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Periodically driven quantum systems host exotic phenomena that often do not have any analog in undriven
systems. Floquet prethermalization and dynamical freezing of certain observables, via the emergence of con-
servation laws, are realized by controlling the drive frequency. Recent experimental developments in synthetic
quantum matter, such as superconducting qubits and cold atoms, have opened avenues for implementing local
Floquet engineering which can achieve spatially modulated quantum control of states. Here, we uncover the
novel memory effects of local periodic driving in a nonintegrable spin-half staggered Heisenberg chain. For a
boundary-driven protocol at the dynamical freezing frequency, we show the formation of an approximate strong
zero mode, a prethermal quasilocal operator, due to the emergence of a discrete global Z, symmetry. This is
captured by constructing an accurate effective Floquet Hamiltonian using a higher-order partially resummed
Floquet-Magnus expansion. The lifetime of the boundary spin can be exponentially enhanced by enlarging the
set of suitably chosen driven sites. We demonstrate that in the asymptotic limit, achieved by increasing the
number of driven sites, a strong zero mode emerges, where the lifetime of the boundary spin grows exponentially
with system size. The nonlocal processes in the Floquet Hamiltonian play a pivotal role in the total freezing of
the boundary spin in the thermodynamic limit. The novel dynamics of the boundary spin is accompanied by a
rich structure of entanglement in the Floquet eigenstates where specific bipartitions yield an area-law scaling
while the entanglement for random bipartitions scales as a volume-law. Our work addresses the long-standing
question of the existence of a strong zero mode in a nonintegrable model and elucidates the complex nature of

thermalization in locally driven systems.

DOI: 10.1103/PhysRevB.109.064303

I. INTRODUCTION

Protection of quantum information in many-body systems
in the presence of decoherence is vital for quantum infor-
mation processing [1-3]. Realizations in physical systems of
qubits are routinely subjected to periodic drives using optical
and microwave resonators for quantum control [4—6]. Driving
systems away from equilibrium is an experimental prescrip-
tion for lengthening the lifetime of qubits. The potential of
periodic driving to produce novel phases of matter charac-
terized by dynamical localization [7,8], topology [9-13], and
time crystallinity [14-21] (which often does not have any
equilibrium counterpart) has been explored in detail both
theoretically and experimentally. Realizing exotic dynamical
states through Floquet engineering has witnessed a surge in
theoretical interest [22-26] in recent years. In interacting,
driven systems thermalization to infinite temperature pro-
vides a major roadblock to the protection of entanglement
and correlations [27,28]. In the absence of disorder, quantum
many-body scars (QMBS) [29-37], Hilbert-space fragmen-
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tation [38—43], and disorder-free localization [44,45] have
provided instances where local thermalization can be avoided
due to constraints in the interaction.

Certain one-dimensional many-body Hamiltonians are en-
dowed with a quasilocal operator called a strong zero mode
(SZM), which exists on the boundary of the system and is
conserved for long times [46,47]. This operator can be utilized
to encode stable quantum information away from the ground
state and does not require low temperatures. The existence of
SZM can be proven in integrable models while in the presence
of weak integrability-breaking perturbations, these quasilocal
operators are expected to exhibit prethermal behavior [48-50].
Models with Hilbert space fragmentation can host a statis-
tically localized SZM, without the presence of integrability
[51]. The connection between integrability and SZMs is of
significant interest for the breakdown of thermalization. In
this context, symmetries play a crucial role in fragmenting
the Hilbert space and forming quantum scars, which stabi-
lize SZM. This class of phenomena falls under the rubric of
partially integrable models, where local dynamical properties
exhibit nonthermal behavior. Under a global periodic drive
that breaks integrability while preserving the global symme-
try, the SZM destabilizes and has a finite lifetime [52,53].
These boundary observables take a parametrically long time
to thermalize while the bulk of the system thermalizes quickly.
These approximate zero modes are continuously connected to
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exact zero modes in the integrable limit of the models. Indeed,
in most cases, the presence of a global drive appears to be
crucial for realizing prethermal or athermal behavior due to
the emergence of conservation laws.

Generically, an interacting Floquet system heats up to
an infinite temperature state, however, prethermal or slow
dynamics can be induced due to the separation of scales
between the frequency of the drive and the system’s internal
energy scales [17,54-58]. The distinct stroboscopic dynami-
cal regimes of a periodically driven system are governed by
the Floquet Hamiltonian Hr, defined through the propagator
U(t)as

U(t) = Texp (—i/r H(ﬂ)dﬂ) = exp(—iHr7), (1)
0

where H(t) = H(t + 7). Hrp plays a central role in under-
standing the slow dynamics or heating to infinite tempera-
ture [59-61]. A perturbative description of the prethermal
timescales can be developed in terms of an expansion of Hr
in 7, where t is the time-period of the Floquet drive. In
general, the perturbative corrections in a periodically driven
nonintegrable system become nonlocal and the series diverges
in the thermodynamic limit, signaling rapid thermalization.
However, through appropriate Floquet engineering, one can
prolong the prethermal behavior to experimentally observable
times enhancing the radius of convergence of such perturba-
tion series. For example, in the presence of a high-frequency
drive, nonintegrable systems can exhibit prethermal behavior
where emergent conservation laws are applicable for expo-
nentially long times. In another class of phenomena, global
drives can result in the formation of Floquet quantum scars
[62-67] and dynamical many-body freezing [68—70], where
local observables remain athermal under unitary evolution for
a specific choice of drive protocols—an exclusively drive-
induced nonthermal phenomenon at intermediate frequencies.
The frozen states are characterized by local conservation laws
and lead to scarring of the Floquet spectrum.

A question naturally emerges, what happens when a system
is driven locally? Unlike the global drive which can preserve
translational symmetry, a local drive explicitly breaks it. Re-
cently, the real-space profile of thermalization for local or
spatially modulated drives has been shown to exhibit rich
behavior where the drive can disentangle spins leading to
large variations in thermalization times and even steady-state
properties [71,72]. The disentangling effect of the drive can
generate cold spots which persist for significantly longer than
thermalization times in the rest of the system.

In this work, we consider the fate of thermalization for a
boundary-driven nonintegrable spin chain. In the absence of
driving, the model hosts a set of scarred eigenstates that act as
a large spin given by the SU(2) symmetry of the model, show-
ing persistent oscillations for certain unentangled initial states.
In the presence of a local drive, this manifold is destroyed by
a novel form of dynamical disentangling of the spin due to the
emergence of a discrete symmetry at the dynamical freezing
frequency. We unravel a new mechanism for local ergodicity
breaking due to the formation of an approximate SZM at a
certain discrete set of frequencies. Furthermore, using Flo-
quet engineering of a cluster of sites (see the illustration in

FIG. 1. A schematic figure showing the model interaction and
drive protocol adapted in this work. Red (blue) color is used to
denote ferro- (antiferro-) magnetic exchange in consecutive links.
A stationary global field is applied in the z direction, whereas a
time-periodic field in the x direction is applied at a few specific sites.

Fig. 1), we are able to control the exponential time scales
of boundary relaxation characterized by the emergence of an
asymptotically exact SZM. The athermal dynamics is accom-
panied by a rich entanglement structure of Floquet eigenstates
which exhibit both thermal and athermal properties.

The rest of the paper is structured as follows. In Sec. II,
we introduce our model, and discuss its symmetries and non-
integrable nature. This is followed by the definition of the
local Floquet protocol. In Sec. III, we discuss the boundary-
driven protocol where the drive acts on a single site. Using
higher-order Floquet-Magnus (F-M) expansion, we demon-
strate the slow dynamics of the edge spin and the resulting
properties of the approximate SZM. In Sec. IV, we give the
full phenomenology of two and multi-site driving, discovering
the optimal drive protocol which leads to the freezing of the
boundary spin. We discuss how this novel dynamical property
is accompanied by the emergence of a SZM in Sec. IV C. In
order to interpret our results on the dynamics, we analyze the
entanglement structures of the Floquet eigenstates in Sec. V,
and show their thermal and athermal properties for specific
bipartitions. Section VI summarises the salient results and
their implications for athermal behavior in Floquet systems.

II. MODEL HAMILTONIAN, DRIVE PROTOCOL, AND
PRELIMINARIES

A. Undriven Hamiltonian

We consider the one-dimensional “staggered” (alternating
ferro-antiferromagnetic exchange interaction) nearest neigh-
bor spin-1/2 Heisenberg model with a globally applied
homogeneous magnetic field, as the undriven part of our sys-
tem. Its Hamiltonian is

N—-1 N
Hy=) (=1)Si-Sisi —h)_ S, )
i=1 i=1

where i refers to a site index and S; = (Sj-‘,Sf,Sf) is the
vector comprised of the usual spin-1/2 operators, and £ is
the magnetic field strength. N is the number of spins and
we always consider open boundary conditions (OBC). As
previously mentioned elsewhere by some of us [71], the model
in Eq. (2) has a long history partly due to its relevance to the
Haldane spin-1 chain [73-76], which can be experimentally
realized in the limit of the ferromagnetic bonds being much
stronger than the antiferromagnetic ones [76,77].
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For h # 0, the magnetic field term reduces the symmetry
of the Hamiltonian from SU(2) to U(1), thus the total magne-
tization along the z axis (S, = Y, S;) is conserved. A subset
of U(1l) is the Z, symmetry, i.e. Hy commutes with the D,
operator, where

N
D, = []2s¢ 3)
i=1

with o = x, y, z. In terms of spatial symmetries, Hy is reflec-
tion symmetric (with respect to the central bond) only for even
N. For odd N, Hy is found to anticommute with the operators

Ay = DyR, “4)

for @ = x, y, where we have defined,

(N—1)/2
R = ]‘[ SWAP(,N — i+ 1). (3)

i=1

R is the reflection operator with respect to the cen-
tral site and SWAP(, j) is the SWAP gate, defined
as  SWAP = [ ) (M| + M)A+ 1AL+ 1L (LA
Consequently, Hy has a spectral reflection symmetry (i.e., if
there is an eigenstate |) of energy E, then there is also an
eigenstate A|y) with energy —E) for odd N.

