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Prethermalization in aperiodically kicked many-body dynamics
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Driven many-body systems typically experience heating due to the lack of energy conservation. Heating may
be suppressed for time-periodic drives, but little is known for less regular drive protocols. In this paper, we
investigate the heating dynamics in aperiodically kicked systems, specifically those driven by quasiperiodic
Thue-Morse or a family of random sequences with n-multipolar temporal correlations. We demonstrate that
multiple heating channels can be eliminated even away from the high-frequency regime. The number of eliminated
channels increases with multipolar order n. We illustrate this in a classical kicked rotor chain where we find a
long-lived prethermal regime. When the static Hamiltonian only involves the kinetic energy, the prethermal
lifetime t∗ can strongly depend on the temporal correlations of the drive, with a power-law dependence on the
kick strength t∗ ∼ K−2n, for which we can account using a simple linearization argument.
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I. INTRODUCTION

Time-dependent many-body systems have attracted sus-
tained interest due to their ubiquity in nature and the potential
to realize nonequilibrium phases of matter. One typical ex-
ample is the discrete time crystal which spontaneously breaks
discrete time translation symmetry (TTS) [1,2]. However, due
to the absence of energy conservation, closed driven systems
tend to heat up and lose any nontrivial correlations [3,4].
Therefore, understanding and controlling the onset of heating
in time-dependent systems is key to their stabilization and to
the realization of exotic nonequilibrium phenomena.

While heating generally occurs in time-dependent many-
body systems, it can be parametrically suppressed, e.g., by
using high-frequency drives [5–14] or by using weak drive
amplitudes [15–17] in periodically driven (Floquet) systems.
Examples include spin systems with a bounded local energy
scale, where an exponentially long-lived prethermal regime
appears before heating takes over [15,18–24]. A similar
prethermal phenomenon can also manifest in kicked systems
which have been extensively studied in the context of digital
quantum simulation [9,25,26] and the fundamental discussion
of chaos [27–32]. A paradigmatic example is the interacting
kicked rotor, where heating takes the form of Arnold diffu-
sion [33–42]: Before their eventual diffusive dynamics with
unbounded energy growth [29], heating only occurs with a
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probability exponentially small in the kick strength in the
prethermal regime [43].

It is natural to ask: Can heating be efficiently suppressed
in many-body systems without TTS, e.g., when drives are
quasiperiodic or even random? This is a notoriously diffi-
cult question, as breaking TTS generally opens up further
deleterious heating channels that can destabilize systems
rapidly [44–46]. For certain piecewise constant and contin-
uous quasiperiodic drives, this is known to be possible in
the high-frequency regime [47–58]. Rigorous bounds on heat-
ing rates can also be established by generalizing the Floquet
theory [59,60]. However, this becomes obscure for kicked sys-
tems as the high-frequency limit of kicks in principle allows a
divergent rate of energy input into the system. Aperiodically
kicked systems have been most limited to few-body settings
[61–65], and it remains an outstanding challenge to control
heating in the thermodynamic limit.

Here, we give an affirmative answer by investigating many-
body systems kicked by a family of structured binary random
protocols—random multipolar drives (RMDs) [51]. They ex-
hibit a multipolar correlation indexed by an integer n: for
n = 0, the drive is purely random and generated from binary
options {s+

0 , s−
0 } = {+,−}; for n = 1, it consists of a ran-

dom sequence of two elementary dipolar blocks, {s+
1 , s−

1 } =
{(−,+), (+,−)}; and the nth.-order multipolar blocks are re-
cursively generated by concatenating two different (n−1)th.-
order blocks, {s+

n , s−
n } = {(s−

n−1, s+
n−1), (s+

n−1, s−
n−1)}. In the

n → ∞ limit, s±
n produces the quasiperiodic Thue-Morse

(TM) sequence [60,66]. An RMD notably suppresses low-
frequency components in the driving spectrum, reducing
heating algebraically in the high-frequency regime [51].

In this paper, instead of focusing on the high-frequency
regime, we exploit the self-similarity inherent in the RMD
sequence to demonstrate that heating can be parametri-
cally controlled by the kick strength. Through a perturbative
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expansion, we derive an effective Hamiltonian governing the
initial time evolution. Remarkably, the self-similar multipolar
structure leads to exact cancellations of numerous terms in the
effective Hamiltonian, thereby eliminating the corresponding
heating channels. This mechanism of heating suppression is
independent of the specific model and is applicable to both
quantum and classical many-body systems.

For numerical efficiency, we demonstrate this effect in a
concrete model, namely, a kicked chain of classical rotors.
Starting from low-temperature initial states, the system ex-
hibits a long-lived prethermal regime before heating up. The
lifetime scaling depends on the microscopic details of the
kicked system, and if the static part only involves the kinetic
energy, the lifetime scales as a power law with a tunable
exponent 2n. This we account for by analyzing the linear
stability of the system. In the quasiperiodic TM limit, we also
show that the lifetime grows faster than any power law but
slower than exponentially.

In the following, we first consider a general kicked system
and demonstrate heating suppression in a perturbative expan-
sion of the effective Hamiltonian in the small kick strength.
We then present the results on the chain of rotors before a
concluding discussion.

II. SETTING

Consider the time-dependent Hamiltonian H (t ) = H +
V �(t ), where H denotes the static part, and V defines the
kick with �(t )=∑

l Klδ(t−lτ ), with the kick strength Kl and
period τ . We focus on the intermediate frequency regime,
i.e., τ is not necessarily small. Here, Kl is binary (±K) and
follows an n-RMD sequence. For n = 0, there are two unitary
time evolution operators U ±

0 = e−iτH e∓iKV . We can formally
define the static effective Hamiltonian H±

0 through the relation
U ±

0 = exp(−iτH±
0 ) to describe the dynamics at times t = lτ .

For small K , this Hamiltonian can perturbatively constructed
as H±

0 = ∑∞
m=0 Km�±

0,m. Although such an expansion may di-
verge for many-body systems, we expect its truncation at low
orders in K can approximate the initial time evolution. The
lowest-order term is simply the static Hamiltonian �±

0,0 = H .
Via the replica resummation of the Baker-Campbell-

Hausdorff series, the leading correction can be expressed in
a compact form [15]:

�+
0,1 = −�−

0,1 := �0,1 = −iadH exp(−iτadH )

exp(−iτadH ) − 1
V, (1)

where adX (Y ) = [X,Y ] is the Lie derivative. It can also be
expanded in a power series in τ as

�0,1 = V τ−1 − i[H,V ]

2
+ O(τ 1), (2)

where higher-order terms only contain nested commutators of
the form [H,V ]s := [H, . . . , [H,V ] . . . ] with a single kick V
but multiple (s) H operators. Note, since τ is not necessarily
small, one should consider all orders in τ in the expansion.
Generally, �0,1 does not vanish, and the time evolution is
dominated by H ± K�0,1 initially. The term �0,1 occurs ran-
domly with an amplitude linear in K , and one expects it to
quickly destabilize the system and induce heating in a short
time.

