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Engineering subharmonic responses beyond prethermalization via Floquet scar states
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In this work we propose a scheme to engineer subharmonic responses via scar states in a generalized PXP
model. We first show that the generalized PXP model also possesses a band of scar states like the pristine
PXP model does. In addition, we reveal that a generalized forward-scattering approximation (FSA) still works
for these scar states. We further argue that the FSA subspace exhibits an SO(3) symmetry, which enables an
SO(3)-FSA approach for the scar states. When such a model is placed under periodic driving, nontrivial Floquet
scar states emerge in the quasienergy spectrum. One appealing feature of such Floquet scar states is that they
can support subharmonic responses akin to the discrete time crystalline phase. In particular, such subharmonic
responses can exist beyond the conventional prethermalization regime, where either large frequencies or large
driving amplitudes are required.
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I. INTRODUCTION

Ergodicity in an isolated quantum system is believed to be
described by the eigenstate thermalization hypothesis (ETH)
[1–4], assuming that eigenstates around the same energy
are locally indistinguishable. However, abundant theoretical
and experimental evidence suggests that some system breaks
the ETH. A well-known example is many-body localization
[5–7], which breaks ergodicity in the strong sense: all eigen-
states violate the ETH, so all localized initial states retain their
memories even after a long period of time evolution. Mean-
while, the ETH can also be weakly broken by embedding rare
atypical states in the thermal bulk [8], and only dynamics from
particular initial states exhibit nonergodic behavior. Experi-
mentally, the weak ergodicity breaking was first found in the
strongly interacting Rydberg atoms [9], in which only quench
dynamics from the Z2 ordered states revive periodically. This
phenomenon is theoretically described by a special set of rare
eigenstates in the PXP model [10,11]. The periodic revival
resembles the scar in the chaotic systems, and thus the rare
eigenstates in the PXP model are dubbed quantum many-body
scar (QMBS) states.

Beyond isolated systems, people also found nonergodic
dynamics in periodically driven or Floquet systems. A promi-
nent example is the discrete time crystal (DTC) stabilized by
strong disorders [12–20], in which all initial states exhibit
subharmonic responses with respect to the driving period.
Meanwhile, there is the so-called prethermal DTC, in which
some ergodic initial states may also behave like DTC within
an exponentially long time scale [21–24]. Such examples
are typically explained within the framework of spontaneous
discrete symmetry breaking. Recently, another possibility of
ergodicity breaking in Floquet systems emerges, which are
known to have Floquet QMBS states by analogy with the
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isolated systems. A trivial case is that the Hamiltonians at
different times share a set of common QMBS states that
spontaneously become the Floquet QMBS states. In contrast,
several recent works have proposed nontrivial Floquet QMBS
states [25–34]. However, such proposals are typically limited
by specific parameters or require a high-frequency driving.

In this work, we generalize the PXP model to a three-
component model, whose QMBS states can also be ap-
proximated by the forward-scattering approximation (FSA)
[10,11]. In fact, the generalized PXP model completes the ap-
proximate su(2)/so(3) Lie algebra of the pristine PXP model
[11,35,36] in the FSA subspace. As a result, the evolution
of the system represents the Lie group generated by this Lie
algebra. We verify numerically that the Lie group is the SO(3)
Lie group instead of the SU (2) Lie group. Facilitated by the
group structure, the evolution of a time-dependent generalized
PXP model emulates a three-dimensional rotation. Particu-
larly, one can readily engineer a large variety of Floquet
systems with different subharmonic revivals (period doubling,
tripling, etc.), where the system spontaneously possesses non-
trivial Floquet scar states determined by the group structure.
Despite the similarity to the prethermal discrete time crys-
tal (DTC), we emphasize that this model is fundamentally
different because the generalized PXP model depends on an
unbroken continuous symmetry rather than a broken discrete
symmetry.