We find that there are exponentially many (with system
size) exact zero energy states at 1 = 0 for odd N, intriguingly
such a feature has also been reported in other models that har-
bor a superspin structure, which translates to the existence of
QMBS [29,78-82]. For any eigenstate |y) with magnetization
m;, there is always an eigenstate R|{) (D), for o = x, y)
with magnetization m, (—m,). For even N, both the spectral
reflection (E — —FE) symmetry and exact zero energy states
are lost but the latter property still remain valid.

Despite its superficial resemblance to the integrable uni-
form Heisenberg chain, the staggered model is nonintegrable.
Focusing on even N, here N = 16, we work in the zero-
magnetization sector (S{,, = 0) and switch off the magnetic
field at the last site to remove the presence of conventional
symmetries (e.g., S? conservation, inversion symmetry) [83],
which must otherwise be accounted for in the determination of
level statistics. The middle 60% of the many-body spectrum
is used for the purpose of computing level statistics, this is
done to focus on properties at infinite temperature. Due to
the limited statistics of eigenvalue spacings available for every
bin, it is instead useful to monitor the integrated level spacing
distribution,

I(s) = /*x P(s')ds’, ©6)
0

where P(s’) is the probability density of the unfolded energy
level spacings (spacings divided by their mean). Note that I(s)
is simply the cumulative distribution function of the unfolded
spacings s.

In Fig. 2, we plot I(s) for the case of h =1, and find
that it closely resembles the results of a Gaussian orthogonal
ensemble (GOE) of the random matrix theory [84], a signature

1.0 T
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FIG. 2. Integrated level spacing distribution /(s) for Hy (in blue)
and H, without staggering (in yellow), both with 2 =1, N = 16.
Black lines show a comparison with Poisson statistics, the signa-
ture of integrability (dashed), and GOE, valid for chaotic systems
(dotted).

of chaotic, nonintegrable systems,1 In comparison, when the
bonds are made uniform (instead of staggered), we find that
I(s) follows the Poisson distribution, as expected for inte-
grable models.

B. Strong zero mode

Our work here is inspired by the aim of engineering a
strong zero mode, a quasilocal conserved operator, localized
at the edge of a one-dimensional quantum system which gives
rise to long coherence times of the edge spin [46—48,51,85].
The emergence of SZM is closely related to the existence of
a discrete symmetry which can lead to a local conservation
law on the edge of a system. Therefore characterization of
the SZM operator O, in a spin-1/2 system, described by the
Hamiltonian H, requires certain algebraic properties to be sat-
isfied which have an impact on the spectrum and dynamics of
local observable [46,47]. These properties are the following.

(1) There exists a discrete symmetry operator D in the
system, i.e., [D, H] = 0, implying the eigenstates are split into
two sectors, labeled by the eigenvalues of D.

2) Ogm anticommutes with D, {Oszm, D} = 0, and there-
fore pairs the eigenstates between the sectors of D.

(3) Oy must be normalizable, 02, oc .

(4) Ogm asymptotically commutes with H, i.e.,
[I[H, Oszm]H ~ exp(—aN) with a > 0. A consequence of
this is that Oszm is a conserved quantity in the thermodynamic
limit and that the gap falls off exponentially in the system
size.

We, therefore, expect that a system endowed with a SZM
is characterized by a spectrum-wide (quasi)-degeneracy and
relaxation of the edge that can be slowed down by increas-
ing the system size. It is also important to satisfy all these
conditions simultaneously to have SZM in a system, for ex-
ample, one can construct an operator which satisfies the last

'We find similar results for 4 — 0 i.e., even the staggered Heisen-
berg model without a field is nonintegrable, consistent with previous
integrability tests of Ref. [118].
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condition but does not correspond to a SZM. The undriven
staggered Heisenberg chain (Hp) is not expected to possess
a normalizable SZM and, consequently, expectation value of
any edge spin operator should quickly relax to zero starting
from any randomly chosen ordered state. In a bid to effectively
decouple the edge spin from the rest of the system, we adopt
the strategy of driving it locally with a protocol we describe
next.

C. Drive protocol

Throughout this work, we adopt a Floquet drive protocol
that involves applying a time-periodic magnetic field in the x
direction on a subsystem that includes the boundary spin. The
total time-dependent Hamiltonian is given by

H(t) = Hy+ f@)V,
f(t) = ysgn[sin(wt)], and V = ZSf, @)

iESd

where sgn(x) is the sign function, and thus its profile is that of
a “square pulse,” and s, is the set of driven sites (see Fig. 1). y
and o are the drive amplitude and frequency, respectively and
T = 21 /w is the time duration of one drive cycle. The time-
averaged field in the x-direction is zero at stroboscopic times
(integer number of drive cycles). We note that some aspects
were previously considered for the special case of a single
driven bulk site [86—88].

The time evolution operator over one drive cycle can be
written as

U(z) = e {(Ho=yV)5 o=itHotyV)} _ p=itlrt (8)
Since we focus on stroboscopic dynamics, = nt where n is
an integer, analyzing the properties of U(t) or equivalently
Hp is adequate for long time dynamics. A key contribution of
our work is to explicitly derive Hr, to some approximation,
in a bid to understand the exact stroboscopic dynamics seen
in our numerical calculations. The explicit form of Hr was
computed to the lowest order in the F-M expansion for the
case of a single driven site in the bulk [71], a result we revisit
in the next section for the boundary driven case.

D. Observables

Both from an experimental and theoretical point of view
it is advantageous to monitor the time dependence of local
operators, here we focus on (¥ (nt)|S7 |y (nt)), where

[¥(n7)) = Unt)lho) = U"(7)|0) C))

is the time-dependent state starting from an initial state |v).
The initial state is typically chosen to be “simple,” for exam-
ple, a product state in the x basis, with the hope that it can be
easily realized in experiments [18,89-91].

Further theoretical insights can be obtained from the time-
dependent von Neumann entanglement entropy,

S\ (nt) = Trlpa(n) In ps(n)], (10)

where A refers to a single site or collection of sites. The
reduced density matrix of this collection of sites, p4, is com-
puted by tracing out all degrees of freedom not part of A

(labeled by A) in the full density matrix
pa(nt) = Trg[|¥ (nT)) (Y (nT)l]. (11)

In this work, we choose A to include either a single site,
or a collection of driven sites. While local observables can
be routinely measured in quantum simulation experiments,
accessing the Rényi entanglement entropy is also feasible
[92-94]. Entanglement entropy is a useful metric for distin-
guishing between low-entangled states (area law or lower) or
those with high entanglement (typically, volume law). Thus it
reveals the existence or absence of (Floquet) ETH and is also
useful for the detection of QMBS [29,34].

III. BOUNDARY-DRIVEN APPROXIMATELY CONSERVED
STRONG ZERO MODE

A. Overview of salient features of dynamics

Given the setup in the previous section, we study the stro-
boscopic relaxation of the spins when only the left boundary
spin is driven, i.e., s; = {1}. The main purpose is to explore
the existence of parameters that freeze the dynamics of the
edge spin via the emergence of a local conserved quantity
(for example, S7) which can lead to realizing a strong SZM.
Instead, we find an approximate SZM for the boundary-driven
protocol, i.e., no operator satisfies the criteria outlined previ-
ously. However, the lessons learned from understanding this
case facilitate a series of drive protocols that lead us to a SZM,
demonstrated in the following sections.

We summarize our key physical findings in this section,
which relies on constructing Hp using a resummed F-M ex-
pansion to different levels of accuracy. First, we revisit the
result for Hy to zeroth order (I = 0) in the F-M expansion, by
transforming to the rotating frame. We show that this approx-
imation, while qualitatively correct for many situations, fails
to capture the dynamics evaluated from exact numerics near
certain special drive frequencies which we dub as “freezing
frequencies” [69]. This failure motivates the technically chal-
lenging computation of Hr to second order which contains
multiple terms, we classify as “local” and “nonlocal.” We find
that the local terms, treated accurately to high order in the
inverse drive strength, renormalize the freezing frequency in
excellent agreement with the exact results. Finally, we demon-
strate that describing the slowdown of the boundary spin at
and near the freezing frequencies requires the incorporation
of additional nonlocal terms.

