact
cancellations due to the causality structure of the Keldysh
Green’s functions such as

∫
ω

(GR(ω, k) + GA(ω, k)) = 0 be-
fore the overdamped approximation is applied. Following
these cancellations only integrals regularized by the distribu-
tion function remain and since the quickly decaying gapped
mode is essentially unoccupied at sufficiently late times, the
approximation can be safely applied there.

B. Memoryless collisions

To reach beyond the noninteracting, Markovian evolution
discussed in the previous subsection, it is necessary to apply
the Wigner expansion also to the collision integral I defined
in Eq (44). As we have argued before, one naively expects for
self-similar dynamics that the derivative terms in the second
line of (39) disappear faster than the interaction terms in the
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first line. However, we are going to find that the relaxational
dynamics towards smaller momenta also evolves the timescale
beyond which this argument holds. For a Gaussian, thermal
fixed point, meaning that collisions are irrelevant in the ap-
proach to the stationary state, the occupation induced by a
quench vanishes as |k| ∼ t−1/z, which coincides with the limit
of validity of the Wigner expansion. In this marginal case,
realized for the open O(N ) model, the collision integral is
captured qualitatively by the memoryless approximation if
either the relaxation is slower than 1/t or the interactions are
sufficiently strongly screened. In the first case, the evolution
becomes adiabatic, while in the second case, the memory
is cut off by a timescale ξ z determined by the screening
length ξ .

We generally expect all terms in the second line of Eq. (39)
to scale similarly but note that a discussion of all terms re-
quires their explicit evaluation, which then becomes specific
for the choice of model and approximation to the 2PI effective
action. On the other hand, we provide sufficient, but not nec-
essary conditions for convergence of the Wigner expansion. It
is therefore plausible that memoryless approximations are in
fact more broadly applicable.

For concreteness, we will only consider the Wigner expan-
sion of the driving term of the collision integral i.e., the last
term of Eq. (40). Furthermore, we focus on the special, rele-
vant case, where GR(t, ω, k) = GR(ω, k) at late times is given
by Eq. (5) with γ = D = 1 and μ = 0. In NLO(1/N) it is then
expected that the other terms behave similarly. Moreover, we
assume that �K (t, ω, k) varies in frequency on a scale ω0,
which means that we need to distinguish between high and
low momenta.

1. High momenta

In the regime |k|z � ω0, excitations are short-lived, such
that we can approximate �K in the collision integral by its
instantaneous value

I (t, ω, k) ≈ GR(ω, k)�K (t, ω, k) for t � 1/ω0, (50)

which implies that the lowest order Wigner expansion be-
comes accurate after a fixed finite time, see Fig. 8. We note,
that the frequency dependence of �K is essential at high
momenta. Therefore the generalized Kadanoff-Baym ansatz,
which approximates the Keldysh Green’s function by the co-
variance matrix (i.e., its equal time limit) [71] overestimates
the population at high momenta.

FIG. 8. Comparison between the two limiting cases of small
and large momenta. At small momenta (a), the correlations of
�K (t1, t2, k) are very short compared to those in the spectral function
A = GA − GR. Hence the dependence of �K (t1, t2, k) on t1 − t2 can
be approximated as δ(t1 − t2), which in frequency space translates
to �K (t, ω, k) = �K (t, k). However, its algebraic dependence on t
remains important as the narrow spectrum implies a long memory.
In the opposite case (b) excitations are very short-lived, therefore
the slow variation of �K (t, ω, k) in time can be neglected, but its
relatively long correlations in t1 − t2 render its frequency dependence
in Wigner coordinates important. The two cases therefore can be
thought of as a piano with a pressed damper pedal (a) or una corda
pedal (b).

2. Low momenta

For |k|z � ω0, the Keldysh self-energy can be approxi-
mated as a constant in frequency

�K (t, ω, k) ≈ �K (t, k) −→
t→∞ t−α (51)

that decays algebraically at late times with α > 0. This case
implies that the driving saturates the linewidth of the spectral
function which describes long-lived excitations that remem-
ber the history of �K , see Fig. 8. This corresponds to the
generalized Kadanoff Baym ansatz. Unfortunately, there is
no systematic way to interpolate between the generalized
Kadanoff-Baym ansatz at small momenta |k|z � ω0 and the
Wigner expansion at high momenta |k|z � ω0. Instead, we
are going to derive the conditions under which the Wigner
expansion can be applied at small momenta.

We first note that for the exemplary contribution to the
collision integral the Wigner expansion to nth order can be
solved exactly for |k|z � ω0, where �K becomes frequency
independent. There one finds

In(t, ω, k) =
n∑

m=0

im

2mm!
∂m
ω (GR(ω, k) + (−1)mGA(ω, k))∂m

t �K (t, k)

= −
n∑

m=0

t−m−α
(
(|k|z − iω)1+m + (|k|z + iω)1+m

)
(2(|k|2z + ω2))−1−m(α)m, (52)

where (α)n = �(α + n)/�(α) is the Pochhammer symbol. This series may be compared with the exact result (for �K (t, k) =
t−α)

I (t, ω, k) ≡
∫

dτeiωτ GR(τ, k)�(t − τ/2, k)

= e−2t (|k|z+iω)t1−α (e4itωEα (−2t (|k|z − iω)) + Eα (−2t (|k|z + iω))). (53)
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The first observation is that the Wigner expansion for any fixed set of arguments is an asymptotic series that for large n diverges
as

|In(t, ω, k)| = nn(2et )−n(|k|2z + ω2)−n/2

to logarithmic accuracy. More importantly, the difference between the Wigner expansion and the exact result is largest for ω = 0,
where it behaves as ∣∣∣∣ I (ω = 0, t, k) − In(ω = 0, t, k)

I (ω = 0, t, k)

∣∣∣∣ ∼
{

(t |k|z )−α−n t |k|z � 1
(t |k|z )−1−n t |k|z � 1

(54)

and is therefore small only if t � |k|−z. The behavior for
large n is easy to understand: The Green’s function provides
a memory time tmem ∼ |k|−z. If t � tmem the collision integral
remembers the singularity at t = 0 and the gradient expansion
will never converge. In fact, each successive order will deviate
further from the actual result.