We now use the self-similar structure of RMD protocols to
show that many terms of order O(K ) in the effective Hamilto-
nian can be eliminated. Further, if the condition

[H,V ]s = 0 (3)

can be satisfied for ∀s � nc with some integer nc, for n-
RMD systems with any n � nc, random perturbations start
appearing at a higher order O(K3), and hence, heating can be
significantly suppressed.

To see this, we first observe that higher-order multipolar
operators can be obtained by the recursive relation:

U ±
n = U ∓

n−1U
±
n−1, (4)

where U ±
n generates the time evolution over the duration

2nτ [51]. For n-RMD systems, the time evolution is given
by a random sequence of multipolar operators U ±

n . Simi-
larly, the effective Hamiltonian H±

n is defined through U ±
n =

exp(−i2nτH±
n ), governing the stroboscopic time evolution

(t = 2nτ l for integers l). The perturbative expansion is de-
noted as H±

n = ∑∞
m=0 Km�±

n,m. Notably, the time evolution
operators in U ±

0 possess the special property that U +
0 can be

mapped to U −
0 by changing K → −K . Thus, terms in the

effective Hamiltonians coincide for even orders in K , while
differing by a minus sign for odd orders, given by

�+
n,m = (−1)m�−

n,m := �n,m. (5)

Like the purely random drive (n = 0), the initial strobo-
scopic time evolution is governed by H ± K�n,1, and the
system may still exhibit rapid heating. However, the self-
similar construction in Eq. (4) and the symmetry property
in Eq. (5) lead to an important result: Several terms in �n,1

actually vanish, resulting in

�n,1 =
∞∑

s=n

fn,sτ
s[H,�0,1]s, (6)

where the coefficient fn,s can be cumbersome to obtain. Im-
portantly, it suggests that, to the leading order of O(K ), the
only possible heating channels are in the form of [H,V ]s with
s � n. The derivation of Eq. (6) is presented in Appendix A.
Now if the condition Eq. (3) is satisfied, all terms in �n,1

vanish. Consequently, the stroboscopic time evolution of the
system is effectively governed by H±

n = H̄n ± O(K3), where
the static part is denoted by H̄n = H + K2�n,2. Therefore, the
RMD kicked systems first relax to a prethermal ensemble de-
termined by H̄n before notable heating is induced by random
perturbations of order O(K3).

Although we use the perturbative expansion for quan-
tum systems, it is important to note that this mechanism of
heating suppression equally applies to classical many-body
systems. The Liouville equation, which describes the phase-
space distribution of a classical system, exhibits a structural
similarity to the Schrödinger equation in quantum systems.
Consequently, the effective Hamiltonian for classical systems
can be obtained by formally replacing the commutator [. . . ]/i
in its quantum counterpart with the Poisson bracket {. . . } [18].
Due to the computational efficiency of numerical simulations
for large classical systems, we proceed to demonstrate this
heating suppression in a classical rotor system.
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III. MANY-BODY KICKED ROTORS

We consider many-body rotors with the static kinetic
energy (H = Hkin ) and the kicked nearest-neighboring inter-
actions (V = Vint ):

Hkin = 1

2

∑
j

p2
j

M
, Vint =

∑
j

cos(q j+1 − q j ), (7)

where M denotes the angular mass. We consider the regime
τ/M � K , and for simplicity, we set M = 1 and τ = 1. Here,
p j and q j for j = 1, . . . , N are the conjugate angular mo-
menta and angles of N rotors, respectively. Periodic boundary
conditions are used (q1 = qN+1). The interaction preserves the
total angular momentum

∑N
j=1 p j . The kicked rotor system

is different from the popular step-wise driven spin models in
two ways: First, kicks can allow a divergent energy input in
the high-frequency regime; second, rotors have unbounded
kinetic energy, hence permitting an unbounded energy ab-
sorption from the kicks. In Appendix B, we numerically
demonstrate that the system can heat up increasingly fast
when τ becomes smaller. In the following, we will show that,
despite this potential instability of kicked rotors, heating can
be parametrically suppressed away from the high-frequency
limit by exploiting the self-similar structure of the drive.

As we will demonstrate, Eq. (3) can be approximately
satisfied with a narrow angular momentum distribution. In the
prethermal regime, the distribution width is determined by the
controllably small temperature T ∼ K2.

To begin, we derive the nested Poisson brackets {H,V }s

for kicked rotors, which reduce to
∑

j (p j − p j+1)s sin(q j −
q j+1) for odd s and

∑
j (p j − p j+1)s cos(q j − q j+1) for even

s. Thus, for multipolar order n � 1, Eq. (6) implies that the
dominant random perturbation �n,1 only contains terms pro-
portional to (p j − p j+1) or its higher powers. These terms
become negligible when the kinetic energy distribution is
sufficiently narrow. For higher multipolar orders n, Eq. (3)
can be more effectively satisfied, and thus, the suppression
becomes stronger.

When starting from the initial condition p j = p̃ for all
j, Eq. (3) is fulfilled exactly, and the initial time evolu-
tion is governed by the static effective Hamiltonian H̄n =
Hkin+K2�n,2. As this Hamiltonian is generally nonintegrable,
the angular momentum distribution spreads. In the prether-
mal regime, it approximately reaches the Gibbs distribution∏N

j=1 exp[−(p j − p̃)2/2T ] [43]. The width of the distribution
is determined by an effective prethermal temperature T . As
shown in Appendix C, this temperature is controllably small
for weak kicks (T ∼ K2).

IV. NUMERICAL SIMULATION

We now confirm the possibility of prethermalization
through numerical simulations. The stroboscopic time evo-
lution of RMD kicked rotors can be generated by a set of
discretized equations of motion (EOMs):

p j (t+1) = p j (t )±K{sin[q j+1(t )−q j (t )]

+ sin[q j−1(t ) − q j (t )]}, (8)

q j (t+1) = q j (t )+τ p j (t + 1),

for j = 1, 2, . . . , N, (9)

FIG. 1. (a) Time evolution of the averaged kinetic energy for
n-random multipolar drive (RMD) and Thue-Morse (TM) drive with
K = 0.03 in a log-log scale. (b) Dependence of the prethermal life-
time t∗ on 1/K in a log-log scale. Dashed lines (K−2n for n > 0 and
K−2 for n = 0) are plotted to guide the eyes. (c) Prethermal lifetime
t∗ scaling for TM drives.

where ± follows the RMD sequence, and t labels the number
of kicks. We choose τ = 1 and use a small kick strength K in
the following.