We initialize our system to a simple product state with all
spins pointing along the —x axis,

[Y0) = |=X) (12)

&
1

In the absence of an applied magnetic field (h = 0), this state,
being the maximally polarized ferromagnet along the —x di-
rection, is an exact eigenstate of Hy with energy E = 0 for
odd N and E = 1/4 for even N. When decomposed in terms
of S% projected eigenstates, we get

1 N
Vo) = 3z 2 VNG
r=0

(13)

z
Stot -

2r—N
> .
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When a nonzero z field (h # 0) is turned on, the projected
St states (on the right-hand side) remain eigenstates of Hy,
but their degeneracy is split. Thus |1) no longer remains an
eigenstate of Hy. These projected states were shown to have
low entanglement [34], in violation of the expected volume
law at infinite temperature. Thus this state serves as perhaps
the simplest example of an embedded superspin (at high en-
ergy) in an otherwise chaotic spectrum, this is the basic idea
at the core of perfect QMBS [34,95].

Though the system initialized with |—X) exhibits perfect
oscillations (in the Loschmidt echo and various observables)
under the action of Hy, the situation is starkly different when
the system is subject to a local periodic drive [Eq. (7)]. In
previous work [71], we found that there are at least two para-
metric regimes depending on the kick strength and frequency.
Typically, the driven spin thermalizes collectively with the
rest, however, when a freezing condition involving the drive
strength and frequency is satisfied, the driven spin is almost
(but not strongly) decoupled from the rest of the system. We
will elaborate on this in the next subsection.

In what follows, we have worked primarily with the |—X)
initial state, however, we emphasize that all our results remain
insensitive to this choice and are valid for any product state in
the S* basis.

B. Failure of the zeroth order Floquet Hamiltonian

We perturbatively construct and analyze the Floquet
Hamiltonian, Hp, using a resummed F-M expansion (as
charted out in detail in Appendix A). In this scheme, Hr =
Yoo H, ;l) where the various orders are denoted by H, }1) and,
in principle, can be calculated for each /.

A computation of the [ = 0 term gives

sin A '
H = —SiS5 = ==(S\8) + 5i53)
1 —cosi

O (355 - 5153)

h in AS? 1 287
—X[sm T+ (1 —cosA)Sy]

N-1 N
+ Y (1S Si —h S5, (14)
i=2 =2

where A = y1/2 = my /w. Additionally, the calculation for
I = 1 shows that H ;1) vanishes for all drive parameters.

When A = 2nk, where k is an integer, the only nonzero
term involving the driven boundary site in Hy (calculated up
to [ = 1) is —S7S5. This suggests that the edge spin can be
completely frozen if one tunes the drive frequency to of =
y /(2k) since the following commutation relation

(St H + HP] =0 (15)

is exactly satisfied.

We focus on the k = 1 case, though all the discussions
remain valid for any k. Figure 3(a) presents the stroboscopic
dynamics of SYN, for all i with s, = {1}. We find that the re-
laxation rate of the boundary spin is indeed very small at w ~
o® (compared to other sites which thermalize very quickly
in spite of being undriven), however, it is always nonzero.

500 1000 1500 2000
n

FIG. 3. Stroboscopic dynamics of (a) single site entanglement
entropy S,.VN for all the sites (i) for N = 14. The red (dashed) line is
used to denote the maximum single-site entropy (In 2). S\N (averaged
SN over first 2000 cycles) is plotted with w in the inset showing
the absence of dynamic freezing of the edge spin even for the most
appropriate choice of the drive frequency. A vertical dashed line is
also drawn at w! = 7.5 to clearly show the minima in SN (w)) is
shifted from w!. (b) entanglement entropy of the boundary site (S}™)
for different system sizes (N). h=1, y =15, and w = o}, = 7.53
for both the panels. The N = 16 and N = 18 calculations were done
with matrix-product-state-based TEBD calculations for a time step
of 8t = t/100 and a maximum bound dimension of 2V/2,

This can be seen in the inset of Fig. 3(a), where we plot
SYN averaged over the first 2000 cycles with @ near w!. The
frequency which gives the slowest relaxation (w = wf)) shifts
to a somewhat higher value compared to o} (i.e. wf, > wk).
This result can not be explained by the lowest-order (I = 0)
Floquet Hamiltonian.

We also monitor the size dependence of the relaxation
rate of S}N in Fig. 3(b) using a combination of exact di-
agonalization for N < 14, and matrix product state based
time-evolving block decimation (TEBD) technique [96,97]
for N > 14, setting the bond dimension to its maximal value
of 2V2. A second-order Trotter decomposition with a time
step of 8¢ = 7/100 was used for the TEBD calculations [98],
we checked there was almost no difference in our results
in the range 8t = v /30 to 8+ = t/100. While increasing the
system size, we find that the relaxation of the edge spin slows
down, but not exponentially in system size. Moreover, the
relaxation dynamics tends to be saturated beyond a threshold
system size [~16 as can be seen in Fig. 3(b)], an observation
that is consistent with the phenomenology of an approximate
SZM [47].

C. Higher order corrections and freezing condition

To explain our numerical observations, we need to go
to higher terms in the F-M expansion. However, before
we dive into this calculation, we note that the F-M ex-
pansion to obtain the Floquet Hamiltonian for interacting
systems is plagued by various convergence issues [56].
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Though these issues can be circumvented to some extent
by systematic resummations in certain parameters (e.g. drive
frequency) [59,99,100], the calculation of the resummed ex-
pansion becomes increasingly difficult in higher order in other
parameters (e.g., drive amplitude) due to the presence of
nested commutators of many-body terms. In spite of this, the
calculation of higher-order terms in F-M has been fruitful, as
it can reveal physical effects not accessible in the lower order
expansion.

J

As anticipated, the calculation of H }2) is somewhat com-
plicated by the existence of multiple terms, for completeness
the various contributions have been described in Appendix A.
Here we categorize the resulting expression into “local” and
“nonlocal” parts,

2) _ g©@ (2)
HF HF loc +H

F, nonloc*

(16)

The “local” part, consisting of only one- and two-body (n.n.)
operators (including the boundary site), can be written as

HP\o. = ai(p)S] + ax(p)S] + as(p)SS5 + as(p)S} S, + as(p)SS, + as(p)S)S5 + - - - (17

where p =

(h, v, ) represents the set of drive parameters (see Appendix A for the full expression of all the a; coeffi-

cients). The ellipsis denotes terms, which commute with S{. It is important to note that our classification of “local” is
based on the fact that the terms have the same functional forms as those appearing in H}O), hence only renormalizing their

strength.

Interestingly, we find that g;s contain terms with similar magnitude as the zeroth (I = 0) term [i.e. (9(1 /v)], some of which
can be nonzero even at the special freezing frequencies w . Collecting only the O(1/y) terms from Hy’ )loc’ we rewrite Hy as

1
Hr Joc [0 (;)} =HY +H" + H?, [0(1/)]

= —Siss —

2sin A 1 + 4h%)7?
sin [(1+( +4 )T

g5+ (142 )sess
192+ +R 1°2

2 1 +4n*)7%(2 A ,
+—|:(1—cosk—( T+ Ak)T 2 + cos )>STS§—<1—COSA—
YT

48

722+ cosA)\ _,
e

2hT . 72 72(2 4 cos A)
—;[smk(l—i— )SZ+<1—cosk— " >s‘}+2( 1S, - S,H—hZS (18)

With this expression it becomes clear that [S7, Hr] # 0 at
o = k. In fact, there is not a single p for which all $}
noncommuting terms in Eq. (18) simultaneously go to zero.
In other words, it is impossible to dynamically freeze the edge
spin via the emergence of a corresponding local conserved
quantity. This result must be contrasted with the case of lobal
driving with a square pulse [69], where the terms in H? o ) are
expected to be at least O(1/y?) or smaller (see Appendix C).
The local terms, to order 1/y, do not significantly affect the
freezing condition obtained from HY, they alone are quan-
titatively inadequate for explaining the observed shift in the
freezing frequency. Thus we retain higher order local terms in

(2)
HF 1oc and define

1 1
HF 1o [O<ﬁ>} =H" +H" + H;ZILC[O(F)] (19)

To demonstrate that the Hamiltonian in Eq. (19) captures
the shift of the point of minimum relaxation to a frequency
slightly higher than ¥, we calculate a matrix element of Hr in
the S*-basis, Hr (2, 1) where |1) = |vy) and |2) = o}|1). Fig-
ure 4 shows a comparison of different levels of approximation
for Hr (2, 1) with the exact numerical calculation. One can see
that |Hp (2, 1)| obtained from Eq. (18), though always nonzero
(supporting the absence of freezing of the edge spin), does not
match the exact results, particularly it still shows the minimum
at a frequency which is extremely close to !, rather than the
shifted value. In comparison, including the local O(1/y?*) and

i

O(1/y?) terms in H,(f) yields substantially good agreement
with the exact numerics, in particular the location of the min-
ima of matrix elements [like Hr(2, 1)] which determines the
freezing frequency.

Going beyond individual matrix elements, we compare
the exact stroboscopic dynamics with that generated by the
Hr1c[O(1/y3)] in Fig. 5. This approximation is excellent for
capturing the dynamics of all spins away from the freezing
frequency. At and near the freezing frequency, it captures the
dynamics of all, but the boundary spin, accurately. Thus the
local Hp approximation can capture not only the individual
matrix elements but also the stroboscopic dynamics quite
accurately at least for short times.