So far, we have found that the zeroth-order Wigner ex-
pansion is accurate at high momenta |k|z � ω0 and for small
momenta |k|z � ω0 if |k| � t−1/z. However, this excludes the
particularly important case of canonical scaling |k| ∼ t−1/z,
for which we will explain next that the Wigner expansion
remains valid for quantities averaged over a sufficiently large
frequency range.

When discussing times t ∼ tmem, we need to extend the
discussion to include the initial quench. To illustrate this, we
consider �K (t ) = t−αe−δt/tθ (t ), which is a smooth (nonana-
lytic) function that is exactly zero at negative times and then
switches on on a timescale δt = 1. Since �K is independent
of frequency, it corresponds to Markovian noise. At times t �
tmem the zeroth-order Wigner expansion is well-converged
(see Fig. 9). However, for earlier times the system remembers
the quench process, which results in oscillations of the form
I (t, ω, k) ∼ cos (2ω(t + O(δt ))) (see Fig. 9). While locally
the Wigner expansion is almost everywhere a bad approxima-
tion at these early times/small momenta, we notice that the

(a) (b)

FIG. 9. Comparison between the full integral I (t, ω, k) for t =
100, α = −3/2, and z = 2 with the zeroth-order Wigner approxi-
mation I0(t, ω, k). In (a), we chose the momentum |k| = √

t , where
the Wigner expansion is locally not yet a good approximation as
it misses the fast oscillations ∼ cos (2ωt ). At the same time at the
larger momentum |k| = √

10t shown in (b) the system has already
forgotten about the quench and is therefore well approximated by the
zeroth-order Wigner expansion at all frequencies. At small momenta,
one thus has to average over a frequency range �1/t for the Wigner
expansion to become a good approximation.

frequency integrated term

I (t, k) =
∫

dω

2π
I (t, ω, k)

= (GR(t = 0, k) + GA(t = 0, k))�K (t, k)

= −1

2
�K (t, k) ≡ I0(t, k) (55)

is recovered exactly in zeroth-order Wigner expansion (all
other expansion terms can be written as integrals over to-
tal derivatives and thus vanish). Hence we conclude that
frequency-integrated quantities are well described in zeroth-
order Wigner expansion. However internally in the collision
integrals the frequency-dependent, oscillating Green’s func-
tions enter. Since the latter inherit these oscillations from the
memory effects of the collision integral, we have to consider
integrals of the form

I (t, k) =
∫

dω

2π
I (t, ω, k)K (ω). (56)

Linearizing the collision integral around the thermal state, the
kernel K (ω) is unaffected by memory effects and generally
independent of time.

We now have to distinguish several cases.
(1) Assuming canonical scaling, K (ω) varies on a scale

∼kz and since the relevant momenta depend on time one has
kz ∼ 1/t . In this case, the zeroth-order Wigner expansion cap-
tures the integral accurately only if α < 1, which corresponds
to adiabatic evolution. For α = 1, memory effects give rise to
logarithmic terms in Eq. (56), which are missed by the Wigner
expansion. In case of a fast relaxation α > 1, the Wigner
expansion predicts qualitatively wrong behavior.

(2) If K (ω) varies on a scale much smaller than kz, the ef-
fect of the momentum integration is negligible and the Wigner
expansion fails for t ∼ tmem.

(3) Finally, if the characteristic scale of K (ω) is indepen-
dent of time, the zeroth-order Wigner expansion of Eq. (56)
is accurate for all values of α. In the case of the O(N ) model,
this frequency scale is provided by the screening length ξ−z.
Since α = 3/2, screening is essential for the application of the
formalism to the symmetry-broken phase of the O(N ) model.

In summary, the applicability of the Wigner expansion to
gapless open systems requires a case-by-case analysis, weigh-
ing the memory time of the most relevant momenta at late
times against the elapsed time. For t ∼ tmem, which is realized
for canonical scaling with |k| ∼ t−1/z, one finds the very inter-
esting case of a marginal expansion that recovers the correct
scaling behavior only for frequency averaged quantities. This
is sufficient for the scaling analysis of the late-time evolu-
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tion and the purposes of this paper, as in the near-thermal,
symmetry-broken state of the O(N ) model collisions are suf-
ficiently screened at long distances. As is illustrated in Fig. 9,
observables that are not averaged over a frequency range
greater than 1/t retain a memory of the initial quench. These
cannot be resolved in the Wigner approximation.

We note, that the discussion here is no proof of the appli-
cability of the Wigner expansion but provides useful insights
into the convergence properties of the collision integral. The
simple arguments presented here do not account for cancella-
tions between different contributions to the collision integral.
We therefore consider the estimates presented here to be
rather cautious and justify the use of the Wigner expansion
accordingly. This applies especially to the collision integral
in the approach to a Gaussian fixed point and thus in the
open O(N ) model in the considered physical situation near
thermal equilibrium. Consequently, in Eq. (40), we neglect
the second line of Eq. (39), which in general has to be jus-
tified a posteriori. This is done by validating that the relevant
momenta of the collision integrals satisfy kColl � t−1/z with
special care needed in the marginal case kColl ∼ t−1/z. For a
given solution, kColl can be estimated by maximizing the func-
tional derivative of the frequency-averaged collision integral∫
ω

F (ω, k, t )δI (t )/δF (ω, k, t ) with respect to |k|.

VI. COLLISIONLESS APPROXIMATION

After establishing the memoryless approximation and the
conditions under which it satisfies the requirements formu-
lated in Sec. III, we now apply different schemes of dealing
with interactions. Specifically, we turn our attention to the
explicit evolution of the open O(N )-symmetric model at late
times as a real-world application.

