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Radiation-based wave-packet generator in one-dimensional lattices
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The generation of wave packets with well-defined momentum and energy distribution constitutes an experi-
mental challenge in diverse areas of physics. The excitation of nontrivial states, on different lattice configurations,
becomes mandatory nowadays to unveil new and exotic properties. In this work, we propose and demonstrate
experimentally a straightforward technique to engineer on-chip wave packets by exploiting the radiation of an
atomlike waveguide into a one-dimensional lattice. We show that the radiation modes generated after exciting this
pseudoatom can be tuned at desired band energies by simply controlling the on-site properties, such that wave
packets with precise quasimomentum can be generated. As a benchmark, we use the wave-packet generator for
a precise excitation of the well-known topological edge states of a Su-Schrieffer-Heeger photonic lattice.
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I. INTRODUCTION

Lattice systems are an essential focus of research in
physics, with nowadays several experimental configurations
devoted to demonstrate their fundamental properties [1–9].
The conceptual idea is essentially the same, to study and
control the propagation of waves under restrictions, where
photonics has emerged as a key answer for future applica-
tions [10–12]. The micrometer scale of typical waveguides
makes the observation of different phenomena at hand
by using standard optics. Twenty years ago the focus of
research in photonics was the demonstration of basic fun-
damental lattice properties as Bloch modes [13], Bloch
oscillations [14], Anderson localization [15,16], among oth-
ers, but without taking much care about the lattice itself.
The last decade, this approach has changed and the studies
were focused mostly in the geometrical properties of dif-
ferent lattice configurations [17–19], with a major focus on
topology [20–24].

A selective excitation of single states in physical lattices
demands a more precise input condition. In optics, standard
techniques are based on spatial light modulators (SLMs),
which have allowed, for example, a precise excitation of com-
pact states on flatband lattices [18,25–28] or the generation
of broad Gaussian beams [27,29,30]. Even though the use
of SLMs ensures a fine excitation of specific lattice states,
the main drawback is the miniaturization when thinking on
on-chip operations beyond photonics. For example, very re-
cently it has been shown numerically [31,32] that a single
waveguide can be engineered such that a single-site excitation
can pump the topological states of a Su-Schrieffer-Heeger
(SSH) lattice [33], showing an alternative route to experi-
mentally overcome the on-chip preparation of a specific light
beam. Another way of preparing on-chip beam conditions
is, for example, by the addition of defects or impurities.
In perfectly periodic lattices, impurities usually produce the
appearance of linear bounded/localized states due to a trans-
lational symmetry breaking [34,35], with energies lying out

of the bands [36–38]. This is an efficient way of trapping
energy at very specific regions of a given lattice, facilitating
light guidance [38] and the formation of discrete solitons in
nonlinear lattices [39,40].

In this work, by exciting a single defect connected weakly
to a one-dimensional (1D) lattice, we demonstrate experi-
mentally the generation of wave packets having a narrow
frequency (energy) distribution. When injecting light at the
impurity site, a nonbounded mode is excited and the energy
radiates into the lattice [36], phenomena that can be inter-
preted as the radiation of an atom into a continuum [41–45]. In
this view, the decaying of this atom is essentially exponential
for a weak coupling, although the exact form can be more
intricate and show different dynamical regimes [46]. We prove
that the excitation of the atomlike site dynamically results into
the formation of a nonbounded mode, having a large peak at
the defect site plus a rather broad propagating wavefront with
a very well-defined quasimomentum. Moreover, we show that
the nonbounded profile can be tuned in energy and, thus, can
resonate with any band state of the 1D lattice. As a proof
of concept, we demonstrate that the wave-packet generator
can be used to perfectly excite a topological edge state of a
SSH lattice. Our results offer a general method to generate
on-chip wave packets having a desired quasimomentum (en-
ergy), which could be used as a routine technique to excite
different states at the interfase of any weakly coupled adjacent
lattice; namely, compact or edge states in quasi-1D and 2D
lattices [19,47,48].