II. THE GENERALIZED PXP MODEL

We start by reviewing the pristine PXP Hamiltonian
[10,11]

Hx =
∑

r

σ x
r

(
1

2
+ Qr

) ∏
〈r,r′〉

Pr′ , (1)

where σ x
r , σ

y
r , σ z

r are Pauli matrices at site r, and Pr = (1 −
σ z

r )/2 projects into the ground state. For the PXP model, the
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Hilbert space is constrained, and no neighboring sites can be
simultaneously excited. In addition, Qr serves as a stabilizer
to enhance the weak ergodicity breaking in this model. The
forms of Qr have been proposed for different lattices [35,37],
and it is taken as 0.051(σ z

r+2 + σ z
r−2) in the 1D lattice.

The QMBS states in the PXP model have an equal en-
ergy spacing of ωs = 2π/Ts (where we set h̄ = 1 throughout),
which is almost independent of the system size. As the pristine
PXP Hamiltonian includes only the x component of the spin
operators, it is intuitive to introduce the other two components
in a 1D bipartite lattice as well, which are given by

Hy =
∑

r

sgn(r)σ y
r

(
1

2
+ Qr

) ∏
〈r,r′〉

Pr′ , (2)

Hz = ωs

2

∑
r

sgn(r)σ z
r

∏
〈r,r′〉

Pr′ . (3)

In the above Hamiltonian, the lattice is divided into two sub-
lattices A and B, and we introduce

sgn(r) =
{

1, r ∈ A,

−1, r ∈ B.
(4)

Thus, for an arbitrary unit vector �n = (nx, ny, nz ) ∈ R3, we
can construct a generalized PXP Hamiltonian as

Hfull = �n · �H , where �H = (Hx, Hy, Hz ). (5)

In what follows, we will study the scar states in this gen-
eralized PXP model. For convenience, we will also use the
notation that

�n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) ≡ (θ, ϕ). (6)

Scar states in the generalized PXP model

We now demonstrate the existence of scar states in Hfull

in Eq. (5). To begin with, note that a bipartite lattice permits
two maximally excited states |MA〉 and |MB〉, defined as the
state where all sites on the A or B sublattice are excited,
respectively. For a 1D chain with an even number of sites, A
and B are the even or the odd sites. Let us denote the subspace
spanned by these two states as PZ . The scars of the system can
be identified by their overwhelmingly large projection on PZ

and their significantly small entanglement entropy (EE), de-
fined as S(|φ〉) = −Tr{ρL(|φ〉) ln ρL(|φ〉)}. In this definition,
the system is divided into two subsystems: the left and right
half, and ρL(|φ〉) = TrR(|φ〉〈φ|). These properties are shown
in Fig. 1, which implies the existence of scar states in Hfull.

A hallmark of the pristine PXP model is that the QMBS
states can be approximated by the so-called forward-scattering
approximation (FSA) [10,11], which considers a specific sub-
space generated by a pair of ladder operators,

H+ = Hx + iHy, H− = Hx − iHy, (7)

and the basis of this FSA subspace is

| j〉 = (H+) j |MA〉 × ‖(H+) j |MA〉‖−1,

|L − j〉 = (H−) j |MB〉 × ‖(H−) j |MB〉‖−1,

|L/2〉 = (H+|L/2 − 1〉 + H−|L/2 + 1〉)

× ‖H+|L/2 − 1〉 + H−|L/2 + 1〉‖−1, (8)

where j = 0, 1, . . . , (L/2) − 1, and L is the number of sites.
This idea can also be applied to the generalized PXP model as
follows. Consider the FSA Hamiltonian given by PF HfullPF ,
where PF = ∑

j | j〉〈 j| projects into the FSA subspace. As in
the pristine PXP model, the FSA Hamiltonian here is tridi-
agonal. In addition, it has nonzero diagonal entries because
of Hz. In Fig. 1, we can see clearly that FSA provides an
accurate approximation as expected, and the approximation
works better for small |nz|.