The spreading of the angular momentum distribution
can be quantified by the kinetic energy density Ekin(t ) :=

1
2N

∑N
i=1 p2

i (t ), making it a suitable measure of the heating
process. The initial conditions are chosen as qj ∼ Uni[0, 2π ],
and p j = 0.1 is fixed for all j, satisfying the condition,
Eq. (3). Figure 1(a) depicts the dynamics of the averaged
kinetic energy 〈Ekin〉, averaged over 350 noise realizations
with different initial states, for a fixed kick strength K = 0.03
and rotor number N = 500. The system size is sufficient to
mimic the heating behavior in thermodynamically large sys-
tems. Discussions regarding finite-size effects can be found in
Appendix I, and the simulation details can be found in Ap-
pendix D. For multipolar order n � 1, 〈Ekin〉 remains almost
unchanged for a long time scale t∗. However, as the kinetic en-
ergy is unbounded, it eventually increases when heating takes
over. This behavior is qualitatively similar to the periodically
kicked rotors, cf. Appendix E. We observe that, for larger n, t∗
remarkably extends by several orders of magnitude, reaching
its largest value in the TM limit. In contrast, for the fully
random drive (n = 0), unbounded diffusion starts at very early
times, and no prethermal regime can be established.

We quantify the prethermal lifetime t∗ and its dependence
on K . We extract t∗ by fitting 〈Ekin〉 up to time t f with a power
law t b and monitor the power b for different t f [43]. During
the prethermal regime, the power b remains close to zero,
and t∗ is determined when b first reaches a threshold. In our
numerical simulations, we choose b = 0.05, but our findings
are independent of the specific threshold value as long as it is
small.

Figure 1(b) illustrates the dependence of t∗ on the kick
strength for different multipolar orders. A linear fit in a log-log
scale suggests that the prethermal lifetime follows an alge-
braic dependence on the kick strength t∗ ∼ (1/K )α . The scal-
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ing exponent α can be determined through numerical fitting.
For n = 0, α ≈ 2 and remains approximately the same for
n = 1, although the prefactor differs by three orders of mag-
nitude, indicating significant heating suppression due to the
dipolar structure. Interestingly, for higher multipolar orders,
α notably increases and is well approximated to α ≈ 2n for
n = 1, 2, 3. In the TM limit, the lifetime scaling converts to

t∗ ∼ exp

{
C

[
ln

(
K−1

g

)]2}
, (10)

where the constant C ≈ 0.8 and g ≈ 0.3, as shown in
Fig. 1(c). A similar functional form has been rigorously
proved in Ref. [60] for high-frequency drives, and it remains
an open question to justify such a dependence on K . We also
verify that this scaling grows faster than any power law (cf.
Appendix F), indicating a significant suppression of heating
in a nonperturbative manner.

V. LINEARIZATION

Although it is expected that a larger n may further suppress
heating, the perturbative expansion of the effective Hamilto-
nian is insufficient to explain the prethermal lifetime scaling.
To address this, we develop a simple theory by linearizing the
many-body systems.

Assuming small angular differences between neighboring
rotors (q j − q j+1) mod 2π � 1, we can expand the kicked in-
teraction using the quadratic approximation cos(qj − q j+1) ≈
1 − 1

2 (q j − q j+1)2 in the Hamiltonian Eq. (7). Performing a
Fourier transform, we obtain

H (t ) = 1

2

∑
w

[
|Pw|2 ± F (w)|Qw|2

∑
l

δ(t − lτ )

]
, (11)

where w := 2π I/N for an integer I , F (w) := 4K sin2(w/2),
and the Fourier components are defined as Pw =∑N

j=1 p je−iw j/
√

N and Qw = ∑N
j=1 q je−iw j/

√
N . The

system now decouples into a set of independent kicked
harmonic oscillators labeled by w. For each oscillator, we
can integrate its discrete time evolution in a two-dimensional
phase space over one period τ :(

Qw

P−w

)
t+τ

= M±
0 (w)

(
Qw

P−w

)
t

, (12)

where (cf. Appendix G 1)

M±
0 =

(
1 ∓ τF τ

∓F 1

)
(13)

is the elementary evolution matrix, and we drop the label w,
as the following discussion equally applies to all w.

Similar to Eq. (4), higher multipolar evolution matrices
can be recursively derived as M±

n = M∓
n−1M±

n−1 to generate
stroboscopic time evolution over the duration 2nτ . Crucially,
both M+

n and M−
n have the property det(M±

n ) = 1, making
them area-preserving maps [67]. Therefore, when only M+

n
or M−

n is periodically applied, the system, for weak kicking
strength, exhibits nonchaotic dynamics confined to a closed
elliptical orbit around its fixed point (Q, P) = (0, 0). How-
ever, the random concatenation of two slightly different maps

FIG. 2. (a) Trajectories in phase space. The black orbit is ob-
tained by the area-preserving map M̄ ′

n. The magenta curve with a
constant expansion rate is generated via M̄1. The blue curve is a
single realization obtained by stochastically applying the matrix M±

1 .
(b) The averaged radius 〈rh〉 matches well with theoretical predic-
tions (dashed lines). F = 0.08 is used in both panels.

M±
n generally perturbs these stable trajectories, causing them

to deviate indefinitely from their fixed points [Fig. 2(a), blue].
By quantifying such deviation, one can estimate the heating
rate and its relation to the multipolar order.

To analyze this deviation, we define the averaged evolution
matrix as M̄n := 1

2 (M+
n + M−

n ) and the difference between
the two matrices as Dn := 1

2 (M+
n − M−

n ), such that M±
n =

M̄n ± Dn. It is worth noting that det(M̄n) = 1 + O((τF )2n) for
nonzero n, indicating that the averaged map M̄n does not pre-
serve area in phase space. Instead, the trajectory slowly spirals
out with a constant expansion rate scaling as F 2n [magenta
in Fig. 2(a)]. Additionally, eigenvalues of the stochastic term
Dn scale as F n (cf. Appendix G 3), which contributes to a
diffusive spiral-out process with a rate that also scales as F 2n.

To quantify this process, we introduce the normalized map
M̄ ′

n = M̄n/
√

det M̄n, which is now area-preserving and gen-
erates a closed elliptical orbit [Fig. 2(a), black]. Its matrix
elements define the metric of the orbit and determine its area
A(Q, P) [68]. The radius of the ellipse rh = √

A(Q, P)/π will
become time dependent when M±

n is stochastically applied h
times. The expansion rate of the radius can be calculated as
�rh/rh, where �rh = rh+1 − rh. By averaging over different
random realizations and the polar angle of the ellipse, we find
that its leading-order contribution scales as F 2n, with a spe-
cific expression 〈�rh/rh〉 ≈ 3τ 2F 2/4 for n = 1 and 6τ 4F 4 for
n = 2, cf. Appendix G 2. Consequently, the averaged growth
of the radius at early times can be obtained.