II. MODEL

We study a 1D lattice formed by weakly coupled optical
waveguides [40], having a central impurity site as sketched
in Fig. 1, top. Gray waveguides form the lattice, while the
yellow site represents the impurity or defect waveguide. We
consider a separation aI in between the impurity site and the
lattice, and a nominal unit cell lattice distance a. By con-
sidering coupled-mode theory [40], which is equivalent to a
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FIG. 1. (Top) Sketch of the wave-packet generator. (a) IPR for all
the eigenstates of a 1D lattice with 201 sites and a symmetric cou-
pling defect VI/V = 0.1, for βI = 0 (blue), V (green), and 3V (yel-
low). (Insets) Amplitude profiles for the eigenstates with highest IPR,
normalized to the largest peak. (b) Intensity profile evolution |un(z)|2
for a single-site excitation at the impurity site, and for βI = 0.
(c) Fourier transform of the amplitude profile at zw = 20 vs the defect
detuning βI/V . In (b) and (c), VI = 0.3V .

tight-binding approach [1], the dynamical equations read as

−i
∂un

∂z
= βnun +

∑

m

Vn,mum. (1)

z corresponds to the propagation coordinate along the waveg-
uides, while un and βn represent the mode amplitude and
propagation constant (longitudinal frequency) at the nth lat-
tice site, respectively. The lattice structure is defined by the
coupling matrix elements Vn,m, considering the lattice cou-
pling constant V and the coupling of the impurity with the
lattice VI , as described in Fig. 1, top. For a homogeneous
1D lattice (i.e., βn = β0 and Vn,m = V δn,m±1), the dispersion
relation [40] is given by βz(kx ) = β0 + 2V cos(kxa), with kx

the transversal wave vector. For simplicity, we simply set
β0 = 0. Spatially extended lattice modes have a frequency in
the range [−2V, 2V ], and a close to zero inverse participation
ratio: IPR ≡ ∑ |ψn|4/(

∑ |ψn|2)2, implying delocalization.
Now, we introduce in model (1) the atomlike defect

as follows: βn = βIδn,nI , with nI the impurity site, and
Vn,m = V + (VI − V )(δn,nI δm±1,nI + δn±1,nI δm,nI ), for nearest-
neighbor sites only (Vn,m = 0 otherwise). For a perfectly tuned
defect (βI = 0) and weak coupling (VI < V ), a mode with

the highest IPR appears at zero frequency [see blue dots in
Fig. 1(a)]. This mode possesses the highest amplitude (A)
at the impurity site, and an oscillatory amplitude tail which
occupies the rest of the lattice (see blue inset), with a struc-
ture given by A{. . . , 0, δ, 0,−δ, 0, 1, 0,−δ, 0, δ, 0, . . . }, for
δ = VI/V . Every two lattice sites, a phase difference of π

is observed. This corresponds to the phase kxa = π/2 of the
mid-band eigenstate βz = 0 of a 1D lattice. The breaking of
the translation symmetry, by the addition of a weakly cou-
pled defect, produces a nonbounded state [36], which is in
resonance with the mid-band lattice eigenstate when βI = 0.
This is in strong contrast with the inclusion of an isolated site
impurity (βI �= 0) on a perfectly periodic lattice, that gen-
erates a bounded exponential profile with an energy always
laying out of the band [35,37,38] and, therefore, never inter-
acting resonantly with a band state.

We numerically integrate model (1) considering a tuned
defect (βI = 0) and a single-site excitation un(0) = δn,nI .
Figure 1(b) shows that the light propagates initially well con-
fined at the impurity region but, after a given propagation
distance [46], most of the light is split into two main opposite
wavefronts, which evolve uniformly across the lattice with
the highest velocity (±2V ) [40]. Indeed, a transversal Fourier
transform of the amplitude profile un(zw ), at a propagation
distance zw, such that the two wavefronts are already gen-
erated, reveals that the wavefronts have a very well-defined
quasimomentum distribution centered at ±π/2 for βI = 0, as
shown in Fig. 1(c). In practice, a finer tuning of the wave-
packet quasimomentum kx will demand a smaller coupling VI

and, of course, a larger dynamical scale (see Appendix A).
The generation of these beams also produces much weaker
traveling profiles as the ones shown in Fig. 1(b), inside the
cone. These wavefronts travel with a kx around the main value,
but they are too small and negligible in the dynamics as we
will show directly in the experiment.