D. Role of nonlocal terms to slowdown the edge spin

Interestingly, the failure of the local H}Z) only for the
dynamics of the boundary spin at and near wfn reveals the
importance of the nonlocal terms, that we have ignored up to
this point. We have numerically checked that near the freezing
frequency many matrix elements of Hp, generated by long-
range and multi-spin interaction terms involving the boundary
spin are significant relative to the local matrix elements [like
Hp (2, 1) which shows a minimum at this parameter regime].
We find that such nonlocal terms, appearing in H, %) can at
most be four-body operators having support on sites 1-4.
We have calculated all such terms (dubbed as H ) with

F nonloc
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FIG. 4. Comparison of (a) real, (b) imaginary, and (c) absolute
values of Hr(2, 1) between exact numerics (black dots) and expres-
sions obtained from F-M expansions. Blue (green) curve is obtained
from Eq. (18) [Eq. (19)]. A vertical red (dashed) line is used in (c) to
guide the eye to the minima of Hr (2, 1) which is clearly shifted from
o' =75 h=1,y=15and N = 8.

their respective strengths in terms of the drive parameters (see
Appendix A). Such terms when included in Hr are found to
improve the agreement with exact numerics for the boundary
spin [see Fig. 5(b)].

The nonlocal terms, though very weak, will proliferate in
further higher orders; a careful inclusion of them may increase
the timescale of the agreement with exact numerics. In fact,

0.5‘ (a) ] 4 ;
i I — i=1 (Exact) --- =1 (Hpi[O1/4)
naAos
o VAN AN A a AR AN ARV N NI Ad A AL
\ ] ! . . .
_05/’{ 1 i=4 (Exact) - Z:4(HF,lor[O(1/’Y3)])
05 |'.(bl)| i " (HF-,nonloc[O(l/’YS)])
0o '"‘,"'. A . N AR
—~ 1l "nu [ Q (O Y PO A | [ N
oot LA ANA R A AAARBNA R AR AAAARN
~ VOvri e AV R i gy VY
TR R R A V R A VR T .
T
—0.5 Vi ===

7

(s

50 100 150 200

FIG. 5. Comparison of stroboscopic dynamics from exact nu-
merics and analytical Hp obtained from the resummed F-M
expansionat(a) w =5(Mb)w =753 () w=10.y =15,h =1, and
N = 8. Away from the freezing frequency the stroboscopic dynamics
is well captured for all spins within a “local” approximation for Hr,
in comparison to exact numerics. At or near the freezing frequency,
nonlocal terms are required to accurately capture the behavior of the
driven boundary spin.

we find that the nonlocal and multispin terms already present
in H ggmloe are sufficient to capture the slow dynamics of the
edge spin accurately up to n ~ 200. The strength of the nonlo-
cal terms calculated in second order (I = 2) is renormalized in
higher order in the F-M expansion which in turn extends the
agreement with exact dynamics to longer times. This is quite
nontrivial for two reasons. First, any nonthermal (or prether-
mal) phenomenon in a Floquet system is naively expected to
be linked with the existence of a local Hr whereas a nonlocal
Hp usually promotes heating. But here we observe the exact
opposite, the thermalizing dynamics of the bulk sites is well
captured by a local Hr (even at w,’jl as shown in Fig. 5) but not
the freezing dynamics of the boundary site which necessitates
the presence of certain long-range terms for its onset. Here
we also note that ng,zxzonloc is completely off-diagonal in the
x basis and the proliferation of these terms is expected to
dephase the initial state |y). Second, from a practical point of
view, it establishes the freezing phenomenon reported in this
work as a genuine drive-induced many-body effect, which is
challenging to engineer with fine-tuned long-range terms in a
time-independent Hamiltonian.

As noted previously, the rate of relaxation of the boundary
spin at the special frequencies (a)f;l) decreases further with
increasing system size, as can be seen in Fig. 3(b). This is at
odds with the usual expectation that increasing the system size
generically increases the phase space available for thermal-
ization and should thus speed up the process. This apparent
anomalous behavior already suggests that boundary driving
alone can be enough to trigger the onset of an approximate
SZM [47,50] in the system. However, the relaxation time of
the boundary spin is significantly shorter than the time asso-
ciated with a SZM, in which case it is exponentially large in
system size.

The inability of boundary-site driving to fully freeze the
boundary spin and the presence of nonlocal terms motivates
the next natural question: what happens when multiple sites
(including the boundary one) are driven together? Is there
any requirement on the number of driven sites as well as
the specific locations where the drive should be applied to
maximize the lifetime of the edge spin? We address these
questions in the next section.

IV. EMERGENCE OF THE STRONG ZERO MODE VIA
MULTISITE DRIVING

A. Optimal drive protocol

We now consider a situation when multiple spins in the
bulk are driven simultaneously, in addition to the boundary.
Intuitively, the increase in the number of driven sites would
lead to more rapid thermalization of all the spins. As discussed
in Sec. IIID, each driven site generates a larger collection
of nonlocal terms which slow down the edge spin near the
freezing frequency. In this section, we first explore the land-
scape of few-site protocols and investigate their effects on the
edge spin. This subsequently leads us to the development of a
multi-site driving protocol, resulting in the further slowdown
of the edge spin.

When the boundary and a generic bulk site are driven to-
gether, our results indicate that the relaxation of the boundary
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FIG. 6. Stroboscopic S}’N (top) and (S7) (bottom) for different
two-site driving. Locations of the driven sites (s;) are mentioned at
the top of each column. 7 = 1, y = 15, a):a)}ﬂ:7.53, and N=14.

spin gets faster. We demonstrate this behavior with an exam-
ple for s; = {1, 3} in Figs. 6(a) and 6(c), where we observe
that the relaxation of the boundary site is faster than the case of
sq = {1}. The undriven sites are found to thermalize quickly,
with the exception of the intermediate spins, which exhibit
slower relaxation to thermal equilibrium. However, remark-
ably we find that a particular two-site driving protocol results
in strong freezing of the edge spin: when in addition to the
boundary site the fifth site is also driven (s; = {1, 5}). Indeed,
the first site shows almost no relaxation of ((S7)) for the drive
cycles plotted in Figs. 6(b) and 6(d). The intermediate sites
assume a different character now, showing a strong tempo-
ral oscillation before eventually decaying out to zero. This
particular driving protocol also causes a widened frequency
window which admits slow (but nonzero) relaxation of the
edge spin. Moreover, we find that the relaxation of the edge
spin, analogous to the boundary-driven case, slows down with
increasing the system size (see the inset in Fig. 7).

0.6 0.6 s,={1,5} |
% N=8
0.3 ~~ — N=
0.4 — N=10
z
Z — =11 . N=
- - ~ v
sq=11,5 L =
¢ ’ 0.0 50000 100000 150000
0.2 — 54=11,5,9} n
— s4={1,5,9,13}
0.0
0 200000 400000 600000 800000

n

FIG. 7. Long time stroboscopic dynamics of S}~ for different
multi-site driving showing the optimal choice of drive locations
(every fourth site) to freeze the boundary spin. Inset shows S\N vs
n for s, = {1, 5} for different system sizes. All parameters are the
same as in Fig. 6.

This freezing behavior is necessarily a high-order many-
body effect, as the drive itself only produces interactions with
a range of three sites away from the driven one (in the sec-
ond term in F-M). Therefore driving site 5 does not change
the structure of the effective Hamiltonian from Eq. (18),
only adding terms supported on sites 2—8. This implies that
the origin of the suppression of the boundary relaxation is
a higher-order many-body process, where the driven site 5
impacts sites 2—4, which in turn impact the boundary. This
complex collective behavior seems to be a unique property of
only this particular two-site protocol (s; = {1, 5}), and will
become the key ingredient in our subsequent proposal for the
Floquet engineering of the SZM.

We also note that the additional driven site is itself not
frozen. This can be understood by noticing that the Hamil-
tonian now includes newly generated three-body interaction
terms (e.g., $35:S5, see Appendix B), which renormalizes the
field strength at site 5. Note that such a term cannot occur for
the boundary-driven case. To illustrate this one can, for ex-
ample, compare the aforementioned matrix element Hg (2, 1)
with the matrix element representing single spin-flip events at
site 5, (Yol Hrol|vo). Indeed, we find the latter to be larger in
magnitude, contributing to a much faster dephasing of site 5
as compared to site 1.

B. Freezing of edge spin on increasing the number of driven sites

Motivated by our observation of the slowdown of the edge
due to the two-site protocol, we consider the driving of ad-
ditional sites. Increasing the number of driven sites further,
we find that generically there is a rapid relaxation of all
sites, including the boundary. However, when the driving se-
quence is specifically chosen as s, = {1, 5, 9}, the freezing of
the boundary site is significantly enhanced compared to the
two-site protocol with s; = {1, 5}. We can conclude that the
further slowdown has a similar origin to the two-site protocol:
a high-order many-body process, this time involving site 9.
Based on the spatial periodicity of the few-site protocols, we
propose the following Floquet engineering protocol to further
slowdown the edge spin, where the driving sequence is com-
posed of the cluster s; = {1, 5,9, ..., 4k + 1}. Subsequently,
we will use the term “every fourth site” to describe this cluster,
and designate the total number of driven sites as nyh. The
existence of this protocol does not preclude other protocols
which can stabilize a SZM, and we consider this as a particular
case in a general class of locally driven protocols.