In Fig. 2(b), we present numerical simulations (circles) of
the averaged radius for n = 1 (blue) and 2 (orange), which
closely match our analytical predictions (dashed lines). As
F is proportional to the kicking strength, the expansion rate
scales as K2n, and its inverse corresponds to the observed
prethermal lifetime scaling in Fig. 1.

Notably, the strong dependence of the multipolar order in
the lifetime scaling is remarkably robust, even for initial states
that deviate significantly from the linearization regime, where
(q j − q j+1) mod 2π � 1. Indeed, our numerical results in
Fig. 1 are obtained using a random distribution of qj over
a wide range [0, 2π ]. In Appendix H, we confirm that this
phenomenon persists as long as the prethermal regime exhibits
a low temperature, leading to a narrow distribution of angular
momenta.
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FIG. 3. (a) Time evolution of the averaged kinetic energy density
for different multipolar order n with K = 0.005 in a log-log scale.
(b) Prethermal lifetime t∗ as a function of 1/K in a log-log scale. The
system starts from the initial angular momentum pj (0) = 0 with B =
0.01. Other numerical parameters are the same as in Fig. 1. Dashed
lines correspond to the scaling K−2.

VI. DISCUSSION

We have proposed a mechanism to suppress heating in
aperiodically kicked systems by introducing self-similar mul-
tipolar structures. It effectively blocks a series of heating
channels and leads to a long-lived prethermal regime even in
the absence of TTS and away from the high-frequency regime.

To demonstrate this mechanism, we have considered clas-
sical many-body rotor systems and discovered a characteristic
prethermal lifetime scaling of K−2n. In the quasiperiodic TM
limit, heating suppression becomes nonperturbative and fol-
lows the scaling in Eq. (10), which is neither exponential
nor algebraic. A similar functional form has been rigorously
proven in the high-frequency regime [60]. It remains an in-
teresting open question to justify such a dependence on the
kicking strength.

The Hamiltonian in Eq. (7) can be experimentally realized,
e.g., using an array of bosonic Josephson junctions [42,69,70],
opening up possibilities for the experimental exploration
of prethermalization with RMD kicks. While heating chan-
nels can always be suppressed by the RMD sequence, the
prethermal lifetime scaling exponent can strongly depend on
the microscopic details of the kicked system. The strong
dependence of the multipolar order n may not occur if inter-
action terms are also present in the static Hamiltonian, such
as H = Hkin + Vint. The leading-order perturbation �n,1 in-
volves terms with more than one Vint, e.g., {Vint, {Vint, Hkin}} ∼∑

j[sin(q j − q j+1) − sin(q j−1 − q j )]2. These terms are inde-
pendent of angular momenta and cannot be suppressed even at
low prethermal temperatures. Hence, the condition in Eq. (3)
cannot be satisfied in this case.

Simulating the time evolution with a static interaction
requires discretizing the continuous EOMs, which signifi-
cantly increases the numerical cost for long simulations of
the dynamics. Therefore, we modify the kick amplitude of
the interaction V as Kl = ±K + B, such that the additional in-
teraction Vint can be approximately generated at stroboscopic
times with a low numerical cost. In Fig. 3(a), we illustrate

the results with B = 0.01. The prethermal plateau is still ob-
served, and the corresponding lifetime is shown in panel (b).
It is evident that, for n > 0, heating can still be significantly
suppressed. However, its dependence on the kicking strength
now follows t∗ ∼ (1/K )2 regardless of the multipolar order.
A similar linearization analysis can be performed, and the
expansion rate for each decoupled oscillator is K2, as detailed
in Appendix G 3. Identifying a general mechanism for further
suppressing heating with a better scaling remains an intriguing
open question.

Finally, we highlight that the perturbative expansion, which
predicts the suppression of heating, also applies to RMD
kicked quantum systems. A systematic investigation of quan-
tum thermalization in such systems and its connection to their
classical counterparts poses an intriguing avenue for future
research.
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APPENDIX A: MANY-BODY EFFECTIVE
HAMILTONIAN FOR KICKED SYSTEMS

For the quantum kicked system, we have two different
unitary time evolution operators:

U +
0 = e−iτH e−iKV , U −

0 = e−iτH eiKV . (A1)

One can obtain a time-averaged Hamiltonian H±
ave = H ± K

τ
V

as the effective Hamiltonian to approximate the early time
dynamics. However, this is not a suitable expansion if τ is
not sufficiently small and one wants to study the perturbative
expansion with respect to the kick strength K . For instance,
the terms [H,V ]s all have an amplitude scaling of O(K ), but
they are not captured in the averaged Hamiltonian. Instead,
it is necessary to perform the replica resummation, whose
general expression can be cumbersome to obtain, but there
is a systematic approach to achieve it [15], see also examples
in Ref. [16]. For the same reason, the previous heating anal-
ysis on RMD systems in the high-frequency regime and the
expansion of order O(τ ) will not be applicable here.

To explore the heating effect in RMD kicked systems, we
consider the expansion in O(K ) as H±

n = ∑∞
m=0 Km�±

n,m such
that U ±

n = exp(−i2nτH±
n ). The symmetry H+

n → H−
n (under

K → −K) implies that

�+
n,m = (−1)m�−

n,m := �n,m (A2)

for all n. For n = 0, a systematic method has been estab-
lished for constructing the expansion U ±

0 = exp{−iτ [H0 ±
K�0,1 + O(K2)]}, and the O(K ) term is presented in Eq. (1)
[15]. For larger values of n, we still begin by considering the
leading-order correction with m = 1, and we assume a general
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structure for n � 1 as

�±
n,1 =

∞∑
s=0

f ±
n,sτ

s[H,�0,1]s, [H,�0,1]s := [H, . . . , [H︸ ︷︷ ︸
s

,�0,1] . . . ]. (A3)

From Eq. (A2), we know, for any n and s, we have f +
n,s = − f −

n,s for m = 1. Note, we do not require the specific expression
for each coefficient f ±

n,s. Instead, it suffices to demonstrate that some of them become exactly zero, thereby prohibiting certain
heating channels. A similar expansion can be derived for higher-order multipolar operators:

U ∓
n+1 = U ±

n U ∓
n = exp

{
− i2n+1τ

[
H + K ( f ±

n,s + f ∓
n,s)

∞∑
s=0

τ s[H,�0,1]s

2

− (−i2n−1)K
∞∑

s=0

τ s+1 f ±
n,s[H,�0,1]s+1 + K

∞∑
l=2

∞∑
s=0

τ s+l g±
n,s,l [H,�0,1]s+l + O(K2)

]}
, (A4)

where gn,s,l are some coefficients, and importantly, f ±
n,s + f ∓

n,s = 0 in the first line cancels. By comparing it with the assumption
in Eq. (A3) but for n = 1, we have

U ∓
n+1 = exp

{
−i2n+1τ

[
H + K

∞∑
s=0

τ s f ∓
n+1,s[H,�0,1]s

]
+ O(K2)

}
, (A5)

and by matching the coefficients of τ s, we can establish the
following relation for the coefficients:

f +
n,s = 0, for s � n − 1,

f +
n,s = (−i)2n−2 f +

n−1,s−1, for s = n,
(A6)

and obtaining f +
n,s for s � n + 1 can be cumbersome. There-

fore, the first line in Eq. (A6) implies Eq. (6) in the main
text. It suggests that, to the leading order of O(K ), heating
can only occur via the process [H,V ]s with s � n, while all
other heating channels are strictly forbidden.