Additionally, we find that the resonance in between the
nonbounded excited mode and a given lattice eigenstate
occurs at βz = βI , with the detuning βI acting as a control
parameter. For example, for βI = V , the highest IPR occurs
exactly at βz = V , as shown in Fig. 1(a). This state has an
oscillatory tail with a period of six lattice sites due to the
resonance with the kxa = π/3 eigenstate (see the green inset
profile). As soon as the value of βI lies within the band
range [−2V, 2V ], the nonbounded part of the defect mode will
predominantly exhibit a phase profile according to the eigen-
state it mostly resonates with. Therefore, by changing the
defect detuning βI we can tune this resonance and, as a direct
consequence, we can control the central wave-packet quasi-
momentum kx. Figure 1(c) shows the Fourier transform of the
output amplitude profiles as a function of the detuning βI/V .
For −2V � βI � 2V , the central quasimomentum changes
smoothly from kxa = ±π to 0, passing through kxa = ±π/2
at βI = 0. On the other hand, for |βI | > 2V exponentially
decaying bound states emerge [35,37,38] with a growing IPR,
and with a frequency laying out of the band [36], as the yellow
data in Fig. 1(a) shows for βI = 3V . The excited spectrum
delocalizes for |βI | > 2V [see Fig. 1(c)], as all the states
having a non null amplitude at the impurity site are excited,
including several extended lattice modes and the bound local-
ized state itself.
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FIG. 2. (a) Output image of a fabricated lattice after white light
illumination, with a = 18 and aI = 26 µm. (b) Output intensity
profiles after a single-site excitation at the impurity site, with PI in-
creasing downwards. Fourier output intensity profiles for (c1) V = VI

and �P = 0, and for VI < V and (c2) �P = 0, (c3) 2.25 and (c4)
5.25 mW.

III. EXPERIMENTAL RESULTS

To demonstrate experimentally the radiation-based wave-
packet generator, we use the femtosecond (fs) laser writing
technique [49,50] to fabricate several 1D photonic lattices
having 41 coupled waveguides each, on a 3-cm-long borosili-
cate glass wafer. Each fabricated waveguide supports a single
mode only [51], in the wavelength range under study. The
lattice spacing is taken as a = 18 µm. Since the coupling
constant decays exponentially with the distance [50,51], the
coupling impurity (VI < V ) is created at the central re-
gion by placing the central defect site at aI = 26 µm, with
V = 0.93 and VI = 0.35 cm−1 at 675 nm (VI/V � 0.38).
Figure 2(a) shows a microscope image zoom of a fabricated
lattice, where the central impurity region is clearly shown.
With this technique, the refractive index of every waveguide
can be tuned by adjusting the writing power (pulse energy)
of the femtosecond laser. This allows us to effectively modify
the propagation constant at the impurity site (βI ), which in
the experiment corresponds to a refractive index change, as
shown in Appendix B. Thus we fabricate 8 different lattices
for which the writing power was increased at the central impu-
rity waveguide, in the range PI ∈ {111, 117} mW, every 0.75
mW. The rest of the lattice waveguides are fabricated using a
nominal writing power of P0 = 111 mW. First of all, we test
our lattices by using a supercontinuum (SC) laser source at
675 nm. We focus the light beam into the defect waveguide
with a 10× microscope objective and, then, we observe the
near-field intensity of the output facet using a beam profiler.
Figure 2(b) shows the output intensity profiles for these 8
lattices, with the writing power PI increasing downwards. For
�P ≡ PI − P0 = 0 [top figure (b)], the output intensity profile
shows two main lobes escaping from the impurity region and,
importantly, with almost no light at the impurity site, due to
the radiationlike dynamics of a tuned atom [44,46]. This is
in perfect agreement with the simulation shown in Fig. 1(b),
where the light is radiated into the bulk with two main lobes

traveling at |kxa| ≈ π/2. We estimate the Gaussian width of
this experimental amplitude profile as 5.8, with a participation
number 1/IPR = 9.5. These values were obtained after fitting
the experimental profiles to the left and to the right, and then
by averaging the respective values. While increasing �P, and
fixing the wavelength and propagation distance, we notice that
the light is less radiated and, also, that the impurity site has an
increasing intensity. For the strongest writing power (bottom
figure), we detect an intensity profile with most of the light
localized at the atom defect plus a weak radiative background.
This evidences the formation of a localized bound state with a
frequency close to the band upper edge, although its exponen-
tial decaying tail is still not completely formed [34,35].