In Fig. 7, we show how the growth of entanglement entropy
of the boundary site decreases while increasing the size of the
cluster s4: we find a hierarchy of freezing behaviors with the
growing number of driven spins. This conclusion is supported
by the exact diagonalization results allowing us to reach large
number of drive cycles, see Fig. 7. Furthermore, the inset in
Fig. 7 shows that although increasing the system size alone
improves the freezing behavior, the slowdown can be most
effectively achieved by also increasing the number of driven
sites.

Intuitively, the extremely slow dynamics in the proposed
protocol is directly related to the gaps between quasienergy
levels in the Floquet spectrum. This can be seen by con-
sidering thermalization of the expectation value of a local
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observable for a driven state |y (nt)) [101-103]:

(U (D[S} |y (nT)) = Y clege’ 0" (D, |S]|Dy)
qFr

+ Y ler (@, IS]|D,), (20)

where €, and |®,) are the rth quasienergy and eigenstate
in the first Floquet Brillouin zone (BZ). The first sum in
the equation controls the relaxation speed, while the second
sum gives the long-time expectation value in the thermal-
ized state (diagonal ensemble average). For our protocol, the
zeroth-order effective Floquet Hamiltonian H ;0 along with
the second-order corrections, are invariant under §* — —S*
transformation, which constraint the diagonal ensemble av-
erage of S7 to be zero. Since our exact calculation of the
expectation values of S in Floquet eigenstates also yield zero
up to machine precision for a wide range of parameters, the
invariance is expected to exist at all orders of Hp. In fact, for
the general case of s; ={1,5,9,---,4k + 1}, correlations
involving odd number of spins from the sites 4k + 1, such as
(ST), (S78353), etc., are all zero.

For generic nonintegrable systems the off-diagonal contri-
bution decays to zero quite rapidly. However here, we find
that the energy gaps between the states (say r and g) which
dominate the matrix elements are extremely small. For those
states |e, — €,| ranges from ~10~° for s, = {1, 5} dropping
to ~1078 for s; = {1, 5,9, 13}. This is further supported by
the level statistics of the Floquet Hamiltonian, which shows
a strong Poisson distribution and the absence of level repul-
sion, putatively indicating the emergence of a symmetry or
fragmentation of the Hilbert space (see Appendix D). We
provide a coherent analysis of this extensive quasidegeneracy
throughout the entire Floquet spectrum, which shows that the
freezing ultimately has its origin in the emergence of the SZM.

C. Emergence of the strong zero mode

In this section, we elucidate the step-by-step emergence of
the strong zero mode which is the crux of the exponentially
slow dynamics of the edge mode operator. We expect that a
system endowed with a SZM, as defined in Sec. II B, is charac-
terized by a spectrum-wide (quasi)-degeneracy and relaxation
of the edge that can be slowed down by increasing the system
size.

First, let us consider the existence of a discrete symmetry
operator. The undriven system has a Z, symmetry of D, =
[1; 07 =T1,(257), yet the drive in the x direction generally
destroys it. However, we can exploit the freedom in the driving
parameters and note that near the special frequencies ¥, the
terms in Eq. (18) that do not commute with D, vanish. We test
this for the full Floquet Hamiltonian numerically in Fig. 8(a),

where we plot [(D,)| = Zfl] [(®"|D,|®")|/2N; this quantity
approaches 1 when each Floquet eigenstate is simultaneously
an eigenstate of the proposed symmetry operator. We find that
although D, is not an exact symmetry, it is nearly conserved
at the special freezing frequencies. The formation of SZM
requires a special pairing structure of the Floquet eigenstates
and quasidegenerate eigenvalues, along with the global dis-
crete symmetry D,.

100 :
= 0.98
2 0906 — sa=1{1} — s=11,5,9}
— sg= {17 5} E
0.94 !
=< 0.5}(b) _—— : —
o | 7 ]
=03 0.50 by
; 0.49/"5\\
~ 0.1 0.48 :
1072 :
= 104V
10° 71 73 75 77 7.9

FIG. 8. Emergence of strong zero-mode: (a) [(D,)| vs w showing
the emergence of a discrete symmetry, D, = [[,(25%), atw ~ o). (b)
[{(®F|ST|®~)| vs w. Inset shows that the condition S}|P*) = %ldﬁ)
is satisfied better for s; = {1,5} and s; = {1, 5, 9} compared to
sa = {1}. (¢) |A] vs @ showing a deep at @ ~ ), which implies the
emergence of SZM induced quasidegeneracy between the Floquet
eigenvalues from different D, sectors. N = 10, y = 15 for all the
plots. We have performed a moving average over the raw data (in an
w interval of 0.008) for panel (b). The vertical dashed line is a guide
to the eye to the position of strongest freezing.

We now label the Floquet eigenstates by the eigenvalues of
the symmetry operator D, as HF|<I>f) = e;t|CDfE). We show
that the eigenstates occur in pairs in the Floquet spectrum
where the operator which toggles between the states |®;)
and |®,) is localized at the edge. This operator anticom-
mutes with the global symmetry operator D,. We propose that
an approximate operator, which satisfies these properties, is
Ogm ~ S7. This is shown by the numerical calculation of the
matrix elements of S between |®;") and |®; ). In Fig. 8(b),
the average matrix element over all pairs of eigenstates

N1

[(@-Isf1ot) | =D [(@rIsflen]/2¥ 7 @D

r=1

is plotted as a function of w. This quantity measures how S}
connects the two symmetry sectors, and should approach 1/2
when the pairing is exact. Indeed, we find that increasing the
number of driven sites leads to a more accurate pairing of the
states. We propose an ansatz for the Floquet eigenstates with
the following structure:

1
V2
where states |£X) and |EF) obey conditions (S,ilé'{;t) +
(EF155) = 28,4, (5F1EF) = (EFIES) =1, and (§71§7) =
(E71EY) = R, with R, < 1 and 6, € [0, 27). This is a
general ansatz of entangled states between the edge spin and
the rest of the system with the edge spin constrained to satisfy
(S7) = 0. The structure of entanglement between them is en-

coded in the overlap properties of |$,i) and |§,i), which will
be highlighted in Sec V.

|0F) = — (=) ®IEF) £ 1<) @ [EE),  (22)
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FIG. 9. Scaling of averaged pairing gaps (|A|]) (a) with system
size (V) for a fixed number of driven sites and (b) with increasing
the size of the driven cluster niﬂ‘ for a fixed system size (N = 14).
All other parameters are the same as in Fig. 6. The dashed green line
in subfigure (b) is a best-fit curve to an exponential ansatz, |A[| ~

exp(—2.9n4™M).

These states can be utilized to encode the SZM operator
with S7 as the leading order term.
0,
Ogm = Z %|CI>;*)(<I>,T| + h.c. o ST + corrections, (23)

r

The corrections to the leading order term are controlled by
the extent of deviation from the complete overlap between
|€T) and |&7) states. Despite the rapid thermalization in
the bulk, on increasing the cluster of driven sites we find a
proliferation of the number of Floquet eigenpairs satisfying
the condition R, ~ 1, Vr (see Appendix E). Therefore the
form of the strong zero mode is indeed well-approximated by
Eq. (23). The existence of this normalizable operator explains
the quasidegeneracy present in the spectrum and relates it
directly to the pairing of Floquet eigenstates.

Finally, we turn our attention to the commutation proper-
ties of Oy, with the Floquet Hamiltonian. The commutator
assumes the following form in terms of eigenstates and eigen-
values of Hr,

R etor
[Hr, Ogm] = Xr:(ef — S I® ) (@) | = He,  4)

which implies that all spectral gaps must simultaneously van-
ish exponentially with N for the SZM to be a quasiconserved
operator. In Fig. 8(c), we present results for the average pair-
ing gap

N1

Al=)"le —€/1/27, (25)
r=1

where indeed the gap decreases significantly with increasing
size of the driven cluster (n%") in the proximity of the freezing
frequency. Interestingly, when we fix njth and start increas-
ing the system size, the gap decreases weakly with N [see
Fig. 9(a)]. We associate this slow decay of A(N, n™) with N
to the convergence properties of the corrections in Eq. (23),
which appear to converge for smaller N, with ||[HF, Oumlll

decreasing in magnitude. Subsequently for larger N the cor-

rections dominate O, with the norm of the commutator
saturating to a finite value signaling the presence of an ap-
proximate SZM (as witnessed previously for the boundary
driven case in Sec.IIl). On the other hand, if the system size
is fixed, the gap exhibits an exponential fall with ni‘h as
shown in Fig. 9(b) (see Appendix F for more details). This
leads to an exponential enhancement of the finite radius of
convergence of an approximate SZM, making it an exact SZM
in the thermodynamic limit. This behavior of the pairing gap
explains our results for the freezing dynamics of the boundary
site in Fig. 7, where we found a similar dependence of the
relaxation times on the system size and the driven cluster size.
Therefore we conclude that increasing both N and n™ leads to
an asymptotic exponential decrease of the average pairing gap
and hence the commutator of O, with the Floquet Hamilto-
nian when né‘h scales linearly with N.