Higher-order terms with an even order of K do not in-
troduce random perturbations. However, they still contribute
to heating in the form of Arnold diffusion, like periodically
driven systems, but their contribution is exponentially small
in the kick strength [43]. As a result, the next significant
random heating channels emerge at order O(K3). It can also
be shown that the self-similarity of the RMD sequence leads
to the exact suppression of these heating channels. To see this
more easily, we consider a special case where higher-order
nested commutators have negligible contributions:

[H,V ]s = 0, (A7)

for ∀s � nc with a certain integer nc. Consequently, �n,1 =
0, and the stroboscopic time evolution of the system is ef-
fectively governed by the Hamiltonian H±

n = H + K2�n,2 ±
K3�n,3 + O(K4), where

�n,3 =
∞∑

s=0

hn,sτ
s[H,�k,3]s, (A8)

for n > k and a certain integer k. By using U ∓
n+1 = U ±

n U ∓
n ,

one can again observe the vanishing coefficients:

hn,s = 0, for s � n − k − 1, n � k + 1. (A9)

APPENDIX B: SIMULATIONS FOR HIGH-FREQUENCY
DRIVE

Figure 4 depicts dynamics for a fixed kick strength K
and varying kick period τ with n = 1 random multipolar
sequence. Kinetic energy increases faster when τ becomes
smaller, indicating that the high-frequency limit cannot sup-
press heating for this particular set of driving parameters.
Note, the interplay between the τ → 0 and K → 0 limits is
unclear and worthy of systematic study in the future.

APPENDIX C: TEMPERATURE AT THE PRETHERMAL
STAGE

Here, we analyze the dependence of the prethermal temper-
ature on the kick strength, and we demonstrate that it follows
T ∼ K2. For the initial condition p j = p̃, the initial kinetic
energy density is given by p̃2/2. In the prethermal regime with
a weak kick, we assume that the distribution for pj and q j de-
couples [43]. The angular momentum distribution approaches

0 100 200
0

20

40

60

FIG. 4. Time evolution of the averaged kinetic energy for differ-
ent kick periods τ . Reducing τ clearly increases the heating rate. We
use n = 1 random multipolar drive (RMD) and a fixed kick strength
K = 0.5. qj (0) is generated from a random uniform sampling within
[0, 2π ], and pj (0) is randomly chosen from a Gaussian distribution
with zero mean and standard deviation σ = 1. Different values of the
kick period τ are shown in the legend.

064305-6



PRETHERMALIZATION IN APERIODICALLY KICKED … PHYSICAL REVIEW B 109, 064305 (2024)

FIG. 5. The averaged prethermal kinetic energy density 〈E∗
kin〉 for n = 1 random multipolar drive (RMD) for (a) B = 0 with p̃ = 0.1,

(b) B = 0 with p̃ = 0, and (c) B = 0.01 with p̃ = 0. The prethermal temperature scales as T ∼ K2 for (a) and (b) when the kick is weak. In
the last case, it is fixed by B, so all the plateau parts of energy curves are at the same value 〈E∗

kin〉 = 0.0048. The rest numerical settings are the
same as in Fig. 1. All plots use a log-log scale.

the Gibbs distribution Z−1 ∏N
j=1 exp[−(p j − p̃)2/2T ] with a

normalization factor Z−1. The corresponding kinetic energy
density is E∗

kin = (T + p̃2)/2. We numerically study the de-
pendence of the temperature T on the kick strength K in
Figs. 5(a) and 5(b) for two different initial conditions: p̃ = 0.1
and p̃ = 0, respectively. The numerical results fit well with a
straight line in a log-log scale, with a slope ∼2. This suggests
that the temperature follows T ∼ K2.

In contrast, for the modified kicked protocol used in Fig. 3
with a nonvanishing B, the averaged prethermal kinetic energy
linearly depends on B but does not notably change with K . We
verify this in Fig. 5(c).

APPENDIX D: DETAILS ON NUMERICAL
SIMULATION SETTINGS

Figure 1: The discrete classical EOMs in Eq. (9) are used to
simulate individual trajectories. For each fixed n and fixed K ,
each set of initial conditions is given by qj (0) ∼ Uni[0, 2π ]
with pj (0) = 0.1, j = 1, 2, . . . , 500; for each initial point, we
assign a random noise realization according to the random
multipolar driving protocol, and the kinetic energy 〈Ekin〉 is
averaged over 350 noise realizations and N = 500 rotors. We
perform the same simulation for n = 0, 1, 2, 3, and 20 [TM in
Fig. 1(a)] and plot 〈Ekin〉 as a function of time. The lifetime
t∗ is then extracted in the following way: Fit the 〈Ekin〉 curve
up to time t f with a power law t b and monitor the power b
for different t f ; t∗ = t f when b reaches the threshold 0.05. We
extract t∗ for each n and each K and plot in dots with different
colors in Figs. 1(b) and 1(c).

Figure 2: The linearized EOM in Eq. (12) is used with the
matrix M±

1 corresponding to the multipolar order n = 1. We
choose F = 0.08; in Fig. 2(a), the black ellipse [r0 = 0.1, cf.
Eq. (G15)] is determined by the averaged normalized matrix
M̄ ′

1. The magenta curve is generated by a trajectory starting
from an arbitrary point on the black ellipse and iterated ac-
cording to the averaged matrix M̄1 for time h � 300, and the
blue curve is generated by a trajectory starting at the same
point but iterated according to a random sequence of M±

1 (with
equal probability). In Fig. 2(b), the blue dots are the averaged
radius 〈rh〉 computed along the blue trajectory in Fig. 2(a) at
different times h, similarly for the orange dots except n = 2;
the dashed lines are predictions from our linearization theory,
cf. Eqs. (G19)–(G21).

APPENDIX E: PERIODICALLY KICKED
ROTOR SYSTEMS

The periodically driven many-body rotor system has been
studied in previous literature, e.g., Ref. [43], and we re-
produced their main results in Fig. 6. The evolution of
averaged kinetic energy exhibits a scaling of the prethermal
lifetime which is exponential for Floquet systems, as shown
in Fig. 6(b), rather than the algebraic scaling as presented in
this paper.