By observing the output intensity at the Fourier plane (far
field), we can visualize the excited transversal quasimomen-
tum spectra. This technique has been mostly implemented
in photonic for photorefractive SBN induced lattices [40,52],
and we are not aware of its use on fs written structures.
Figure 2(c1) shows the excited kx spectrum after injecting
light at the central waveguide of a homogeneous 1D lattice
(VI = V and βI = 0). We observe that most of the kx fre-
quencies are excited, up to kx ≈ ±π/a at the Bragg planes
[1,40]. In the presence of a coupling impurity only (VI < V
and βI ,�P = 0), the Fourier profile in Fig. 2(c2) shows two
strong regions centered at kx ≈ ±π/2a. This is a confirma-
tion of the predicted generation of two wave packets with
a well-defined quasimomentum distribution, centered at the
expected kx values. Figures 2(c3) and 2(c4) show the Fourier
profiles considering a coupling defect (VI < V ) and a detuned
impurity site with �P = 2.25 and 5.25 mW, respectively.
We detect that the wave-packet quasimomentum distribution
shifts to the center, approaching kx ∼ 0 at higher �P. This
observation demonstrates that the coupling impurity creates a
nonbounded mode which strongly resonates with a specific
band eigenstate and that serves as an on-chip wave-packet
generator. Furthermore, the quasimomentum distribution is
linked directly to a specific propagation frequency βz (energy
in a time-dependent lattice). Thus we can use this generated
wave packet as a precise input condition to excite different
eigenstates at adjacent lattices, which could have not only
specific energies [53] but also a precise momenta.

We test our method using a standard 1D topological model,
the SSH lattice [33]. This lattice is formed by two sublattices,
usually called A and B, with different intra- and intercell cou-
pling constants [33,54]. When the intracell coupling is lower
than the intercell one, the Zak phase takes a value of π and,
consequently, two in-gap edge states exist at zero propagation
constant (energy) βz = 0. These states decay exponentially
from the edge into the bulk, and exhibit the so-called lattice
polarization, i.e., the edge state on the left (right) end has
amplitudes only at the A (B) sublattice sites. First of all, we
realize that only one half of the original wave-packet gener-
ator is required to produce a single propagating lobe with a
well-defined quasimomentum (see Appendix C). Therefore a
weakly coupled tuned atomlike waveguide [at the left edge in
this case, as shown in Fig. 3(a), top] will be able to generate
a wave packet with a quasimomentum centered at kx = π/2a
(in this case, the diffraction coefficient is zero [40] and, there-
fore, we expect a direct interaction in between the beam and
the SSH lattice). This time, we fabricate our system on a
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FIG. 3. Precise excitation of a SSH edge state by means of the
wave-packet generator. (Top) Output image of the lattice system
under study after white illumination. (a) Experimental output inten-
sity profiles at different wavelengths, after exciting the waveguide
impurity (ellipse). (b) Numerical intensity profiles vs z, for a beam
at 760 nm, after a Gaussian input excitation at the impurity site. The
top panel in (b) shows a normalized intensity profile at z = 7 cm.
The dashed vertical lines indicate the interface in between the 1D
and the SSH lattices a = 18 and aI = 26 µm.

7-cm-long glass wafer, due to the requirement of having a
larger propagation distance to first generate the wave packet
and, then, to excite the SSH lattice system. A tuned impurity
waveguide is placed at a distance aI = 19 µm (V = 0.82 cm−1

at 675 nm) apart from a 1D photonic lattice having a lattice
period of a = 16 µm (V = 1.17 cm−1 at 675 nm). The intra-
and intercell distances, of the SSH lattice at the right, are taken
as a1 = 21 µm and a2 = 16 µm (V1 = 0.65 and 1.17 cm−1

at 675 nm), respectively, such that we are in a topologically
nontrivial phase regime [31,32]. We consider a weak coupling
V = 0.31 cm−1 (separation of 27 µm) in between the 1D and
the SSH lattices, such that both systems can be treated as two
independent ones; otherwise, interface states could appear and
disrupt the excitation. All the waveguides are fabricated using
the same writing power 111 mW, such that we can generate a
wave packet kx = +π/2a at zero energy.