Moreover, this generalized FSA implies that the scar sub-
spaces of different �n can be approximated by an �n-independent
subspace, the FSA subspace. To quantify this assertion, we
first denote {|Ej (�n)〉} as the set of scars of Hfull. The projector
of the scar subspace is then PS (�n) = ∑

j |Ej (�n)〉〈Ej (�n)|. Fur-
ther, we introduce the normalized Frobenius norm,

‖X‖ ≡ [Tr(X †X )/(L + 1)]1/2. (9)

Under this convention, we have ‖PS (�n)‖ = ‖PF ‖ = 1, and
the difference between the FSA subspace and the scar
subspace can be estimated by ‖PS (�n) − PF ‖. Additionally,
‖PS (�n) − PF ‖ is ϕ-independent because of [Hz, PF ] = 0 and
the exact z-axis symmetry

[Rz(α)�n] · �H = U †(�n · �H )U, (10)

where U = e−iαHz/ωs and Rz(α) is the rotation around the z
axis for an angle α. As a result, we will only consider �n
with ϕ = 0 (or ny = 0) henceforth without loss of general-
ity. Figure 2 shows that the FSA subspace is indeed a good
approximation of the scar subspace for small |nz|. Though the
approximation is not as good for large |nz| as for small |nz|, the
error is on the same order of that in the original PXP model
studied in Ref. [10]. Therefore, we have demonstrated that the
FSA subspace is approximately an invariant subspace for all
Hfull.

More interestingly, Hfull possesses an approximate su(2)
Lie algebra on the FSA subspace [11,35,36], i.e.,

[PF HaPF , PF HbPF ] ≈ iεabc ωsPF HcPF , (11)

where a, b, c = x, y, z. Hence, what remains to resolve is
which symmetry group [SO(3) or SU (2)] can best describe
the FSA subspace. The first hint is that the dimension of
the FSA subspace is always odd because we consider bipar-
tite lattices only, implying that it may be a representation
of SO(3). Furthermore, one can show that for arbitrary unit
vectors �n1, �n2 and rotation angles ωsT1, ωsT2, there exist �n3

and T3 satisfying

R(�n2, ωsT2)R(�n1, ωsT1) = R(�n3, ωsT3), (12)

PF e−iT2�n2· �H e−iT1�n1· �H PF ≈ PF e−iT3�n3· �H PF , (13)

where R(�n, α) represents the rotation around �n for an angle α.
As a result, the approximate symmetry of the FSA subspace
is SO(3) instead of SU (2) in this bipartite lattice. We will see
that this approximate SO(3) symmetry of the FSA subspace is
crucial for our design of the subharmonic response when the
generalized PXP model is placed under periodic driving.
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e

FIG. 1. The left panel plots the projection, and the right panel plots the half-chain EE in an L = 28 chain. Here we take �n = (π/5, 0) (large
|nz|) in (a) and (b), �n = (π/5 + 2π/3, 0) (large |nz|) in (c) and (d), and �n = (2π/5, π/2) (small |nz|) in (e) and (f). The EE in the thermal limit
is ST = ln(FL/2+2) − 1/2 for 1D chains, where Fn is the nth Fibonacci number. Here, the blue dots are obtained by diagonalizing the exact
Hamiltonian, and the red circles are the FSA.

III. THE GENERALIZED PXP MODEL
UNDER PERIODIC DRIVING

In the pristine PXP model, the presence of QMBS states
with equal energy spacing results in weak ergodicity breaking.
This phenomenon can also be observed in the Floquet PXP
model, as we now show. Specifically, we study the dynamics
from the initial state |Z2〉 = |MA〉 [38], and introduce a time-

periodic Hamiltonian H (t ) with a period of T = T1 + T2,

H (t ) =
{

�n1 · �H , 0 < t < T1,

�n2 · �H , T1 < t < T1 + T2,
(14)

where �n1, �n2 are unit vectors in R3. As the FSA subspace
approximates the true scar subspace for all �n, the FSA
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FIG. 2. A plot of ‖PS − PF ‖ as a function of θ . The inset calcu-
lates the PXP model in Ref. [10], which has no stabilizer Qr . We
thus see that the FSA subspace provides a good approximation for
the scar subspace.