At leading order in 1/N interactions are described in
Hartree approximation. The equations of motion then become
(see Sec. IV B)

∂t G
K
⊥ = − 2

γ
(Dk2 + m⊥)GK

⊥ + 4iT (Dk2 + m⊥)

γ 2ω2 + (Dk2 + m⊥)2 ,

∂t G
K
‖ = − 2

γ
(Dk2 + m‖)GK

‖ + 4iT (Dk2 + m‖)

γ 2ω2 + (Dk2 + m‖)2
,

∂tφ = −mφ

γ
φ, (57)

with m⊥ = m + λ
6N (φ2 + i(N − 1)

∫
q GK

⊥(q) + i
∫

q GK
‖ (q)),

m‖ = m⊥ + λ
3N φ2

cl, and mφ ≡ m⊥.6 The only interaction
effect enters via the dynamical masses m⊥ and m‖,
hence, this level of the approximation is collisionless,
meaning no process exists that allows excitations to change
momentum. In the absence of a nontrivial collision integral,
its memoryless approximation is of no concern as all
gradient corrections to the mass amount to total derivatives.
These vanish for the excess momentum distribution

6Typically the mass m⊥ is negative, which leads to singularities in
Eq. (57). The problem disappears after integration over frequencies.
Later, when including collisions m⊥(t ) will disappear fast enough
that we can safely set it to zero in �GR.

δn(t, k) = i
∫
ω

(GK (t, ω, k) − GK
th(t, ω, k))/2. Its evolution

is therefore exact at this order in 1/N . Integrating over
the frequency in Eqs. (57) one finds a closed set of rate
equations for the momentum distributions n⊥/‖(t, k) and the
order parameter φ(t ).7

The overdamped regime is equivalent to time-dependent
stochastic Ginzburg-Landau theory [77–80] or model A in
Ref. [81]. The expansion to quadratic order in fluctuations that
has previously been used in the context of quench dynamics
[35,36,82,83] corresponds to the collisionless approximation.
It is justified at late times t � 1/γ if redistribution due to
collisions, which will be discussed in the next section, is
negligible. As opposed to the closed system analog, the col-
lisionless limit of the open system is not frozen in its initial
state as equilibration with the environment persists.

When analyzing the equations Eq. (57), we realize that
both the order parameter φ and the longitudinal fluctuations
GK

‖ are gapped excitations. As a result, they quickly relax
the dynamical Goldstone mass m⊥(t ), which therefore plays
no role in the evolution at late times. The latter is instead
fully determined by the equilibrium decay rate of the excess
Goldstone fluctuations. In d > 2 dimensions, one finds

δGK
⊥(t, k) ≈

(
δGK

⊥(t = 0, k) + 2GK
⊥,th(k)

δφ(t )

φth

)
e− 2

γ
Dk2t

,

δφ(t ) ≈ − 1

2φth

∫
k
δGK

⊥(t, k) ∼ t−d/2,

m⊥(t ) ∼ t−d/2−1, (58)

where δGK
⊥(t = 0, k) ∼ k0 represents the excess transversal

excitations immediately after the quench. Since in the col-
lisionless approximation the Goldstone theorem is exactly
satisfied at all times (see Sec. IV B), the dominant contribution
at small momenta ∼GK

th(k) ∼ k−2 is proportional to the dis-
placement of the order parameter δφ = φ − φth. It therefore
decays as t−d/2 and can be neglected at late times.

Based on this, we draw the important conclusion that
quenches which preserve the O(N )-symmetry differ qualita-
tively in their late-time behavior from those that do not: In the
latter case, Goldstone’s theorem does not apply. The excess
thermal fluctuations, corresponding to an effectively higher
temperature, are then not proportional to δφ and therefore
survive for long times, where they are dominant. This also re-
sults in a slower equilibration of the order parameter δφ(t ) ∼
t1−d/2 compared to the quench without explicit symmetry
breaking. In case of the latter, excess fluctuations scale sub-
thermally. This has an immediate experimental consequence:
experiments with perturbations respecting the symmetry, like
a temperature quench or Raman scattering, will observe much
faster relaxational dynamics than experiments that break the
symmetry. For example, the system is expected to recover
more slowly from neutron scattering, which induces excita-
tions in the longitudinal mode but not the transverse direction,
thereby explicitly breaking the O(N ) symmetry [84]. In the

7A faster derivation is obtained by directly considering GK (t, t, k),
which requires no Wigner expansion.
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next section, we show that collisions will not affect this state-
ment.

VII. REDISTRIBUTION AND SCREENING

In the previous section, we have shown that the colli-
sionless dynamics of open systems at late times reduce to
rate equations with dissipative dynamics fully determined by
the coupling to the environment. Contrary to the absence
of any evolution in collisionless closed systems, it provides
insights into the order-parameter dynamics and the density of
Gaussian fluctuations. However, we still need to analyze the
effect of collisions, the sole origin of thermalization in closed
systems. In particular, we will find that collisions render the
spectrum in the longitudinal direction gapless. The mutual
feedback between longitudinal and transversal dynamics then
has to be analyzed carefully to show that the longitudinal evo-
lution adiabatically follows that of the transversal excitations.
Although the formalism applies to any dimension d above the
lower critical one, the explicit calculations in this section are
performed in d = 3.

Addressing these questions requires an expansion to
NLO(1/N), which describes the same collision processes as
in closed systems [22,55], but with the equations of motion of
fluctuations given by Eq. (40) instead of Eq. (41). The explicit
expressions for the self-energies have been stated in Eqs. (32)
to (36) with the corresponding diagrammatic representation
shown in Fig. 5.

Near the thermal fixed point, it is useful to subtract the
stationary thermal state from the evolution equation, which
then becomes

Z−1∂tδGK =2i�GR−1
δGK − 2i�GRδ�K

− 2i�δ�RGK
th − 2i�δGR

(
�K

th − 8iγ T
)
. (59)

For small perturbations around the thermal state, the last two
terms cancel. This excludes however the effect of a finite
mass, which for vanishing ω and k is never a small perturba-
tion to GR

th and therefore needs to be retained. The combined
effect of the second line at small momenta then reproduces the
excess population ∼GK

th already discussed in the collisionless
approximation. Although the dynamical mass is quantitatively
modified by collisions as well, the important feature of O(N )-
symmetric quenches mφ (t ) = m⊥(t ) ensures that the leading
effect of the second line in Eq. (59) at small momenta vanishes
at late times.

The qualitatively new effect of collisions is captured by the
first line of Eq. (59), with the first term describing the decay
of excess fluctuations and scattering of an excitation out of
the state with momentum k. The second term represents the
reverse process of collisions into the state on the left-hand
side.