We use a SC laser source to excite the impurity atom at
different wavelengths in the range λ ∈ {680, 800} nm. Differ-
ent colors allow us to emulate different propagation distances
[55–57], as the coupling constants increase almost linearly
with λ [48]. Figure 3(a) shows very clearly the effective

dynamics in the system, after exciting the impurity site with
different wavelengths. For the shortest wavelength of 680 nm
(bottom), the output intensity profile shows that the wave
packet has been generated [similar to Fig. 2(b), top] and
is traveling to the interface region (dashed line). Then, the
wave packet interacts with the interface at a wavelength of
∼700–720 nm, where some light is also reflected back. For
longer wavelengths, we first observe how the reflected light
continues traveling smoothly to the left. More importantly, the
light that is transmitted to the right, into the SSH lattice, starts
to occupy mostly the waveguides belonging to the sublattice
A and, very remarkably indeed, the intensity profile exhibits
a perfect exponential decaying tendency (we obtained simi-
lar results for SSH lattices having weaker dimerizations and
holding edge states with larger localization lengths, as shown
in Appendix D). By repeating the same experiment but, now,
considering a SSH lattice with a trivial (opposite) dimeriza-
tion a1 = 16 µm and a2 = 21 µm, almost no transmitted light
is detected to the right due to the absence of any state to excite
at zero frequency [33] [see an example in Fig. 3(a), bottom,
and more details in Appendix D]. Moreover, when modifying
slightly the impurity frequency βI we observe a non optimal
transmission of light beyond the interface (see Appendix D),
because the quasimomentum of the generated wave packet
has changed and its energy lies now in the SSH band gap.
It is worth mentioning that a single site excitation at the
edge of a SSH lattice also excites the edge states [47,58,59].
However, its efficiency strongly depends on the dimerization
contrast (a2/a1) and, also, on the propagation length because
all eigenstates with nonzero amplitude at the excitation site
will be excited. Conversely, our method enables a rather pure
and coherent excitation of the edge states at a selected energy.

Finally, we support our experimental results using con-
tinuous numerical simulations. We use a beam propagation
method (BPM) to obtain the dynamics along the propaga-
tion coordinate z for a Gaussian beam excitation at 760 nm
(more details in Appendix B). We study a paraxial wave
equation [18] and consider a refractive index profile simi-
lar to the experimental one, with a nominal refractive index
n0 = 1.48 and a waveguide contrast of 1.5×10−4. Figure 3(b)
shows our results with a clear wave packet generated into
the right direction, after the excitation of the impurity site.
Then, the light travels transversally across the 1D homoge-
nous lattice and reaches the interface with the SSH system at
z ∼ 4 cm. There, we notice an interference pattern similar to
the one observed in the experiment at ∼700–720 nm, which
is characteristic for kx = ±π/2a waves. At larger distances,
some light is transmitted and excites, quite precisely indeed,
a localized profile at the left edge of the SSH lattice. The top
panel in Fig. 3(b) shows a normalized intensity profile at 7 cm
of propagation, where an exponentially decaying topological
profile, with nonzero amplitudes every two lattice sites, is
clearly formed.

IV. CONCLUSIONS

In conclusion, we have proposed an experimental tech-
nique to create on-chip wave packets with a precise quasimo-
mentum control, using a simple single-site lattice excitation.
This exploits the properties of nonbounded modes excited
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on a 1D lattice having a weakly coupled waveguide, which
behaves as an impurity radiating atom. We have experimen-
tally demonstrated this concept on femtosecond-laser written
photonic lattices and characterize it by means of a SC laser
source. We probe our method on the iconic 1D SSH topolog-
ical lattice and observe both, numerically and experimentally,
a quite pure excitation of a localized topological edge state
at zero propagation constant (energy). Our new technique
simplifies enormously the external creation of an input beam
having a given momentum/energy distribution, using just a
single-site excitation. Furthermore, we envision an active con-
trol of the on-site frequency at the impurity site either by
injecting a pulsed laser and, thus, triggering nonlinear effects
[50], or by including a metal layer on top and then applying
an external DC field [60,61].
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APPENDIX A: NUMERICAL STUDY
OF THE ATOMLIKE DEFECT