Hamiltonian PF H (t )PF applies to the dynamics of |Z2〉 in the
Floquet system as well. In particular, under FSA, the time
evolution operator is approximated by

U (t ) ≈ UFSA(t ) ≡ T exp

[
−i

∫ t

0
PF H (s)PF ds

]
, (15)

where T is the time ordering operator.
From the SO(3) symmetry perspective in Eq. (13), we

know that H (t ) executes a rotation R(t ) in R3. Knowing that
R(t ) can be uniquely expressed as R(t ) = R(�n3(t ), ωsT3(t )),
where �n3(t ) and T3(t ) are continuous functions, we introduce
an SO(3)-FSA approximation for U (t ), given by

U (t ) ≈ USO(3)-FSA(t ) ≡ e−iT3(t )�n3(t )·PF �HPF . (16)

Given that a revival is equivalent to R(t ) becoming the iden-
tity, we can engineer the revival period to be any integer
multiple of the driving period.

For definiteness, here we demonstrate a period tripling
case and leave the period quadrupling case to the appendices.
As the evolution emulates a 3-dimensional rotation, there
are infinite ways to engineer a period-tripling response. For
instance, �n1 = (θ, 0), �n1 = (θ + 2π/3, 0) together with T1 =
T2 = Ts/2 give a period-tripling response for any θ , and par-
ticularly, we take θ = −π/5. We start by showing that |Z2(t )〉
still almost stays within the FSA subspace even for t = 20Ts,
as shown in Fig. 3(a). Then, the fidelity F (t ) = |〈Z2|Z2(t )〉|2
calculated through FSA and SO(3)-FSA is compared with that
obtained by diagonalizing the exact Floquet operator. We find
that both SO(3)-FSA and FSA offer a good approximation
after a long-time evolution (up to t ∼ 20Ts), as shown in
Fig. 3(b). This verifies our assertion that the FSA subspace
has an approximate SO(3) symmetry.

We also study the error of the two approximations by
evaluating the norm between the approximated states and the
exact results, which are shown in Fig. 3(c). We find that the
FSA generally fits the exact results fairly well. In contrast,
the difference between the SO(3)-FSA approximation and the
exact results continues to increase. The error of SO(3)-FSA
comes from both the leakage of the FSA subspace and the
imperfection of the SO(3) structure, and causes the decay of
the fidelity at the revival. Particularly, we observe that the
early decay manifests the following empirical scaling relation
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FIG. 3. Panels (a)–(c) plot the projection in the FSA subspace,
the fidelity, and the accuracy of two FSAs, respectively. Here we use
an L = 28 chain (Ts = 9.8987), with parameters �n1 = (−π/5, 0),
�n2 = (−π/5 + 2π/3, 0), T1 = Ts/2, and T2 = Ts/2. The purple lines
in (b) and (c) equal 1/2 when �n1 · �H is turned on, and equals zero
otherwise.

as shown in Fig. 4,

[1 − F (t )]/L ≈ α(t/Ts)γ , (17)

where α = 5.16 × 10−5 and γ = 1.68 are the fitting parame-
ters. Hence, we estimate that the fidelity remains greater than
0.9 at t = 21Ts in the system of L = 100, which is typically
the experimental size.