APPENDIX F: SCALING OF THE THUE-MORSE
PRETHERMAL LIFETIME

In the main text, we show that, for the TM drive,
the lifetime scaling becomes t∗ ∼ exp{C[ln(K−1/g)]2} with
constants C and g. Here, we compare this result with other
fitting methods. For instance, in Fig. 7(a), we use a log-log
scale, and clearly, the numerical data tend to curve up. In con-
trast, panel (b) depicts the same data but in log scale, and the
numerical result bends down. Therefore, this scaling grows
faster than any power law but slower than exponentially.

APPENDIX G: LINEARIZATION OF THE MANY-BODY
HAMILTONIAN

1. Time evolution matrix

Following Ref. [71], we can express the Hamiltonian of
our model as a collection of decoupled kicked harmonic

FIG. 6. Prethermalization for the periodically driven case: (a) av-
eraged kinetic energy vs time in a log-log scale, and (b) prethermal
lifetime t∗ vs 1/K in a semilog scale.
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FIG. 7. (a) and (b) depict the power-law and exponential fit-
ting of the prethermal lifetime t∗(1/K ) for the Thue-Morse (TM)
drive.

oscillators in a quadratic approximation: cos(q j − q j+1) ≈
1 − (q j − q j+1)2/2, provided that the two neighboring rotor
angles are sufficiently close (qj − q j+1) mod 2π ≈ 0. Thus,

we have

H (t ) =
N∑

j=1

⎡
⎣ p2

j

2
− (B ± K ) cos(q j − q j+1)

+∞∑
l=−∞

δ(t − lτ )

⎤
⎦

≈ 1

2

∑
w

⎡
⎣|Pw|2 + F±(w)|Qw|2

+∞∑
l=−∞

δ(t − lτ )

⎤
⎦, (G1)

where w := 2π I/N , F±(w) := 4(B ± K ) sin2(w/2) [the
choice of F±(w) depends on the RMD sequence], and Pw =

1√
N

∑N
j=1 p je−iw j and Qw = 1√

N

∑N
j=1 q je−iw j are the Fourier

transforms of p j and q j , respectively. Note that Eq. (11) in
the main text is a simplified version of the Hamiltonian above
with B = 0. Here, we use the general expression with nonzero
B such that the linear stability of the dynamics in Fig. 3 can
also be discussed.

Since p j and q j are real, we have P∗
w = P−w and Q∗

w = Q−w (here, a star denotes a complex conjugate). For each w, the
classical EOMs are given by

d

dt

⎛
⎜⎜⎜⎜⎝

Qw

Q−w

Pw

P−w

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

P−w

Pw

−F±(w)�(t )Q−w

−F±(w)�(t )Qw

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 −F±(w)�(t ) 0 0

−F±(w)�(t ) 0 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Qw

Q−w

Pw

P−w

⎞
⎟⎟⎟⎟⎠ =: M±(t )

⎛
⎜⎜⎜⎜⎝

Qw

Q−w

Pw

P−w

⎞
⎟⎟⎟⎟⎠, (G2)

where �(t ) = ∑+∞
k=−∞ δ(t − kτ ).

Consider the evolution of the system over one time period, from t = −ε to t = τ − ε with ε � τ . The solution to the above
equation is ⎛

⎜⎜⎜⎜⎝
Qw(τ − ε)

Q−w(τ − ε)

Pw(τ − ε)

P−w(τ − ε)

⎞
⎟⎟⎟⎟⎠ ∼ exp

[∫ τ−ε

−ε

M±(t )dt

]
⎛
⎜⎜⎜⎜⎝

Qw(−ε)

Q−w(−ε)

Pw(−ε)

P−w(−ε)

⎞
⎟⎟⎟⎟⎠. (G3)

During the first part of the period [when t ∈ (−ε, ε)], the rotor is kicked, and the time evolution is determined by the matrix:

M±
kick,w = lim

ε→0
exp

[∫ +ε

−ε

M±(t )dt

]
= exp

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 −F±(w) 0 0

−F±(w) 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −F±(w) 1 0

−F±(w) 0 0 1

⎞
⎟⎟⎠. (G4)

In the second part of the time period [when t ∈ (ε, τ − ε)], the rotor experiences a free motion, described by the matrix (with
ε → 0):

Mfree =

⎛
⎜⎜⎝

1 0 0 τ

0 1 τ 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (G5)

As a result, the phase space evolution of the kicked rotor over one time period is given by the matrix:

M±
w = MfreeM±

kick,w =

⎛
⎜⎜⎝

1 − F±(w)τ 0 0 τ

0 1 − F±(w)τ τ 0
0 −F±(w) 1 0

−F±(w) 0 0 1

⎞
⎟⎟⎠. (G6)

Notice that the matrix M±
w can be reduced to a 2 × 2 matrix:

M±
0 =

(
1 − τF± τ

−F± 1

)
, (G7)
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where the subscript w is dropped from now on. The evolu-
tion matrices for higher multipolar orders n can be derived
recursively as M±

n = M∓
n−1M±

n−1, which determines the time
evolution of duration 2nτ . For example, when B = 0, n = 1,
we have

M+
1 =

(−τ 2F 2 − τF + 1 τ 2F + 2τ

−τF 2 τF + 1

)
,

M−
1 =

(−τ 2F 2 + τF + 1 −τ 2F + 2τ

−τF 2 −τF + 1

)
, (G8)

where we have denoted F := F+ = −F−.

2. Stability of integrable orbits

We use the method proposed in Ref. [67] to analyze the
stability of the elliptical orbits. Let us denote

M̄n := 1
2 (M+

n + M−
n ) and Dn := 1

2 (M+
n − M−

n ), (G9)

such that M±
n = M̄n + ξDn, where ξ is a random variable,

being either +1 or −1 with the same probability. Hence, its
average vanishes 〈ξ 〉 = 0, and the variance reads 〈ξ 2〉 = 1. We
note that det(M̄n) = 1 + O((τF )2n) for nonzero n, implying
that the averaged map M̄n is not area-preserving. We therefore
define a new matrix M̄ ′ := M̄n/

√
det M̄n so that det(M̄ ′) = 1,

and this new matrix can be used to define the area of a closed
orbit in the linearized system. This orbit is generally a rotated
ellipse centered around the fixed point (0, 0). Note, M̄ ′ also
depends on the multipolar order n, but the following method
equally applies for all n. For now, we drop it for simplicity.
With the matrix elements Mi j of M̄ ′, its area can be defined
as [72]

A(Qw, P−w ) = π
[
M12P2

−w−M21Q2
w+(M11 − M22)QwP−w

]√
1 − (M11+M22

2

)2
,

(G10)

which is conserved if M̄ ′ is repeatedly applied. Here, Qw

and P−w are generally time dependent, and in the following,
we drop w for simplicity and introduce h to label their time
dependence. We only focus on stroboscopic time evolution
and use (Qh, Ph) to represent the trajectory at time h2nτ . One
can use the polar angle φh to parameterize the points (Qh, Ph)
on the rotated ellipse as

Qh = Rq cos(θ ) cos(φh) − Rp sin(θ ) sin(φh), (G11)

Ph = Rq sin(θ ) cos(φh) + Rp cos(θ ) sin(φh), (G12)

where Rq/p defines the length of the major or minor axis, and
θ defines the rotation angle with respect to the axis. It can be
determined by

tan(2θ ) = −M11 − M22

M12 + M21
. (G13)

One can also convert the variables back as

cos φh = Qh cos θ + Ph sin θ

Rq
, sin φh = −Qh sin θ + Ph cos θ

Rq
.