In summary, we have demonstrated that the protocol in-
volving driving every fourth site in the chain leads to the
emergence of a SZM. We have proposed an approximate form
of an operator that satisfies all the features of SZM which
is directly related to the spectrum-wide quasidegeneracy and
slow relaxation rate of the boundary spin. We note that any
bulk site can not be frozen in this manner which suggests that
a strictly convergent SZM, localized in the bulk, can not be
constructed.

V. ENTANGLEMENT STRUCTURE OF FLOQUET
EIGENSTATES

In this section, we discuss the nonequilibrium properties
of the system through the lens of the entanglement entropy
of Floquet eigenstates. The athermal and thermal behavior
represented in the dynamics and spectral properties of the
boundary and bulk degrees of freedom respectively, have an
imprint on the entanglement features of the eigenstates as
well. In fully thermal eigenstates at infinite temperature, the
reduced density matrix of any subsystem exhibits maximal
entanglement. The disentangling nature of the periodic drive
introduces several novel features in entanglement which we
categorize between thermal and athermal depending on the
partitioning of subsystems.

The von Neumann entanglement entropy of the boundary
site with the rest of the system in the Floquet eigenstates (22)
can be written as

L+ 8% T4+ 18%  1—18%], 1—]8%]
= — In — In ,
2 2 2 2

(26)
where 8 = (£X|&%). In the protocol with s; = {1}, |8] is
found to be large for many eigenstates, thus giving rise to
many weakly entangled states, nonetheless in a large ma-
jority of states the edge spin remain maximally entangled
with the bulk as shown in Fig. 10(a). In the other limit, for
sq = {1,5,9, 13} the boundary spin is maximally entangled in
all the Floquet eigenstates [see Fig. 10(b)] which also implies
|8%| is vanishingly small. This is counterintuitive since, the
enhanced freezing of the boundary spin is expected to lead
to disentangling of the edge spin in the Floquet eigenstates,
which instead appears fully ergodic for single-site observ-
ables. This means that though the boundary spin takes an

vN,+
Sl
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FIG. 10. Entanglement entropy of the boundary site with the rest
of the system (S}’N) in the upper panels, and sites {1,5,9,13} with
the rest of the system (SY_I‘;YQ_B) in the lower panels for N = 14.
The driven sites are mentioned at the top of each column. All other
parameters are the same as in Fig. 6. Page values of entanglement
entropies are shown by the red dashed line. The bipartition used to
calculate the entanglement entropy in (c) and (d) is shown in (e).

exponentially long time in N to dephase, it should finally
reach a featureless state for any finite system size. Therefore
the dynamics of the boundary spin, however slow it may be
for finite systems, is a type of prethermal phenomenon with
anomalously long (exponential in system size instead of some
large but fixed parameter strength) thermalization time.

However, the scaling of the averaged gap between the
Floquet eigenpairs in Fig. 9 suggests that it should vanish
in the thermodynamic limit. Consequently, the decoherence
time of the boundary spin diverges as well as the states
|®;) and |®;) become degenerate. This will allow us to
choose (|®)) £ |P;))/ V2 as the Floquet eigenstates, where
the boundary spin is disentangled from the rest of the system.
Thus the apparent paradox between the stroboscopic dynam-
ics of the edge spin and the ergodic properties of the Floquet
eigenstates gets resolved in the thermodynamic limit making
the phenomenon truly athermal.

Interestingly, we do find athermal entanglement signatures
also in the finite size Floquet eigenstates when every fourth
site is driven and the system is bipartitioned into driven and
undriven sites [see Fig. 10(e)]. For many eigenstates, the en-
tanglement remains close to In 2, as can be seen in Fig. 10(d).
Note that typical states in general should satisfy volume-law
scaling for such bipartitions, an example being the proto-
col s; = {1} as shown in Fig. 10(c). Therefore our most
efficient protocol (s; = {1, 5, 9, 13}) generates exponentially
many Floquet eigenstates with subextensive (athermal) entan-
glement, for a bipartition separating the driven and undriven
sites. However, any random bipartition such as half-chain en-
tanglement appears to produce a volume law scaling which is
reminiscent of the behavior of rainbow states [104,105]. Our
entanglement results showcase a rich and complex structure
based on the geometry of the partitioning, where we observe
signatures of both prethermal and athermal behaviors.

VI. CONCLUSION AND DISCUSSION

The phenomena of SZM where a quasilocal conservation
law localized on the boundary, is proven to exist in one-
dimensional integrable models with a discrete symmetry. In
nonintegrable models, this operator usually develops a finite
lifetime and ceases to be a conserved quantity in the thermo-
dynamic limit. In this paper, we have shown the emergence
of SZM in a nonintegrable spin chain through local Floquet
engineering. We begin with a time-independent nonintegrable
Hamiltonian with a continuous U(1) symmetry which is bro-
ken by the periodic drive. We consider two classes of protocol,
one where only the boundary spin is driven while the multisite
drive also includes a subset of spins in the bulk. Through a
second-order F-M expansion of the Floquet Hamiltonian, we
show that the edge spin can undergo a significant slowdown
for the boundary drive at certain freezing frequencies, which
arise due to the nonlocal corrections in the Floquet Hamilto-
nian. In contrast, such higher-order processes were previously
reported to destroy the dynamic localization in interacting
systems [106]. At the freezing frequency, we argue that the
system develops an approximate global discrete Z, symmetry
which is responsible for the boundary slowdown because of
the formation of an approximate SZM. We find the boundary
relaxation slows down with increasing system size but the
relaxation time scale does not appear to grow exponentially.

We propose a multi-site drive protocol that further slows
down the boundary relaxation. A special sequence of driven
sites leads to the slowdown which scales exponentially with
the number of driven sites. The emergence of a SZM is shown
through signatures in spectral properties and eigenstate over-
laps. The significantly enhanced slowdown of the boundary
spin coexists with the rapid thermalization of the bulk degrees
of freedom which realizes a novel regime that exhibits both
thermal and athermal behavior. The intermediate athermal
behavior also leaves an imprint in the entanglement structure
of the Floquet eigenstates. Although the dynamics of the
boundary spin relaxes on a time scale exponentially large in
system size, the entanglement of the boundary spin is maximal
in the Floquet eigenstates. Along with maximal single-site
entanglement, random bipartitions also exhibit volume law
scaling. Perhaps not surprisingly the bipartition involving the
driven sites is significantly athermal. We leave the complete
description of the entanglement structure as an interesting
future problem. Expectation values of local observables in
the Floquet eigenstates also exhibit hybrid thermal and ather-
mal behavior reflecting the nontrivial consequences on the
thermalization of the driven system. Our description provides
a novel realization of an emergent SZM in a nonintegrable
system realized through local Floquet engineering.

The stability of local athermal dynamics on a background
of a thermalizing environment is of relevance for protecting
quantum information. The emergence of quasilocal conser-
vation laws with exponentially long relaxation times could
potentially play a role near the many-body localization tran-
sition [107,108]. The interplay between the local Floquet
drive and emergent symmetries can provide a path towards
realizing novel states with a rich entanglement structure far
from the ground state. A general understanding of the entan-
glement structure of states which are generically volume-law
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entangled, yet contain elements of athermal character are
potentially important for stabilizing nonequilibrium quantum
orders away from the ground state. Our prescription for real-
izing local athermal dynamics utilizes the nonlocal multi-spin
interactions generated by local Floquet engineering. This can
be a valuable tool for engineering models with novel athermal
character including QMBS [37]. We note that measurement
of entanglement [92-94] in quantum simulation, preparation
and characterization of genuinely entangled states [109] are
within reach. The use of optical tweezers to hold the indi-
vidual Rydberg atom opens the opportunity for implementing
local drives (using an additional spatial laser pattern which ad-
dresses an arbitrary subset of atoms[110]) where the physics
of SZM can be investigated [18,111]. Majorana zero modes
in the ground state have been studied experimentally on solid
state platforms [3,112,113]. Floquet driving provides another
means of preparing such zero modes which can be robust
to noise [114]. Recently, a periodically driven XXZ model
has been implemented in a 24-qubit quantum simulator [115]
and was found to host long-lived bound states even away
from integrability [116]. Our model and protocol can also be
implemented in the same setup with feasible modifications.

All relevant data present in this publication can be accessed
at Ref. [117].
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APPENDIX A: CALCULATION OF THE FLOQUET
HAMILTONIAN FOR SINGLE (EDGE) SITE DRIVING

Here we calculate the Floquet Hamiltonian Hr for a
boundary-driven protocol, where a single site at the edge is
driven. We first define the Hamiltonian and the drive protocol

H(t) = Ho+ f(t)V, (AT)
where  Hy=Y N '(—1)'S;- Sy —h YL, S5, f) =
ysgn(sin(wt)), and V = S}, and we are using open boundary
conditions.