The observed periodic revivals suggest the existence of
Floquet QMBS states in the system described by Eq (14). In
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FIG. 4. Finite-size scaling of the fidelity. The parameters are
given in Fig. 3.
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FIG. 5. Here we show the projection and the EE of the eigenstates derived from three different approaches. The exact results in the left and
the right panel represent the eigenstates of U (T ) and PFU (T )PF , respectively. The parameters are given in Fig. 3.

particular, they are the eigenstates of a Floquet Hamiltonian
HF, defined by way of

e−iTHF ≡ U (T ) = e−iT2�n2· �H e−iT1�n1· �H . (18)

What is more, the Floquet QMBS states cannot be triv-
ial because �n1 · �H and �n2 · �H generally share no common
eigenstates. Notwithstanding, as the FSA subspace is approx-
imately invariant, Eq. (15) suggests that HF is approximated
by the Floquet Hamiltonian HFSA

F defined by e−iTHFSA
F ≡

UFSA(T ), which is expected to capture the QMBS states.
Meanwhile, Eq. (16) implies that under SO(3)-FSA, HF is
approximated by

PFHFPF ≈ HSO(3)-FSA
F ≡ T3(T )

T
PF [�n3(T ) · �H ]PF . (19)

The importance of this approximation is to explain the peri-
odic revivals in our model, as not all QMBS states support
periodic revivals.

In Fig. 5, we study the eigenstates of U (T ) and PFU (T )PF

(exact) by exact diagonalization and compare them with the
results obtained by FSA and SO(3)-FSA. Noting the equiv-
alence between ET = ±π in the quasienergy spectrum, we
find in Fig. 5(a) that the eigenstates of U (T ) form a tower
structure and that they concentrate within a narrow energy
window around the quasienergies given by the FSA and
the SO(3)-FSA approaches. However, neither approximations
predicts the projection ln(‖PZ |E〉‖) very well. The reason is

that the model does not have actual eigenstates serving as the
QMBS states. Instead, the system possesses several towers of
eigenstates, which can be regarded as bands of degenerate
states within a small timescale. Therefore, before full ther-
malization, the superposition of each tower of states plays the
role of QMBS states. However, we emphasize that because
of the extremely small bandwidth, the relaxation time here
is still rather long with respect to the typical timescale Ts,
as shown in Fig. 3(a). Furthermore, Fig. 3(a) suggests that
the short-time evolution happens essentially within the FSA
subspace. Therefore, the superposition should be described
by the eigenstates of PFU (T )PF calculated in Fig. 5(b). For
the subharmonic responses in our model, we observe that
the eigenstates of PFU (T )PF can be perfectly approximated
by the FSA method, whereas the SO(3)-FSA only gives
the correct energy but not the projection. The reason is that
the spectrum, in this case, is highly degenerate. Consequently,
the imperfection of the symmetry on the FSA subspace serves
as a small perturbation and creates a significant correction to
the eigenstates (but only a small correction to the spectrum).
This is in contrast to the general case in the appendices,
where the spectrum is nondegenerate, and thus both FSA and
SO(3)-FSA work well for the projection.

Finally, we investigate the EE of the Floquet eigenstates in
Fig. 5(c). We find that the eigenstates of U (T ) are all highly
entangled. In contrast, as shown in Fig. 5(d), the short-time
evolution is dominated by their low-entangled superpositions.
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What is more, the FSA approach works perfectly for the EE,
and the SO(3)-FSA also provides a good approximation. Be-
sides, we have studied a more general case in the appendices.
We show that it also possesses the nontrivial Floquet QMBS
and find that the two approximations [FSA and SO(3)-FSA]
are even better in that case because there is generally no
degeneracy unless deliberately designed.

IV. DISCUSSION AND CONCLUSION

In this work, we study a generalized PXP model whose
QMBS states are well described by an FSA subspace that is
universal for all choices of �n. Hence, the FSA subspace is
approximately an invariant subspace of the generalized PXP
model, which carries an approximate SO(3) symmetry. As a
result, the evolution in the FSA subspace of a time-dependent
system can be solved by a pair of time-dependent rotation axes
and angles. Utilizing this property, we have much freedom to
design the system, and particularly, we engineer a Floquet sys-
tem with period-tripling revivals in the main text. Moreover,
the group structure also reveals that the Floquet Hamiltonian
is actually captured by another generalized PXP model, which
carries nontrivial Floquet QMBS states.