(G14)

The lengths of the major and minor axes are given by

Rq =
√

2r0

β

[
M11 − M22

sin 2θ
+ M12 − M21

]−1/2

,

Rp =
√

2r0

β

[
−M11 − M22

sin 2θ
+ M12 − M21

]−1/2

, (G15)

with the constant:

β :=
[

1 − (M11 + M22)2

4

]−1/4

. (G16)

It is worth noting that, for n = 1, Rq ∼ O(F−1), Rp ∼ O(F 0),
so for a weak kick strength, Rq can be large. This stretches the
ellipse in the Q direction much more strongly than in the P
direction.

For RMD drives where M±
n is applied stochastically, the

area of the closed orbit becomes time dependent. For a sin-
gle random realization and at a certain time, this area can
either expand or contract. However, if we average over many
different random realizations, it generally expands. We can
quantify this expansion by first defining the radius of the
ellipse rh = √

A(Qh, Ph)/π and calculating the expansion rate
�rh/rh, where �rh := rh+1 − rh. We use the same metric to
define the area of the ellipse, but now the trajectory updates
stochastically as (

Qh+1

Ph+1

)
= M±

n (w)

(
Qh

Ph

)
. (G17)

The expansion rate now reads

�rh

rh
:= rh+1

rh
− 1 =

√
M12P2

h+1 − M21Q2
h+1 + (M11 − M22)Qh+1Ph+1

M12P2
h − M21Q2

h + (M11 − M22)QhPh
− 1. (G18)

We now insert Eq. (G17) into Eq. (G18) to obtain the general expression as a function of the polar angle φh, the kick strength
F , and the kick duration τ . Unfortunately, it is usually very complicated and not enlightening. However, if the kick strength F
is small, one can perform a Taylor expansion to obtain the most relevant contributions. For our purpose, a Taylor expansion up
to the order O(F 2n) would be sufficient. This process can be done by employing symbolic computation tools such as Wolfram
Mathematica.

For n = 1, to the second order of F , we have

�rh

rh
≈

(
τF cos 2φh + τ 2F 2

√
2

2
sin 2φh

)
ξ + [1 + ξ 2(1 − cos2 2φh)]

τ 2F 2

2
. (G19)
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Terms that are linear in ξ vanish after averaging over differ-
ent random realizations. Contributions that are quadratic in
ξ generally do not vanish, unless for special polar angles,
e.g., cos2 2φh = 1. Also note that there is a term of order
O(F ) which does not depend on ξ . It arises from the fact
that the average map M̄n is not area-preserving, contributing a
constant expansion rate, as shown in Fig. 2 (the magenta line).

To further remove the angular dependence in the expansion
rate, one can assume that the change in the radial direction is
much slower than in the angular direction and integrate the
angle φh over the full range [0, 2π ]. We further use 〈ξ 〉 = 0

and 〈ξ 2〉 = 1 to obtain the averaged expansion rate that is
proportional to F 2:

〈
�rh

rh

〉
= 1

2π

∫ 2π

0

�rh

rh
dφh ≈ 1

4
τ 2F 2(2 + 〈ξ 2〉) = 3

4
τ 2F 2.

(G20)

This provides an approximation for the mean radius evolution
for small h (and small τF ): 〈rh〉 ≈ r0(1 + 3

4τ 2F 2h).
Similarly for n = 2:

�rh

rh
≈

[(
37

√
2

8
τ 2F 2 − 2

√
2

)
τ 2F 2 sin 2φh − 6τ 3F 3 cos 2φh

]
ξ + (

2ξ 2 cos 4φh + 2ξ 2 + 4
)
τ 4F 4, (G21)

and 〈�rh
rh

〉 ≈ 2(2 + 〈ξ 2〉)τ 4F 4 = 6τ 4F 4.

Lastly for n = 3, to the sixth order of F :

�rh

rh
≈

(
−16τ 3F 3 cos 2φh + 56

√
2τ 4F 4 sin 2φh + 206τ 5F 5 cos 2φh − 429

√
2

2
τ 6F 6 sin 2φh − 2

√
2τ 4F 6 sin 4φh

)
ξ

+(−ξ 2 cos 4φh + ξ 2 + 2
)
64τ 6F 6, (G22)

and the average 〈�rh
rh

〉 ≈ 64(2 + 〈ξ 2〉)τ 6F 6 = 192τ 6F 6.

3. Eigenvalues of the matrices M̄n and Dn

Instead of rigorously calculating the expansion rates and their dependence on n, one can also estimate them by studying the
scaling of eigenvalue properties of the update matrix. We first assume B = 0 and then obtain M̄n recursively as

M̄0 =
(

1 τ

0 1

)
, (G23)

M̄1 =
(

1 − τ 2F 2 2τ

−τF 2 1

)
, (G24)

M̄2 =
(

1 − 5τ 2F 2 + τ 4F 4 2τ (2 − τ 2F 2)
τF 2(−2 + τ 2F 2) 1 − 3τ 2F 2

)
, (G25)

M̄3 =
(

1 − 18τ 2F 2 + 27τ 4F 4 − 11τ 6F 6 + τ 8F 8 2τ (4 − 18τ 2F 2 + 10τ 4F 4 − τ 6F 6)

τF 2(−4 + 18τ 2F 2 − 10τ 4F 4 + τ 6F 6) 1 − 14τ 2F 2 + 9τ 4F 4 − τ 6F 6

)
, (G26)

with eigenvalues

λ̄0,± = 1, (G27)

λ̄1,± = (
1 − 1

2τ 2F 2
) ± (− 1

2τF
)√−8 + τ 2F 2, (G28)

λ̄2,± = (
1 − 4τ 2F 2 + 1

2τ 4F 4
) ± (−τF + 1

2τ 3F 3
)√−8 + τ 2F 2, (G29)

λ̄3,± = (
1 − 16τ 2F 2 + 18τ 4F 4 − 6τ 6F 6 + 1

2τ 8F 8
) ± (−2τF + 9τ 3F 3 − 5τ 5F 5 + 1

2τ 7F 7
)√−8 + τ 2F 2. (G30)

Since τ 2F 2 � 8, the eigenvalues of M̄n for each n > 0 form a complex conjugate pair. Furthermore, as det(M̄n) > 1, the
deviation from one determines the rate of constant expansion of the dynamics generated by M̄n. Specifically, we calculate√

det(M̄n) for different values of n, which correspond to the norms of the eigenvalues of Mn:

|λ̄1,±| = 1 + 1
2 (τF )2 − 1

8 (τF )4 + O((τF )6), (G31)

|λ̄2,±| = 1 + 4(τF )4 − 1
2 (τF )6 + O((τF )8), (G32)

|λ̄3,±| = 1 + 128(τF )6 − 160(τF )8 + O((τF )10). (G33)
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Note that, for a weak kick strength, we have (|λ̄n,±| − 1) ∼ (τF )2n for a small value of n, and higher-order terms are negligible.
Therefore, we expect the constant expansion rate to scale as F 2n, as discussed in the previous section Appendix G 2. However,
we also observe that the prefactor for higher powers of F tends to increase for n = 3, suggesting that the perturbative expansion
in orders of F may not converge for a large value of n.