We first apply a rotating-wave transformation to the time-
dependent Hamiltonian,

Hio(t) = WIH@EOW — iw oW, (A2)
where

W(t) = e i hdi' TV — o=ifs}, (A3)
with  6@)=yr) [Omt+7/2—-1)OF —nt)]+ y(r —

DY [0(n+ DT —1)O@F — (nt +17/2))], where ©
is a Heviside step function. Firstly, this eliminates the
explicit presence of the driving term in the time-dependent
Hamiltonian, and secondly, Hr obtained in this way yields
a resummed expression in @ (which increases the radius
of convergence of the series) and can be considered as
a perturbative expansion in 1/y only. This allows us to
consider all possible w but restrict ourselves to a high drive
amplitude regime. We obtain

Hioi(t) = W' HoW
= —518; — cosO(S7S, + SiS3)
+ sin 0 (S5S5 — §755) — h(cos OS] + sin65))

N—1 N
+) (-1)'SiSi —h Y S,
i=2 i=2

where we have used WTSfW = cos(0)ST + sin(P)S, and
WTSTW = —sin(0)S: + cos(9)S]. For brevity, we replace
O(t) by 6.

The stroboscopic Floquet Hamiltonian in the F-M expan-
sion is given by

(A4)

o0

Hp = H{".

=0

(AS5)

We calculate this expression analytically up to the second term
(I = 2) in the sections below.

1. I =0 term in F-M

The ! = 0 Floquet Hamiltonian is just the time-averaged
H,(t) over one time period,

1 T
HY = - f Huoi(1)d1
T Jo
h

= —SJS; — X[sin(k)Si + (1 — cos )87 ]

sin A
A

N—-1 N
+ ) (—1)S; S —h Y S
i=2 i=2

We have used the following integrals: I;[cos 8] = 2sin(A)/y,
Li[sin6] = 2(1 — cosA)/y, where Ij[x] = [j xdt and A=
y T /2. The form of this Hamiltonian suggests that if we choose
the drive parameters accordingly (y T = 4k) then S7 is stro-

boscopically conserved, as [S}, H }O)] = 0 in this case.

1—cosA
A

(57153 +5i83) + (873 — 5153)

(A6)
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2.l =1termin F-M
The first term in F-M is given by

1 T n
HY = — f dn f Ao [Hia(1)), Hr(1)). (A7)
2!lT 0 0
We obtain
[Hrot(tl)a Hrot(tZ)]
= isp{S} (21 + 4hS5 + 1)c1p — 287[2AS3s1
— 5385ci2 — $385s12 + S3Shein + 838381z
— 2Si [2hS§‘clz + S§S§slz — S;Séclz — S;S%Slz
+ 838%c12] — Siern},

where we denote 6(t;) = 61, 0(t,) = 0,, and use a short-hand
notation sy, = sin[(6; — 6,)/2] and ¢y = cos[(6; — 6,)/2].
By performing the integrals, we find

HP =0.

(A8)

(A9)

Here we have used bL[sin(6; —6,)] =0, Dh[cos] =
L[cosB,] = Tsin(A)/y, L[sin6,] = L[sin6] = (1 —
cosr)/y where L[x] = [ dt; [y drx. Thus we find that
the first term in F-M is zero.

3.l =2 term in F-M

The second term in F-M is given by

1 T n %)
HY = — [ dan | dn | dr
F 3!Ti2 0 : 0 2 0 3

X ([Hrol(tl)» [Hrot(ZZ)s Hrot(l3)]] + (l <~ 3)) (AlO)

Calculation of these higher-order nested commutators is
straightforward but unwieldy. In this section, we will consider
only the renormalization of H, }0), i.e., only the one- and the
two-site terms which involve spin operators at the driven
(boundary) site, more specifically only S} and S% which does

not commute with S7. We designate this part H, ;’2)106, and show
that even the O(1/y ) terms present in it is sufficient to demon-
strate the absence of dynamic freezing of the edge spin. Later
we will also consider the other terms which are mostly long-

range in nature (Hff) ) and responsible for the enhanced

Now, we have

{[Hrot(t1)7 [Hrot(t2)v Hrot(t3)]] + (1 <~ 3)}10c
= A1(0)S; + A2(0)S] + A3(0)SS5 + A4(0)S)S)

+As(0)S3S) + As(O)SIS5 + - - - | (A1)

where 8 = (01, 65, 03). As one can see, these terms are exactly
the same as appearing in the / = 0 term, thus only renormal-
izing their strength.

The coefficients are

h
A() = —5[01 + ¢35 — 2¢2 + 2(1 + h?)(s152¢3 + €18283

—2s1283)], (A12)

h
Ax(0) = —5[81 + 53 — 255 + 2(1 + h*)(sicacs + c1co83
—2¢18¢3)], (A13)

1
A3(0) = —5[01 4¢3 — 2¢) + 2(1 + 3h%)(s152¢3 + €15253

— 281¢283)], (Al4)
Ay(0) = —%[(1 + 4h*)(c; + ¢ — 2¢2)

+2(1 4+ h*)(s15203 + 15283 — 2s16283)],  (Al5)
As(0) = %[(1 + 4h%)(s; + 53 — 287)

+2(1 + hz)(sl(:203 + cicos3 — 2¢152¢3)],  (A16)

1
Ao(®) = =551 + 55— 250 +2(1 + 3h?)(sicacs

+ c1¢p83 — 2¢182¢3)], (A17)

short-hand notation s; = sin6;, ¢;

where we use a =
([x] =

. nonloc cosf;. This yields the following integrals
freezing of the boundary spin. So, H = H},Z)IOC +H }?)nonloc. [y dti [y dts [’ disx):
|
12hyt(h* + 1)cos A+ h(t2y2— 8h% + 16)sinA  8h(h* + 1)sin2A + 12hyt
LlA©O)] = —F e - : a8 (A18)
4y 4y
8h(2h* — 1)cos A + 8h(h? + 1) cos 2 — 24k 12hyt(h® + 1)sin A — hy2t%(cos A + 2)
LA (0)] = : + = e , (A19)
4y° 4y
(—24K% + t%y2 +16)sin A — 8(Bh> + 1)sin2x  12(3h* 4+ 1)yt cosi — 12yt
LA (0)] = 4 E + as AN (A20)
4y 4y
[(4h* + 1)1%y? 4+ 88h% 4 16]sin A + 12(h> + 1)yt cosA  12(4h> + 1)yt + 8(h> 4 1)sin 21
LIA(0)] = Y ; Y - e . (A2
4y 4y
8(10h% + 1)cosh — 8(h> + 1) cos 21 — 72h*  (4h* + 1)y21t%(cos A +2) — 12yt (h? + 1)sin A
LlAs(0)] = 3 + 4 e Y . (A2
12yt (3h2 + 1)sinA — y2t2(cos A +2)  16sin?(2)[2(3h% + 1) cos A + 12h% + 1]
LiAs(0)] = —~ Y = 2 , (A23)

4y3

4y3
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TABLE I. Analytical expressions of the matrix element Hy (2, 1) from F-M expansion.

0) (1) (2) 1 0) (1) () 1
Hy” +Hp' + HF,loc[O(?)] Hp” +Hp” + HF. 1oc[0(,73)]
3y g _ 3 : 2_9V_(72 2
Re[HF(Z, 1)] hsmk (1 + 4g> 8(h+h’)sin22+12hyt 12yr(h+:z81);gsk+hsmMS(h 2)—(1°448)y~]
3 2.2 _ 3 cos D — 3 i . _ 2 2 2
Im[Hp(Z, 1)] _y%(l _ COS)\) 4 hr(i;;os)») 24h° +2hy“ (v~ —24)—8(h+h’) cos 2 li)é;(/h;rh )sin A+h cos A[8—16h~+(7°+48)y~]

where we have used the values of the integrals,

1 .
Llei] = Kles] = —[4yr + sin M)t = 8)l,  Ble] = 5,47+ Gin M(y*e? +8)],
2.2 2.2 1 o A 2.2
L[s1] = L[s3] = m[Zy 7 —(cosA)(y°t—8)—8], L[s:] = 2—)/3 8 sin 5~ (cosM)(y 17 +4)+ 4|, (A24)
and
10 —6¢cosA —6cos2A +2cos3A — 6Asin A —4 +3cosA + cos3A + 6Asin A
I[sicac3] = 3 . Bleisacs] = 3 ;
6y° 3y-
10 — 6cosA —6¢cos2) + 2cos3L — 6L sin A 3sinA — 6sin2X + sin 31 + 6A cos A
L[cicys3] = 3 , Llsicas3] = 3 ,
oy 3y
12sin A — 6sin 2A + 2 sin 3A — 6A cos A 12sin A — 6sin 2A + 2sin 3A — 6A cos A
L[sisyc3] = 6,7 . Bleisess] = 6,7 - (A25)

Values of these integrals substituted in Eq. (A10) directly give the H }’ZILC. The interesting fact is that even H ;?00 contains terms
which are O(1/y). This modifies the freezing conditions which were believed to be true at least in O(1/y).