Despite the resemblance to the prethermal DTC in the
literature [21–23,33], there are important differences between
our protocol and the earlier work. For example, the subhar-
monic response here arises from the continuous symmetry

SO(3), while prethermal DTCs spontaneously break a dis-
crete symmetry. In particular, the subharmonic response in
our model arises from a carefully engineered orbit in the
SO(3) subspace. Deviations from this protocol will introduce
errors in the subharmonic response. This work also shows the
probability of QMBS states in the nearly degenerate systems
in which QMBS states are not exact eigenstates but their
superpositions.

Note added. We recently became aware of an independent
work exploring a similar idea in a different setup [39].
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APPENDIX A: ENGINEERING GENERIC
FLOQUET EVOLUTIONS

In this section, we study a more general case for the Floquet
Hamiltonian in Eq. (14). We first discuss a period quadrupling
case, which is shown in Figs. 6(a) and 6(b) with parameters
�n1 = (π/5, 0), �n2 = (π/5 + 3π/4, 0), T1 = Ts/2, and T2 =
Ts/2. Similar to the period-tripling case, the dynamics can
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FIG. 6. Panels (a) and (b) show the fidelity and the accuracy, respectively, in an L = 28 chain (Ts = 9.8987), with parameters �n1 = (π/5, 0),
�n2 = (π/5 + 3π/4, 0), T1 = Ts/2, and T2 = Ts/2. Panels (c) and (d) show the fidelity and the accuracy, respectively, in an L = 28 chain
(Ts = 9.8987), with parameters �n1 = (π/5, 0), �n2 = (2π/5, π/2), T1 = 7Ts/8, T2 = 3Ts/8. The purple lines in the four panels equal 1/2 when
�n1 · �H is turned on and 0 otherwise.
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FIG. 7. The projection and the EE of the eigenstates derived from three different approaches. The exact results in the left and the right
panel represent the eigenstates of F and PF FPF , respectively. The parameters used in this figure are identical to those in Fig. 6.

be accurately captured by the SO(3) structure in the FSA
subspace.

A more generic scenario of the SO(3) structure can also
be found in systems without subharmonic responses. Partic-
ularly, we take �n1 = (π/5, 0), n2 = (2π/5, π/2), and T1 =
7Ts/8, T2 = 3Ts/8. Note that the properties of �n1,2 · �H have
been studied in Fig. 1. We first study the dynamics of |Z2〉.
In Fig. 6(c), two approximations fit the exact results ex-
cellently, and Fig. 6(d) even suggests that the SO(3)-FSA
approach is better here than the case in the main text.
Another intriguing phenomenon here is that as the system
is not carefully designed, there is never perfect revival;
i.e., the corresponding 3D rotation R(t ) never becomes the
identity.

In addition, we also compute the Floquet eigenstates of
this system, which are shown in Fig. 7. This generic sys-
tem manifests similar features to the case in the main text;
i.e., highly entangled eigenstates form tower structures whose
superposition serves as the scar states. However, the most
significant difference here is that the SO(3)-FSA approach
is almost as accurate as the FSA approach, indicating the
universal applicability of the SO(3)-FSA approach.

APPENDIX B: THE FATE OF IMPERFECT REVIVALS

In the previous section, we demonstrate that the revival
is generally imperfect without deliberate design. Hence, a
natural question is whether these imperfect revivals survive
in the thermodynamic limit. For a perfect SO(3) represen-
tation, the question is equivalent to proving the following

limit,

lim
j→∞

|〈 j, j, �z|Uj (R)| j, j, �z〉| = 0, (B1)

where |l, m, �n〉 is the eigenstate of �n · J with �J2|l, m, �n〉 =
l (l + 1)|l, m, �n〉 and �n · J|l, m, �n〉 = m|l, m, �n〉. Here, Ul (R) is
the corresponding (2l + 1)-dimensional irreducible represen-
tation of R ∈ SO(3).