An important qualitative difference to the collisionless
approximation is that, since the longitudinal mode at long
wavelengths can decay into two gapless transverse ex-
citations, it itself becomes gapless in d < 4. The same
is true for the closed O(N ) model at finite temperatures
[84–86]. In the thermal state in three dimensions, one

finds [87]

GR
‖,th(ω, k) = 1

2(iγω − Dk2) − φ2
th�

R
th(ω, k)

,

�R
th(ω, k) =

⎛
⎜⎝1

g
+

NT sin−1
( |k|√

2k2−2i γω

D

)
8πD2|k|

⎞
⎟⎠

−1

, (60)

and therefore GR
‖,th ∼ (ω + 8iDπ−2γ −1k2)−1/2. In other

terms, at length scales above the screening length ξ⊥ = 48D
T λ

[87] the formation of transversal fluctuations screens the bare
contact interactions. Although gapless, the spectral weight
of the longitudinal modes vanishes compared to that of the
transversal excitations for small energies and momenta. Con-
sequently, the density of quench-induced fluctuations vanishes
much faster for longitudinal excitations than in the transverse
direction. Concluding that the transverse modes are more
strongly suppressed at long wavelengths than their longitu-
dinal counterparts, we use the lowest order of the Wigner
expansion to write

GK
‖ (t, ω, k) = |GR

‖ (t, ω, k)|2�K
‖ (t, ω, k). (61)

Physically, this can be interpreted as the longitudinal modes
adiabatically following the slow dynamics of the transverse
excitations and preserves the constraints outlined in Sec. III.

Together with the insight that the order parameter dynam-
ics is relaxing exponentially fast unless driven by the slow
dynamics of the transversal mode, we conclude that the longi-
tudinal direction of the order parameter field is always locally
equilibrated with the slowly evolving transversal modes. This
implies that the interactions between transversal modes ac-
cording to Eq. (33)

�R(t, ω, k) ≈ 2φ−2
th (iγω − Dk2) (62)

are very strongly screened at distances longer than the

longitudinal screening length ξ‖ = max ( DNT
16φth

,
√

3DN
λφ2

th
). On

shorter scales, on the other hand, the bare interactions
�R(t, ω, k) ≈ 2λ/3N are recovered. As a result, the long-
lived long-wavelength transversal excitations in δGK interact
very weakly. At late times, one therefore finds that δ�K ∼
(t−3/2, ω0, k0) decays with the same power as the collisionless
equilibration with the thermal bath, providing only a small
quantitative correction.

Note that due to φth ∼ λ−1/2 it is possible to suppress the
effects of screening to very long scales by considering weak
interaction. However, the smaller overall scattering rate ∼λ2

compensates for the less efficient screening, such that the
collisions at small momenta cannot be enhanced in this way.

We confirm these arguments by an explicit comparison of
the dynamics following a small quench of the temperature

T (t ) = T
(
1 + δTe− (γ t−2)2

2σ2 − 1
γ t θ (t )

)
(63)

with the quench amplitude set to δT = 1/10 and the pulse
width σ = √

1/5. We emphasize that the results at late times
are largely independent of the details of the quench protocol.
They are reported in Fig. 10 with additional results for the lon-
gitudinal mode given in App. C. In Fig. 10, the first two panels
show the evolution of the order parameter and the transversal
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FIG. 10. Comparison between the time evolution following a
weak temperature quench in the collisionless approximation (leading
order in 1/N) and the dynamics including scattering in the mem-
oryless approximation of Eq. (39). Due to the strong screening of
interactions at long wavelengths, the asymptotic behavior of the col-
lisionless description in the overdamped approximation (light green)
agrees extremely well with the expansion to next-to-leading order
in 1/N (dark red). Both differ at early times from the collisionless
evolution without overdamped approximation (blue), see insets. Both
the order parameter (top) and the mass of the transversal mode
(middle) follow the prediction Eq. (58). The bottom panel shows the
evolution of the transversal momentum distribution. While collisions
increase the density at high momenta (full lines) compared to the
collisionless (dashed) result, the decay of the thermal peak as well as
the momentum scale with the largest number of excitations kColl (see
inset) agrees well between the two methods. The inverse screening
length 1/ξ‖ is shown as gray vertical line and we used the parameters
λ = T = γ = D = 1, N = 10, and φth = √

5.

mass with the exact, but collisionless evolution shown in
blue and the overdamped evolution including collisions and
thus redistribution in red. Furthermore, the green line repre-
sents the result of Eq. (57) equivalent to the time-dependent
stochastic Ginzburg-Landau equation with weak fluctuations.
As expected, due to the strong screening of long-wavelength
fluctuations the main difference in these global quantities
arises at early times t � 1/γ from the overdamped approx-
imation as is seen in the insets. At late times, all methods
predict the same behavior independent of collisions and are
fully determined by the coupling to the thermal environment.

The only significant difference that arises from the in-
clusion of collisions is found at high momenta, where
interactions are not screened, see the last panel in Fig. 10. The
continued scattering of nonthermal fluctuations from small to
large momenta leads to a slower decay of the high momen-
tum tail δn⊥(t, k) ∼ t−3/2k−4 compared to δn⊥,nC(t, k) ∼
t−5/2k−4 set by the decay of the transversal mass in the colli-
sionless case. Although the latter results exclusively from the
dynamical mass perturbing the thermal background, whereas
the former is a consequence of scattering with large momen-
tum transfer, the asymptotic behavior ∼k−4 applies to both
calculations. One also finds that below the inverse screening
length 1/ξ‖ indicated as a gray line in Fig. 10, screening
modifies the momentum dependence to n⊥(t, k) ∼ k−2. Note,
however, that since these excitations at high momenta are
short-lived, no significant population can build up. Conse-
quently, the collision integral in both cases is dominated by
the same momentum scale kColl ∼ t−1/2, where the deviation
from the thermal state is largest, see inset in Fig. 10.