We study numerically the atomlike defect in a 1D lattice.
Specifically, we integrate Eq. (1) considering a 1D lattice
composed of 201 sites, with the atomlike defect placed at site
101, and a propagation length of z = 20. For each propaga-
tion, we control both the on-site and the coupling terms of
the atomlike site: βI and VI , respectively. Firstly, we study the
impact of the on-site term on the generated wave packets for
a fixed value of VI . Figure 4(a) shows a density plot for the
output intensities (|un(20)|2) after exciting the defect, while
sweeping βI within the range {0, 3V } and for VI = 0.3V (V
is the lattice coupling). We observe that the two opposite
generated wave packets reach a maximum transversal dis-
tance, from the atomlike site, for βI = 0. For 0 < βI < 2V ,
the wave packets travel a shorter distance because the impurity
resonates with band modes that have a lower group velocity, as
shown in Fig. 1(c). For βI � 2V , the output intensity exhibits
a localized-like profile because the on-site term βI is out of
the band, and there is no available modes to resonate with
(the same behavior is observed for negative values of βI ).
Secondly, we investigate the effect of VI on the transversal
wave vector (quasimomentum) of the generated wave packet.
To do this, we set βI = 0 and we vary VI from 0 to 3V . For
VI � 0.2V , Fig. 4(b) shows a quite localized profile because
the atomlike site is extremely weakly coupled to the lattice
and much longer distances are needed to observe radiation to
the system. However, once VI increases, all the light injected
into the atomlike defect travels to the lattice possessing a very
well defined profile and quasimomentum. This is validated by
calculating the Fourier transform of Fig. 4(b), as it is shown
in Fig. 4(c). We can clearly see that a narrower quasimo-
mentum width is obtained only for VI < 0.5V . As soon as
VI approaches V, the wave packets become broader in real
space (covering more lattice sites with nonzero amplitudes),

FIG. 4. Simulation of an atomlike impurity or defect in a 1D
lattice. (a) Density plot of the simulated output intensities for VI =
0.3V and βI in the range [0, 3V ]. (b) Density plot of the simulated
output intensities for βI = 0 and VI in the range [0, 3V ]. (c) Fourier
transform of the output amplitude for βI = 0 and VI in the range
[0, 3V ]. The 1D lattice is composed of 201, the impurity is placed
at the site 101, and the propagation length is z = 20.

and get a wider and not well defined transversal wave-vector
distribution. For VI = V , there is no defect at all and a typical
discrete diffraction pattern is observed. For VI > V , a caging
effect is observed in between two localized states, as it is
shown in Fig. 4(b).

APPENDIX B: SIMULATION BASED ON BPM

Light propagation through an optical media can be
described by a paraxial wave equation of the form

−i
∂

∂z
	(x, y, z) = ∇2

⊥	(x, y, z)

2kono
+ ko�n(x, y)	(x, y, z) ,

where 	(x, y, z) is the electric field amplitude, z is the prop-
agation coordinate, x and y are the transversal coordinates,
ko = 2π/λ the wave number in free space, λ the wavelength,
and no the bulk refractive index. ∇2

⊥ = ∂2
x + ∂2

y corresponds to
the transversal Laplacian operator, while �n(x, y) defines the
transversal refractive index structure fabricated inside the ma-
terial. Numerical integration of this equation is implemented
by means of a beam propagation method (BPM) [62,63],
where we numerically simulate the propagation of an initial
profile through a given optical media. In order to initialize the
simulation, we set some optical parameters according to the
real parameters used in the experiment. In this case, we used
λ = 675 nm, bulk refractive index n0 = 1.48 and an optical
lattice with a period of 18 µm plus a central defect with a
distance of 26 µm, which are the same values used in Fig. 2.
The shape of the waveguides follows an elliptical profile
�n tanh[1/(exp(x/ωx )2 + exp(y/ωy)2)], with ωx = 21 µm
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FIG. 5. Numerically computed output intensity profiles after
3 cm of propagation for different values of �nI .