To start, we first prove the following lemma: For all l, m,
and two unit vectors �n, �n′, the following inequality holds,

|〈l, m, �n|l, m, �n′〉| �
[

1 + 2m2 tan2(θ/2)

l (l + 1) − m2

]−1/2

, (B2)

where θ is the angle between �n and �n′. To show this, first note
that the inequality holds trivially if �n = ±�n′. Hence, we only
consider that �n and �n′ are not parallel, or equivalently sin θ =
0. Without loss of generality, we set �n = �z. Further, because

|〈l, m, �n|, m, �n′〉| = |eimφ〈l, m, �n|, m, �n′〉|
= ∣∣〈l, m, �n|e−iφJz

l |l, m, �n′〉∣∣
= |〈l, m, �n|l, m, Rz(φ)�n′〉|, (B3)

where we have we set �n′ in the x-z plane, with �n′ = cos θ�z +
sin θ �x.

Now let |ψ〉 = ∑
k ψk|l, k〉 be the eigenvalue of �n′ · �Jl with

eigenvalue m, and then we have

|〈l, m, �n|l, m, �n′〉| = |ψm|
‖|ψ〉‖ . (B4)
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We suppose that ψm = 0; otherwise the lemma is proved.
Therefore, we can set ψm = 1, and

m = 〈l, m|�n′ · �Jl |ψ〉

= m cos θ + sin θ

2
ψm+1

√
l (l + 1) − m(m − 1)

+ sin θ

2
ψm−1

√
l (l + 1) − m(m + 1), (B5)

which can be rewritten as

2m tan(θ/2) = ψm+1

√
l (l + 1) − m(m + 1)

+ ψm−1

√
l (l + 1) − m(m − 1). (B6)

From the Cauchy inequality, we have

tan2(θ/2) � l (l + 1) − m2

2m2
(|ψm+1|2 + |ψm−1|2), (B7)

so we can further derive

‖|ψ〉‖2 � (|ψm+1|2 + |ψm|2 + |ψm−1|2) � 1

+ 2m2 tan2(θ/2)

l (l + 1) − m2
. (B8)

Hence we have

|〈l, m, �n|l, m, �n′〉| = |ψm|/‖|ψ〉‖

�
[

1 + 2m2 tan2(θ/2)

l (l + 1) − m2

]−1/2

, (B9)

which completes the proof of the lemma.

According to the lemma, it is straightforward to derive the
following theorem: For an arbitrary non-negative integer k, a
rotation R, and a unit vector �n, we have

lim
l→∞

|〈l, l − k, �n|Ul (R)|l, l − k, �n〉| = δ�n,R�n, (B10)

where δ�n,�n = 1 and δ�n,�n′ = 0 if �n = �n′. First, noticing that
|〈l, l − k, �n|Ul (R)|l, l − k, �n〉| = |〈l, l − k, �n|l, l − k, R�n〉|,
according to the lemma, we have

|〈l, l − k, �n|Ul (R)|l, l − k, �n〉| �
[

1 + 2m2 tan2(θ/2)

l (l + 1) − m2

]− 1
2

.

If �n = R�n, then |〈l, l − k, �n|Ul (R)|l, l − k, �n〉| = 1 and the
limit equals 1. If �n = R�n, we know that

lim
l→∞

[
1 + 2(l − k)2 tan2(θ/2)

l (l + 1) − (l − k)2

]−1/2

= 0, (B11)

and therefore, we have

lim
l→∞

|〈l, l − k, �n|Ul (R)|l, l − k, �n〉| = 0. (B12)

In conclusion, for a perfect SO(3) structure, all imperfect
revivals vanish in the thermodynamic limit, whereas the per-
fect revival is always perfect. Hence, the imperfect revival will
decay with system size even faster in the PXP model because
of both the imperfection of SO(3) and the leakage of the FSA
subspace.
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