We can therefore conclude that, due to the efficient screen-
ing of interactions in the ordered state of the O(N )-model,
the order parameter excitations never thermalize to a tem-
perature different from that of the environment. There is
thus no extended transient regime, where the order parameter
fluctuations have thermalized but not yet equilibrated with
the environment. In fact, the excess fluctuations at late times
possess a subthermal momentum distribution, wherefore the
three-temperature model should not be applied there. In par-
ticular, the 3-TM predicts a qualitatively wrong asymptotic
decay of the order parameter displacement. We expect these
results to generalize as follows: for a weak coupling fixed
point, no thermalization occurs, as relaxation eradicates the
quench-induced population before it thermalizes. For a strong
coupling fixed point, on the other hand, one expects the op-
posite behavior and hence a three-temperature model to be
justified after the thermalization time.

VIII. OPEN-SYSTEM BOLTZMANN EQUATION

For simulations and the evaluation of observables, it is
convenient to work directly with the equations of motion of
the retarded and Keldysh Green’s function. The structure of
the collision terms, however, is most clearly revealed in the
kinetic equation obtained by a rephrasing of the equations of
motion in terms of the distribution function F = iGK/A,
where A = −2�GR denotes the spectral function. In equilib-
rium F is independent of momentum and related to the Bose
distribution nB(ω) by Fth(ω) = 2nB(ω) + 1 = coth (ω/(2T )).
We begin with the observation that ∂t GK ≈ −iA∂t F since the
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relevant perturbations to the spectral function at small mo-
menta, for example m⊥ ∼ t−5/2, vanish quickly. Technically
this is justified because the collisions in �R at most contain
one less distribution function than the corresponding term in
�K . As a result, higher momenta contribute to �R, which
therefore relaxes more quickly.

The kinetic equation then takes the form

Z−1i∂t F (ω, k) = 4Dk2 + �R + �A

−i(�R − �A − 4iγω)

× [8γ T + i�K − i(�R − �A − 4iγω)F ],
(64)

with the spectral function at small arguments given by

A(ω, k) = 1

γ

ω

ω2 + ε(k)2
, (65)

where ε(k) = (Dk2 + m⊥)/γ . On the other hand, the Keldysh
self-energy and thermal term from the bath approach a con-
stant. Hence the frequency dependence of GK mimics that of
GR + GA. Together with (GR + GA)/A ∼ ε(k)/ω this implies
for small arguments the form

F (ω, k) ≈ 2 f (k)ε(k)/ω ≡ 2T (k)/ω (66)

with the dimensionless momentum distribution function f (k).
Physically this can be interpreted as a distribution with a
momentum-dependent temperature T (k), corresponding to
the assumption of local thermal equilibrium in momentum
space. If this representation is valid on the scale set by kColl(t ),
the long-lived modes at small momenta allow one to simplify
integrals of the form∫

ω

A(ω, k)F (ω, k)C(ω, k) ≈ 1

γ
f (k)C(0, k) (67)

for a smooth function C(ω, k) varying slowly on the energy
scale ε(k).

With this, the kinetic equation can be projected to the
zero-energy modes, where it takes the form of a Boltzmann
equation

∂t f (k) = 2T − 2ε(k) f (k) + 1

γ 4
Icoll[ f ](k). (68)

within the collision integral

Icoll[ f ](k) =
∫

q

∫
p
�(k, q, p){ε(k) f (k)

×[ f (p) f (k − q) + ( f (p) + f (k − q)) f (q − p)]

− f (p) f (k − q) f (q − p)

×[ε(p) + ε(k − q) + ε(q − p)]}, (69)

where assuming f (k) � 1, we have retained only terms with
the highest power in f . As per the discussion below Eq. (60),
we have furthermore exploited that the longitudinal degrees
of freedom adiabatically follow the slow transversal modes
and therefore do not contribute to the scattering. In Eq. (68),
the first term inserts thermal fluctuations, which decay due to
the second term. The rate of collisions is determined by the

on-shell scattering matrix �R(ω = 0, q) via

�(k, q, p) = 1

ε(k) + ε(p) + ε(k − q) + ε(q − p)

× 1

ε(p) + ε(k − q) + ε(q − p)
|�R(0, q)|2,

(70)

which in our case is heavily screened at small momenta
since |�R(ω = 0, q)|2 ≈ 4φ−4

th D2q4. In Eq. (69), the first
line describes events scattering out of the momentum mode
k, whereas the second one scatters excitations into that
mode. It is easy to check that the thermal distribution in
low-frequency approximation f (k) = T/ε(k) is a stationary
solution to the Boltzmann equation, as it nullifies the collision
integral.

The open-system Boltzmann equation derived here is nu-
merically no simpler to evaluate than the gradient expansion
of the Kadanoff Baym equation. It is however valuable for
scaling arguments analogously to its closed system relative
[88–90]. For the discussion of the thermal fixed point in the
spontaneously symmetry-broken phase, we have already seen
that the collision integral provides only a subleading correc-
tion. The same conclusion is recovered from simple scaling
arguments in Eq. (68). Consequently, a more detailed analysis
is dispensable in the current context and should be deferred to
a system with stronger interactions at long wavelengths.

We emphasize that the open-system Boltzmann equa-
tion is valid for late times, where all occupied modes are
overdamped. Energy conservation therefore enforces a very
different constraint from the usual case, where the dispersion
relation constraints the collision integral [54,91,92].

IX. OUTLOOK

In this paper, we have established a framework for the
theory of open system dynamics at late times as a hierarchy
of successive simplifications. In doing so we have included
an investigation of the conditions necessary for their applica-
bility. Implementing it on the open O(N )-symmetric model
of an N-component order parameter and its fluctuations in
the symmetry-broken phase, we have shown that near the
thermal fixed point momentum redistributing collisions are
irrelevant, resulting in a collisionless evolution. The latter
is fully described in terms of the dynamical mass of the
transverse modes determining the effective rate of their equi-
libration with the environment as well as the order parameter
relaxation. The resulting Gaussian scaling of the momentum
distribution is dominated by a time-dependent momentum
scale kColl ∼ t−1/2, which pushes the Wigner expansion, used
in the derivation, to the limit of its range of validity. Neverthe-
less, the expansion remains justified by the strong screening
of interactions at long wavelengths for near-thermal states.
Hence, although observables that require a frequency resolu-
tion exceeding 1/t are not captured, collisions are described
correctly. Consequently, predictions for the late-time evolu-
tion of the O(N ) model are reliable.