and ωy = 40 µm. The results, using an input beam injected
at the defect site and a propagation of 3 cm, are shown in
Fig. 5. There, �n = 1.5×10−4 for the waveguides along the
array, while for the defect site �nI was changed linearly from
1.5 to 1.85×10−4, in steps of 0.05×10−4. This linear change
in the refractive index was used due to the linear increment
of the writing power used in the experiment. We observe an
excellent agreement between simulation and experimental
results, when comparing Figs. 2(b) and 5. Figure 3(b) was
obtained using the same numerical configuration.

APPENDIX C: ATOMLIKE DEFECT PLACED
AT THE LATTICE BORDER

The radiation generated by the atomlike defect placed in
the middle of the 1D lattice can also be observed when locat-
ing this defect at either border of the lattice [42]. Figure 6-Top

FIG. 6. Simulation of an atomlike impurity or defect at one edge
of a 1D lattice. (a) Density plot of the simulated dynamics for
VI = 0.3V and βI = 0. (b) Fourier transform of the output amplitude
(z = 60) for βI = 0 (blue curve), V (orange curve) and 1.8V (dashed
orange curve). The 1D lattice is composed of 201 sites and the
impurity is placed on the site 1.

FIG. 7. Excitation of the SSH edge state for several intercell
distances (a1 = 21, 20, 19, 18 µm from top to bottom) and fixed
intracell one (a2 = 16 µm) by using the generated wave packet.
The atomlike defect is placed on the left size of the 1D lattice at a
distance aI = 19 µm (white ellipse) and it is excited with a SC laser
at λ = 770 nm. The lattices are separated by 27 µm.

depicts the case when an atomlike waveguide is placed at the
left side of a 1D photonic lattice. We integrated numerically
Eq. (1) using a single site excitation of the form un(0) = δn,1

and considering βI = 0. The simulated dynamics is shown in
Fig. 6(a). We observe that all the injected light is transferred
to the 1D lattice and, at z f = 60, no light can be seen at
the atomlike waveguide. Performing a Fourier transform of
the amplitude profile at z f , we retrieved the transversal wave
vector of this radiation, which is shown by the blue curve in
Fig. 6(b). As expected, the peak of the quasimomentum is cen-
tered at ka = π/2 without appreciable background. Therefore
a wave packet with a well-defined quasimomentum distribu-
tion is also observed in this configuration. If the on-site term
βI is increased, the wave packet changes its transverse wave
vector towards a zero value, as shown by the dashed and
continuum orange curves in Fig. 6(b). When βI approaches
2V , an oscillatory decay of the quasimomentum distribution
is observed, which may impact the pure excitation of a desired
state on a given adjacent lattice.

APPENDIX D: ADDITIONAL EXPERIMENTAL RESULTS

1. Excitation of the topological edge state for several
dimerized SSH lattices

In this section, we show additional experimental results
for the lattice system described in Fig. 3, but with different
intercell distances. Specifically, we fabricated systems formed
by a 1D lattice which is weakly coupled to a topological SSH
lattice (as the one shown in Fig. 7, top). The atomlike defect
was placed always at the left side at a distance aI = 19 µm,
and the separation distance in between both lattices was set to
27 µm. We reduced the intracell distance a1 from 21 to 18 µm,
which results on an increment of the intercell coupling from
0.65 to 0.94 cm−1, at 675 nm. Figure 7 shows the obtained
output intensities after 7 cm of propagation, after exciting the
atomlike defect with the SC laser at 770 nm. Importantly, we
observe that the light is mostly located at the sublattice A.
Moreover, the exponential tail of the edge state penetrates
deeper into the bulk of the SSH lattice as the intercell dis-
tance (coupling) is reduced (increased), which is expected
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FIG. 8. Output intensity profiles of a lattice system composed of
a 1D photonic lattice weakly coupled to a trivial SSH lattice on the
right, and an atomlike defect on the left side. Parameters of the lattice
system are given in the text.

from a reduction of the dimerization. We can see also some
light at the sublattice B for the weakest dimerization (a1 =
18 µm and a2 = 16 µm), because the width of the wave-packet
quasimomentum becomes wider than the SSH band gap and,
thus, some bulk modes could be excited weakly.