We also compute the matrix Dn:

D0 =
(−τF 0

−F 0

)
, (G34)

D1 =
(

τF −τ 2F
0 −τF

)
, (G35)

D2 =
(

τ 3F 3 τ 2F (4 − τ 2F 2)

2τ 2F 3 −τ 3F 3

)
, (G36)

D3 =
(

−16τ 3F 3 + 10τ 5F 5 − τ 7F 7 τ 4F 3(16 − 10τ 2F 2 + τ 4F 4)

0 16τ 3F 3 − 10τ 5F 5 + τ 7F 7

)
; (G37)

with eigenvalues

μ0,± = 0,−τF, (G38)

μ1,± = ∓τF, (G39)

μ2,± = ±τ 2F 2
√

8 − τ 2F 2, (G40)

μ3,± = ±(16τ 3F 3 − 10τ 5F 5 + τ 7F 7), (G41)

which scales as |μn,±| ∼ (τF )n for n > 0. As Dn appears stochastically in time, we expect its leading-order contribution to
vanish. Its second-order effects lead to a diffusive spiral-out process with an expansion rate that scales as F 2n.

We perform a similar calculation for nonzero B, and by defining F± ∼ (±K + B), we obtain

|λ̄1,±| =
√

1 + τ 4

4
(F+ − F−)2 = 1 + τ 2

8
(F+ − F−)2 + O((F+ − F−)3), (G42)

|λ̄2,±| = 1 + τ 3

8
(F+ − F−)2[8 − 3τ (F+ + F−) + τ 2F+F−](F+ + F− − τF+F−) + O((F+ − F−)3), (G43)

|λ̄3,±| = 1 + τ 4

8
(F+ − F−)2(F+ + F− − τF+F−)2[8 − 3τ (F+ + F−) + τ 2F+F−]2[2 − 2τ (F+ + F−) + τ 2F+F−]2

+ O((F+ − F−)3). (G44)

Importantly, one always finds (|λ̄n,± − 1|) ∼ K2, where the
scaling exponent does not depend on the multipolar order.
This scaling relation corresponds to the observed heating rate
scaling of K2 in Fig. 3 in the next section.

APPENDIX H: DISTRIBUTION OF ANGULAR MOMENTA

In the main text, we linearize the many-body Hamilto-
nian and explain the characteristic scaling of the prethermal
lifetime. We note that such scaling can be very stable
and persist even away from the linearization regime (q j −
q j+1) mod 2π � 1, as shown in Fig. 1, where a wide initial
distribution of q j is used. Interestingly, we notice that this
lifetime scaling is not sensitive to the angular dependence
but strongly relies on the angular momentum distribution
during the prethermal regime. As discussed in Appendix C,
this distribution is governed by the prethermal temperature.
We find that, as long as the prethermal regime exhibits a low
temperature or, equivalently, a narrow distribution of angular

momenta, the prethermal regime can be sufficiently long-
lived, and the dependence on n should manifest.

The prethermal temperature can be adjusted by the initial
condition. For instance, we consider an initial angular mo-
mentum distribution following a Gaussian distribution with
a zero mean and a standard deviation σ . A larger standard
deviation generally increases the prethermal temperature, re-
sulting in a broader angular momentum distribution during
the prethermal regime. This is confirmed in Fig. 8(a), where
three different values of the initial standard deviation σ are
used. Note that we use n = 1 to generate the dynamics, but
this figure qualitatively represents other multipolar orders as
well. The kick strength K is chosen such that the prethermal
lifetimes are approximately the same for all σ , with values
of K set as 0.012, 0.008, and 0.005 for σ = 0.001, 0.01, and
0.1, respectively. The probability distributions are extracted at
t = 1500 just before the system notably heats up.

We now illustrate the dependence of the prethermal life-
time scaling on different initial conditions, focusing on the
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FIG. 8. (a) Momentum distribution at the end of the prethermal
stage for a Gaussian initial momentum distribution with a zero mean
and a standard deviation σ indicated in different colours, and (b) cor-
responding prethermal lifetime t∗ as a function of 1/K for n = 20 in
log-log. The rest numerical settings are the same as in Fig. 1.

TM drive. For a fixed kick strength K , it typically determines
the longest possible prethermal lifetime for the entire family
of n-RMD protocols. Therefore, if we fit t∗ vs 1/K on a
log-log scale, the scaling exponent also sets the upper bound
for other n-RMD protocols. As long as the TM drive exhibits
a sufficiently large scaling exponent α, n-RMD with any finite
n should exhibit the n-dependence in the lifetime scaling.

In Fig. 8(b), we present the prethermal lifetime scaling
for different initial conditions. For narrow distributions, such
as σ = 0.001 and 0.01, the scaling exponents are still very
large, approximately α ≈ 7.9 and 7.2, respectively. We expect
that these fitted scaling exponents may increases further if we
perform the fit using larger 1/K and longer time windows, like
in Fig. 1(c). However, for a larger standard deviation, such as
σ = 0.1, the scaling exponent notably decreases to α ≈ 3.1,

10
0

10
2

10
-2

10
0

FIG. 9. Time evolution of the averaged kinetic energy for the
TM drive. The simulation results converge for large systems, and
N = 500 is already sufficient to produce thermodynamically large
systems. Here, we use the kick strength K = 0.07, and the results are
averaged over 200 random realizations. Initial states are the same as
in Fig. 1.

and we expect that n-RMD systems with finite n would heat
up faster.

Therefore, we expect that, as long as the prethermal regime
has a low temperature, a long-lived prethermal regime and the
n-dependence in the lifetime scaling should emerge. Further
systematic investigations of the temperature dependence of
the prethermal lifetime scaling will be explored in future
work.

APPENDIX I: FINITE-SIZE EFFECTS

In Fig. 9, we compare the dynamics using the TM drive
for different system sizes. The simulations converge as the
system size increases. In the main text, we use N = 500 to
generate the data, which is already sufficient to mimic the
heating behavior in thermodynamically large systems.
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