One can interpret the collisionless evolution as the dynam-
ical manifestation of a Gaussian fixed point in an overdamped
system. The resulting collisionless dynamics, controlled by

064310-17



J. LANG, M. BUCHHOLD, AND S. DIEHL PHYSICAL REVIEW B 109, 064310 (2024)

the mass as the sole remaining dynamical parameter, is hence
expected to be universal, applying to other overdamped sys-
tems with de facto weak infrared interactions. As opposed to
the evolution of closed systems, where thermalization requires
momentum redistribution, this admits the efficient simulation
of the time evolution of a large class of open systems.

To explicitly check which systems lie in this class can be
rather demanding. However, a good indication regarding the
applicability of the collisionless evolution can be conveniently
obtained from the open-system Boltzmann equation (68).
Using the distribution function f (k) from the collision-
less evolution, one has to compare the long-wavelength
limit of the collision integral and the dissipation rate, i.e.,
lim|k|→0 Icoll[ f ](k)/(ε(k) f (k)). If it vanishes, momentum re-
distribution has no impact on the late-time evolution, and the
collisionless description is considered justified.

This leaves the question about other systems with less
efficient screening, for example, in lower dimensions. Even
more interestingly, there is no need to constrain oneself to
the thermal fixed point. The road map developed here can be
applied in the vicinity of nonthermal fixed points accessible
in strong quenches for which indications have already be seen
in experiments [9,13,17]. The highly nonthermal distributions
realized for a strong quench are generally expected to lead to
weaker screening and therefore require a separate discussion.
It will be interesting to see, to which extent the hierarchy
of simplifications developed here for near-thermal states can
be applied there and how nontrivial critical exponents can
be recovered or predicted. It should however be noted, that
for condensed matter experiments N � 3. As a result, strong
quenches to the disordered phase can generate topological
defects, which may require a separate discussion.

Note added. Recently, an independent study of the time
evolution of spin glasses appeared [93] that also applies the
2-PI effective action formalism to open systems [94].
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APPENDIX A: DERIVATION OF THE 1PI
EFFECTIVE ACTION

In this Appendix, we provide the detailed derivation of the
one-particle-irreducible effective action and the Green’s func-
tions derived from it. The emphasis is put on the recovery of
Ward-Takahashi identities and thereby Goldstone’s theorem
on the one hand and the violation of conservation laws on the
other hand.

1. Leading order in 1/N

The 1PI effective action (9) has been stated in the main text.
We begin its evaluation by noting that the classical action S[φ]
is given in Eq. (6) and the one-loop term reads

i

2
TrC ln G−1

0 (φ) = i

2
ln det

([
G−1

0

]V [
G−1

0

]A[
G−1

0

]R [
G−1

0

]K
)

. (A1)

Similar to the trace, the determinant is also taken over space-
time, Keldysh index and field components (running from 1
to N), the latter of which we will denote with Greek letters.
Since in the following we will need to take derivatives with
respect to the fields, we have to write the inverse bare Green’s
function components without the restriction to the physical
field configuration φα,cl ∼ δ1α and φα,q = 0. Using Einstein
notation, we find

[
G−1

0 (x, y, φ)
]R/A

αβ
=δ(4)(x − y)

⎧⎨
⎩
⎡
⎣2(−∂t ∓ iγ ∂t − m + D∇2) − λ

3N

∑
σ∈{cl,q}

φ2
γ ,σ (x)

⎤
⎦δαβ − 2λ

3N

∑
σ∈{cl,q}

φα,σ (x)φβ,σ (x)

⎫⎬
⎭,

[
G−1

0 (x, y, φ)
]K
αβ

=δ(4)(x − y)

⎧⎨
⎩
(

8iγ T − 2λ

3N
φγ ,cl(x)φγ ,q(x)

)
δαβ − 2λ

3N

∑
σ∈{cl,q}

φα,σ (x)φβ,σ̄ (x)

⎫⎬
⎭,

[
G−1

0 (x, y, φ)
]V
αβ

= − δ(4)(x − y)

⎧⎨
⎩ 2λ

3N

⎛
⎝φγ ,cl(x)φγ ,qδαβ (x) +

∑
σ∈{cl,q}

φα,σ (x)φβ,σ̄ (x)

⎞
⎠
⎫⎬
⎭, (A2)

which contains terms of order N0 that are diagonal in field
index, as well as contributions of order N−1. While discussing
the effective action at leading order in 1/N we may safely
neglect the latter. They will however be included in our discus-
sion beyond the leading order. Restricting these equations to
the classical physical field configuration leads to Eq. (17).

The interaction part �1[φ] contains all one-particle irre-
ducible diagrams that involve at least two loops. To leading
order in 1/N , the one-particle irreducible action includes all

tadpole diagrams, see Fig. 11. Carefully accounting for the
symmetry factors one realizes that these may be collected in
the closed expression [63]

�LO
1 [φ] = i

2
TrC ln G−1

LO(φ) − i

2
TrC ln G−1

0 (φ)

− λ

6N
TrC

(
GLO(x, x, φ) · τ 1 · GLO(x, x, φ)

)
,

(A3)
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FIG. 11. The leading order of �1 in the expansion in 1/N consists
of all tadpole diagrams with at least two loops. Note, that the bare
Green’s function (thin line) already contains the coupling to the
field φ [see Eq. (A2)]. In addition, the dressed Green’s functions
(thick lines) contain self-energy corrections in the form of tadpole
diagrams. The thin dashed line indicates the bare vertex. Symmetry
factors and Keldysh structure have been suppressed.

where GLO denotes the Green’s function in Hartree approxi-
mation[

G−1
LO(φ)

]
αβ

= [G−1
0 (φ)

]
αβ

− �H,αβ (φ),

�H,αβ (x, x, φ) = iλ

3N
Tr f ({GLO(x, x, φ), τ 1}+)δαβ, (A4)

with {·, ·}+ denoting the anti-commutator and the trace be-
ing performed over field components and space-time but not
the Keldysh index. Furthermore, contributions ∼N−1 are ne-
glected in the bare Green’s function. The projection to the
physical field configuration results in Eq. (16). The Keldysh
structure of the bare vertex is contained in τ 1 = 1N×N ⊗ σ 1,
which acts as the identity matrix on the space of field compo-
nents and as Pauli matrix σ 1 in Keldysh space.