2. 1D photonic lattice with an atomlike defect weakly coupled
to a trivial SSH lattice

We then probed experimentally the case of a 1D photonic
lattice with an atomlike defect that is weakly coupled to a
trivial SSH lattice. We used a 7-cm-long glass wafer to fab-
ricate a 1D photonic lattice having a lattice constant of 16 µm
(V = 1.17 cm−1 at 675 nm). We placed the impurity on the
left side of the lattice at a distance of 19 µm (VI = 0.82 cm−1

at 675 nm), as sketched in Fig. 8, top. On the right side of
the 1D lattice, we fabricated a trivial SSH lattice at a distance
of 27 µm (coupling of 0.35 cm−1 at 675 nm), which has
intra- and intercell distances of a1 = 16 µm and a2 = 21 µm
(V1 = 1.17 and V2 = 0.65 cm−1 at 675 nm), respectively. In
the experiment, we inject light coming from a supercontinuum
laser onto the impurity atom at several wavelengths in the
range {680, 800} nm, allowing us to explore the effective
lattice dynamics as we were observing at longer propagation
distances [48]. Figure 8 displays the output intensity profiles
after 7 cm of propagation. For the shorter wavelengths (λ <

720 nm), we observe a traveling wave packet moving towards
the interface denoted by the vertical dashed line. At 740 nm,
most of the light is reflected back by the interface, with a very
weak intensity leaking to the trivial SSH lattice. For longer
wavelengths, the output intensity profiles show that almost
no light is found in the SSH lattice and the wave packet is
mostly traveling back across the 1D photonic lattice, reaching
the atom impurity at 800 nm. This observation confirms the
absence of edge states in the trivial SSH lattice and, also, that
the wave packet encodes a specific energy value inside the
gap of the SSH lattice, because almost no light is effectively
transmitted.

FIG. 9. Output intensity profiles of a lattice system composed of
a 1D photonic lattice weakly coupled to a SSH lattice on the right
and a detuned atomlike defect on the left side. The writing power
difference between the detuned atomlike waveguide and the other
waveguides is �P = 75 mW.

3. 1D photonic lattice with a detuned atomlike defect weakly
coupled to a topological SSH lattice

Figure 2 shows that the manipulation of the writing power
at the defect waveguide enables a fine tune of the wave-
packet quasimomentum and, thus, of the wave-packet energy.
Now, we demonstrate experimentally that a detuned atomlike
waveguide generates a wave packet which encodes a nonzero
energy. Again, we fabricated a 1D lattice which is weakly
coupled to a topological SSH lattice at the right side, with
a detuned atomlike waveguide at the left side on a 7-cm-
long wafer. Specifically, lattice constant of the 1D lattice is
a = 16 µm, inter- and intracell distances of the SSH lattice
are a1 = 21 µm and a2 = 16 µm, and the separation among
the lattices is 27 µm (coupling values are the same given
in previous section). The atomlike waveguide was placed at
aI = 19 µm far from the left side of the 1D lattice and,
in order to detune it, we increased its fabrication power by
0.75 mW. Figure 9, top, shows a microscopic image of output
facet of this lattice system, in which leftmost bright ellipse
corresponds to the atomlike waveguide. To reveal the dynam-
ics along the waveguides, we used a SC laser to shine the
atomlike waveguide and we observed the output intensities
at a fixed propagation length of 7 cm. As it was described
in previous section, the light travels towards the interface for
wavelengths shorter than 740 nm, as shown in Fig. 9. For
longer wavelengths, most of the light is reflected back to the
1D photonic lattice and appreciable light gets transmitted.
This transmitted light occupies preferentially the A sublat-
tices implying the presence of the SSH edge state. However,
we notice that, in this case, the edge states are only weakly
excited, compared to the tuned excitation shown in Figs. 3(a)
and 7. The coupling ratio VI/V � 0.7 produces a wave packet
with a broad quasimomentum distribution [see Fig. 4(c)] and,
therefore, although the wave packet possesses a central energy
shifted from zero, it also encodes some energies around this
value.
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