To find the equations of motion for the field expectation
value and the transversal mode, we need to take derivatives
with respect to φq,cl. We begin with

δ�LO[φ]

δφα,q(x)

∣∣∣∣
φcl=φ=〈φ̂〉

!= 0, (A5)

which is in general hard to evaluate because derivatives can act
on the Hartree self-energy �H resulting in an infinite series of
chain rules. Fortunately, all derivatives acting on �H cancel in
Eq. (A5) leaving us with the simple expression

δ�LO
1 [φ]

δφα,q(x)

∣∣∣∣
φq=0

= − iλ

3N
φβ,cl(x)TrC (GLO(φ) − G0(φ))(x).

(A6)

Together with the zero- and one-loop contributions and using

FIG. 12. The diagrammatic representation of �1 up to NLO(1/N)
is the sum of all interaction rings with any number of screening
bubbles inserted. Note, that each bubble may be opened and replaced
by fields as long as the final diagram contains at least two loops. The
corresponding one-loop diagrams are already included in TrC ln G−1.
Here we show the first three terms of this series.

φα,cl = φδ1α this combines to the equation of motion for the
order parameter (15).

Following the same procedure for the second functional
derivative, one finds the self-energies stated in Eq. (18).

2. Next-to-leading order in 1/N

The additional Feynman diagrams contributing to �1[φ] at
next-to-leading order are shown in Fig. 12. Note that diagram-
matically �NLO

1 is very similar to its 2PI counterpart �NLO
2 ,

with the crucial difference that in the former any number of
Green’s functions can be replaced by fields as long as the
expression remains one-particle irreducible and consists of
at least two loops. The related one-loop diagrams are then
included via TrC ln G−1

0 (φ), where, as opposed to the previous
discussion in leading order in 1/N , the terms ∼1/N have to be
kept. Adding both to the effective action, we find

�NLO = �LO + i

2
TrC ln

(
1 − 2λ

3N
[P(GLO + φ × φ)]

)
(A7)

with φ × φ denoting the dyadic product in Keldysh space and
the screening bubble abbreviated by

P(X ) = i

2

(
Tr(X · X �) Tr(X · σ 1 · X �)

Tr(X · X � · σ 1) Tr(X · σ 1 · X � · σ 1)

)
. (A8)

Here products are local in space-time and field index and the
matrix notation refers exclusively to the Keldysh structure.
The equation of motion for the classical field is once again
obtained from the functional derivative of the effective action.
Upon reinstating the Keldysh structure and assuming a homo-
geneous stationary state, it can be written as

0
!= δ�NLO

δφq
=
{
ω2 + iγω − m − Dk2 − λ

6N

(
φ2 + i

∫
q

GK (q)

)
− i

2

(
W R � GK

⊥ + W K � GR
⊥
)
(k)

+ i

(
λ

3N

)2

�R(0)

[∫
q

(|GR(q)|2BK (q) + 2GK (q)�(BR(q)GR(q)
))

+iφ2
∫

q

(|GR
‖ (q)|2W K (q) + 2GK

‖ (q)�(GR
‖ (q)W R(q)

))]}
φ, (A9)
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FIG. 13. Diagrammatic representation of the 1PI transversal
Green’s function G⊥ in next-to-leading order in 1/N . For notational
simplicity, we have suppressed the Keldysh structure. One may check
that the self-energy is the sum of all one-particle irreducible diagrams
that are no smaller than 1/N . In particular, we point out that the
restriction to irreducible self-energies implies a difference between
the dressed Hartree interaction � and the dressed Fock vertex W . By
making all interactions explicit to ease the identification of diagrams
in Eq. (A9) we break with our previous convention as here the bare
Green’s function lacks interactions with the field (last diagram in the
first line).

where

W R(k) = 1
3N
2λ

− i(GK � GR)(k) − φ2GR
‖ (k)

, (A10)

W K (k) = |W R(k)|2
[
φ2GK

‖ (k) + i

2
(GK � GK

+ 2�(GR � GR))(k)

]
, (A11)

BR(k) =(W K � GR + W R � GK )(k), (A12)

BA(k) =(W K � GA + W A � GK )(k), (A13)

BK (k) =(2�(W R � GR) + W K � GK )(k), (A14)

and all Green’s functions are to be interpreted as GLO. Since
the transversal Green’s function is not allowed to carry any
uncontracted φ fields, a derivative with respect to the classical
field can act only on the field outside the bracket in Eq. (A9).
As a consequence one finds Eq. (21).

While the expression in Eq. (A9) is bloated by the Keldysh
structure, it nevertheless has a relatively simple diagrammatic
interpretation shown in Fig. 13. There we identify the first line
of Eq. (A9) with the first four diagrams contributing to GNLO

⊥
and the remaining two lines with the other diagrams whose
order is the same in both representations.

We spare ourselves the computation of the longitudinal
propagator, which is dressed by many more self-energy in-

sertions, and instead contend ourselves with noting that there
will again be processes that describe the decay or creation of
longitudinal excitations from pairs of transversal ones without
the corresponding term in the self-energy of G⊥. As opposed
to the calculation at leading order, the first diagram in the
second line in Fig. 13 now balances the decay of a longitudinal
excitation into two transversal ones. There are however addi-
tional processes, suppressed as 1/N2 for the transversal mode
that are missing from the longitudinal mode at the current
expansion order. Hence, at timescales t � N2τ violations of
conservation laws can reach O(1). Since these considerations
also apply to the large background of thermal fluctuations,
it is preferential to evade these issues and instead focus on
conserving approximations.

APPENDIX B: WIGNER TRANSFORM

A very intuitive and physically insightful way of deal-
ing with convolutions between two-time functions C(t1, t2) =∫∞
−∞ dt3A(t1, t3)B(t3, t2) ≡ A ◦ B that arise in the context of

time evolution, is obtained in terms of their Wigner transform
[54]

A(t, ω) =
∫ ∞

−∞
dτeiωτ A

(
t + τ

2
, t − τ

2

)
(B1)

with inverse transformation

A(t1, t2) =
∫ ∞

−∞

dω

2π
A(t, ω), (B2)

where t = 1
2 (t1 + t2) and τ = t1 − t2. The Wigner transforma-

tion of a convolution C(t1, t2) is then given by an infinite series
of derivatives

C(t, ω) = A(t, ω)e
i
2 ( �∂ω�∂t − �∂ t �∂ω)B(t, ω), (B3)

where the arrows indicate the direction of the differentiation.
Clearly, in the time-translation invariant case correlation func-
tions depend only on time differences and one recovers the
well-known convolution theorem

C(ω) = A(ω)B(ω). (B4)

Hence, for slowly evolving systems a systematic expansion
around the stationary limit arises. Furthermore, if the series
can be truncated, the time nonlocal convolution has been
replaced by an instantaneous term. Physically, this means that
each memory integral can be replaced by a set of coupled
Markovian terms, which allows one to make use of the large
and often highly efficient toolkit developed for Markovian
systems.

These useful properties, make the Wigner expansion very
popular. However, the crux lies in the convergence properties
of the series of derivatives in Eq. (B3). It is frequently argued,
that the Wigner approximation is valid for systems with well-
defined quasiparticles, since the distribution function varies
on scales δω ≈ T and evolution takes place on scales of the
quasiparticle lifetime δτ ≈ τqp. The resulting slow variation
inequality δωδτ � 1 is then indeed equivalent to the condition
for well-defined quasiparticles [54].

There is however a flaw in this simple argument: While
it is true that the distribution function F (t, ω) defined by
GK = GR ◦ F − F ◦ GA varies slowly in frequency, the same
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is not true for the Keldysh Green’s function. It is the latter,
however, that enters into the collision integral. Consequently
the argument breaks down beyond linear-response theory,
since then the dynamical Keldysh Green’s function enters the
collision integral self-consistently. We can therefore trace the
breakdown of the Wigner expansion to terms of the form
∂ωGR(t, ω)∂t F (t, ω) ∼ 1. Hence any system evolving on a
timescale ∼τqp limits the controlled use of the Wigner expan-
sion to linear response. Nevertheless, numerically it has been
demonstrated that the Wigner expansion can still be a good
approximation at late times [50].

Note the explicit reliance of the above argument on the
existence of a timescale τqp. For critical and self-similar dy-
namics no such scale exists and the argument needs to be
reconsidered. At first sight, scaling dynamics implies an alge-
braic relaxation ∼tα , which means that all gradient corrections
can be neglected at sufficiently late times. However, this is
only the case if the frequency scale of the Keldysh Green’s
function does not depend on time, which in general it does.
This topic will be discussed in detail in Sec. V B.

APPENDIX C: DYNAMICS OF THE
LONGITUDINAL MODE

To complement the results discussed in Sec. VII, we now
discuss the corresponding dynamics of the longitudinal mode.
As is discussed in the main text, the gap of the longitudinal
mode is closed in the 2PI formulation by interactions at next-
to-leading order in 1/N . It is at this order of the expansion,
that the decay of the longitudinal mode into two transversal
modes is included. Consequently, one expects a more signif-
icant correction relative to the results of the time-dependent
Ginzburg-Landau theory. Due to the small total density of
these transverse excitations, however, this does not affect the
overall evolution of the system. To illustrate this, we show the
density of the longitudinal mode at high and low momenta in
Fig. 14. For the higher momentum |k| > 1/ξ‖ and late times,
the transverse mode is well described by the bare propagator
with dynamical mass m‖(t ). Consequently, we find the same
decay ∼t−3/2 for the excess density created by the quench
there. We point out that since in our description of the collision
dynamics, G‖ adiabatically follows the evolution of G⊥, the
temperature quench should not couple to the transverse mode,
as the adiabatic model is inappropriate for such a fast drive
(remember that when including collisions the transverse mode
is gapless). This explains the much lower density of transverse
excitations at early times when including collisions.

At the smaller momentum |k| � 1/ξ‖, collisions with lon-
gitudinal modes are the prime contribution to the occupation
at late times, which, therefore, mirrors the evolution of n⊥
at small momenta. Once kColl � k, the transverse mode at
momentum k is no longer fed by decaying transverse modes,
and the collisionless decay ∼t−3/2 takes over.

The momentum dependence of δn‖ at different times dur-
ing the evolution is shown in Fig. 15. Clearly, collisions are
very important at small momenta, where the gapless longi-
tudinal modes are highly occupied by processes that involve
the collision of two transverse excitations. This is to be
contrasted with the evolution of gapped modes in the col-
lisionless approximation, where the effect of the transversal

FIG. 14. Time evolution of the transverse mode following the
weak temperature quench discussed in the main text. The compar-
ison shows the collisionless approximation (leading order in 1/N)
(light green), the collisionless evolution without overdamped ap-
proximation (blue), and the scattering dynamics in the memoryless
approximation of Eq. (39) (dark red). At momenta larger than the
inverse screening length, k > 1/xi‖ (top), all methods agree at late
times. At smaller momenta k � 1/ξ‖, however, the effect of colli-
sions dominates at late times (bottom). The same parameters as in
the main text are used λ = T = γ = D = 1, N = 10, and φth = √

5
corresponding to an inverse screening length 1/ξ ≈ 0.4.

FIG. 15. Momentum dependence of the excess density created
by the weak temperature quench (63). Analogously to Fig. 10,
the dashed lines correspond to the collisionless approximation and
solid lines to the calculation at next-to-leading order in 1/N . The
same parameters as in the main text are used λ = T = γ = D = 1,
N = 10, and φth = √

5 corresponding to an inverse screening length
1/ξ ≈ 0.4, which is indicated as a gray vertical line.
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excitations is limited to an effective mass. At large momenta
k � 1/ξ‖, energy conservation prevents the scattering with the
excess population in the transverse direction, and the colli-
sionless approximation becomes faithful again. Note that the
short-time behavior at small momenta δn‖(k, t ) ∼ m(t )nK

‖,th ∼

t−5/2k−1 requires not redistribution, but a gapless spectrum. It
is the direct analog of the short-time, small momentum excess
δn⊥(k, t ) ∼ t−5/2k−2 reported in Fig. 10. The difference in
the momentum dependence is directly related to the momen-
tum dependence of the effective decay rate.
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