4. Full Hr (local)

As mentioned before, the resummed Hr is a series expansion in 1/y and for many purposes, we can neglect the higher order
(which are at least 1/y? or smaller) terms. Therefore, summing up all the one and two site terms up to the second order in F-M
expansion which are O(1/y), we get the local Floquet effective Hamiltonian [Eq. (18) in the main text]

1
Hrloc [O(;)} =H + H" + HZ) [0(1/y)] +

2sin A (14 4n)72\ 72
= _S¥SF — 1+ ——2 |8 14+ — )$%82
1~2 YT |:( + 48 1~2 + + 48 1~2

2 (1 4+ 4h*)T%(2 + cos ) 224 cosA)\
+F|:<l—cosk— 13 Sis) — l—cosk—T S185

2 2
—i—h[(s1nk)<1+48)5f+<1—005)‘ w> }JFZ( 1)'S; - S,+]—hZSZ (A26)

For concreteness, we also write the full local Hr (considering the full contribution from the / = 2 term in F-M expansion)

1 1
ol )] = e [o( )]

ox sin A vy sin A oz 1 —cosh -
= _Slsz - T — as(p) S S T —az(p) Slsz + T + as(p) Sl'SQ

1 —cosi Vo hsin A . h(l —cos)) y
- T—%(P) §185 | — . —a(p) )S| + f—az(lﬂ S

- N
+Y (1SS —h Y SE, (A27)
i= i=2

where a;(p) = —L[A;(0)]/(67).

(

To demonstrate the accuracy of the resummed F- solidated expression in Table 1. We compare these ex-
M expansion, we compute the matrix element Hp(2, 1) pressions with exact numerics in Fig. 4 in the main
using Eq. (A26), Eq. (A27) and summarize the con- text.
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H(Z)

F, nonloc

5. Additional (long range) terms in Hy; 2

Here we consider additional terms in H ;2) which are long-
range (i.e., beyond nearest neighbor) and multispin in nature
which enhances the freezing of the boundary site. These terms
are expected to be perturbatively suppressed for global driv-
ing, keeping the quasilocal nature of Hp intact. Here, we
will show that for local driving these terms can be similar in
strength to the zeroth order terms.

{[Hrot(tl)a [Hrot(t2)7 Hrot(tS)]] + (1 <~ 3)}nonloc
= B(O)(355S; + 4S7S)S)S5 — 4S5S)S5S)
— 4SISISIST + 4STS3SISE + 380S)

+ 12h8)$585S) — 48785858, — 12hS)S5S,
— 4818385,85 — 48153555 + 457 8585S7)
+ n(0)(3S%S; — 12hS5S,S5 — 48585858,

+ 12hS3S5S) + 4STSLS)SE 4 4SESESYSE

— 4STS3SIS) + 3857S% 4 48)SLSLS:

 4S)S)SIS) + 48T S3SEST — ASUSISISE) 4 -+ -
(A28)

where the “- - -7 represents some terms which commute with
S1. The coefficients and their integrals are given by

B = —[cos 01 + cos 63 — 2 cos 6],
12ty — (t2y? 4+ 24)sin A
KO = 1 ,
8y
L. : .
n(0) = Z[Sln 01 + sin B3 — 2sin 6],
72y2(cos A 4+ 2) — 48sin” %
Ln@)] = Z (A29)

8y3
Substituting Eq. (A28) and the values of the integrals in
Ec% (A29) to Eq. (A10), we directly get the nonlocal part of

. The crucial thing to note here is that, even at the special
frequenmes (yt = 4nm), some of the integrals in Eq. (A29)
(which determines the strength of the long-range terms) are
not only nonzero, but similar in magnitude to the zeroth order
terms, i.e., O(1/y). Counterintuitively, as shown in the main
text, these terms take part in enhancing the freezing of the
boundary spin at wf .

APPENDIX B: CALCULATION OF Hy FOR TWO-SITE
DRIVING

Here we give a detailed derivation of the Floquet Hamilto-
nian for two-site driving, i.e., when a second site (say, site j)

J

1 (7 sind, ,
Y =~ /0 i Odr = 8753 — (518 + 5i85) +
sin A v
+ 8385 + — (S S% 4 855%) —
ox smA Vv oy .
— 538¢ — (S Sy 4 S38¢) +

is driven in addition to the boundary site (site 1) following the
same drive protocol. The time-dependent part of the Hamil-
tonian is ysgn(sin(wt))(S7 + S7) and we follow the same
prescription of calculating Hr as charted out in the previous
section for single site driving. The rotating wave transforma-
tion is generated by the operator: W (¢) = ¢~ @S5 which
gives for j > 2

HI7 () =

rot

wTHW
= —S185— cos O(S]S;+ S585)+ sin 0 (S]$5 — 5753)
+ (—1)/! [ij_ls)f +cos6(S)_, S+ 55_,5%)
—sin6(S5_, 5} — )]
+ (=1 [$387,, + cos@(
)

— sm9(S§Si+1 Sij+1

g+ S S,+1)
]
— h[cosO(ST + S5) +sin0(S] + 57) ]

ji—2 N—1

Y 1SS+ ) (—1Si-Sip

i=2 i=j+1

Jj— N
oY+ 25
i=2 =j+1

(B

and for j =2

W HoW

=-S;-S + 838}

+ cos 0(85S; + S585) — sin6(S583 — S553)
— h[ cosO(S5 + S3) + sin0(S) +55)]

N-1 N
+ Y (1SS —h Y S
i=3 i=3

HIZ2(t) =

rot

(B2)

Note that SU(2) symmetry is locally restored for the j = 2
case as the interaction term S; - S; is fully rotationally invari-
ant. This reduces the number of additional terms generated
by the drive and leads to a signiﬁcant suppression of the
matrix element Hr (4, 1) (where [4) = o{c;|1)) which in turn
reduces the rate of relaxation of the spins at sites 1 and 2.
We focus on calculating Hg for s; = {1, 5} in the rest of this
Appendix.

Proceeding in the same manner as before, we get the [ = 0
term in F-M,

1—cosh oy wer Dy ,
;OS (S5 — 578%) — X[sm AST + (1 — cosA)S}]

1=cosh ey wreer hp . ;
(5580 — 8289) — 2 [sinASE + (1 = cos 1)s]

1 —cosh

(38 - 88)
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N—-1

N
+8,-835—83-Ss+ > (—1)'S; - Sipy — h(Sé + 85+ 8+ Zsf> (B3)

i=6

We again find, Hl(pl) =0.

We notice that all local terms (one and two-body operators)
in H}z) involving the spin operators at site 1 (S}, Sy, S7) are
the same as for the case of boundary driving (s; = {1}) given
in Eq. (A11)-(A26) which means they are not affected by
the drive at site 5. We do not attempt to calculate the full
H}z) in this case as we find that it is not sufficient to have
good matching with exact numerical data even for very simple
events like a single spin flip at site 5 from the state |v)
determined by the matrix element Hr (17, 1) (|1) = |v) and
[17) = o|¥)). To this end, we find the following terms in

H}z) which contribute to Hr (17, 1),

{HED ). [HES (), B )] + (1 < 3))
=+ AB)S: + B(O)S;SIS:
+ C(0)S§ + D(0)SZS§S§ +--, (B4)

local

where the first “---” in right-hand side stands for the same
terms as in Eq. (A11) and the last ““- - -” represent additional
terms generated due to the driving of site 5. Note that unlike
the driven boundary site, three body interaction terms are also
contributing to flip the spin at the driven site 5 in addition to
the local field terms (S%, Sg). The coefficients of the terms in
Eq. (B4) are given by

h
A0) = —5[2(01 +c¢3 —2¢2)
+ (1 4 2h%)(s182¢3 + €15283 — 251C283)],
B(0) = 6h(C1 +c3— 2C2),
h
co) = —5[51 + 83— 289

+ (1 4 2h%)(s1cac3 + c1Ca83 — 2¢185€3)],
D(8) = 2h(si + 53 — 252), (B5)

where we again used notation s; = sin 6; and c¢; = cos 6;. The
corresponding integrals are given by

h(—4h* 4+ t2y? +22)sin A — 12hty

LIA(G)] =
3[A(6)] 27
32k + h)ty cos A — 2h(2h2 + 1) sin(21)
+ 9
2y3
3h[12ty — (t2y? + 24)sin A]
LIBO)] = r—rr ,
14
Ty (6(2h% + k) sin A — hty (cos A + 2))
nic®1 =" T
14
16hsin® 2[(2h? + 1) cos A + 4h* — 1]
_ = ,
h[t?y%(cos A + 2) — 48sin® %
B = "L % ) (B6)

i=6

We find that the new three-body terms improve the agree-
ment with exact numerics in this case but they are not
sufficient and one needs to go to higher order. We leave this
as a future problem.

APPENDIX C: GLOBAL DRIVING

In this section, we demonstrate a distinguishing feature of
the perturbative structure of Hr for local and global driving.
The time-independent part (Hy) remains the same as before,
we only make the driving part spatially uniform by choosing
V = ysgn(sin(wt)) vaz 1 S*. The rotating-frame Hamiltonian
is now given by

N-—1
Ho(t) = W HoW = (= 1)'S; - Sy

i=1
N N
— h<0050 ZSf + sin 6 ZS{)
i=1 i=1
(ChH
W (#) gives a global rotation of all the terms about the x axis.
Consequently, the Heisenberg part remains intact because of
the SU(2) symmetry. The zeroth term (I = 0) in the F-M is
given by
N-1

HY =) (=)' Sini

i=1
h al -
. v
— X|:smk ;_1 Sf4+ (1 —cosh) ;_1 Si:|, (C2)

where A = yt/2. We get H}l) = 0 as before.
To calculate the 2nd term (! = 2) in F-M, we find

{[Hrot(11), [Hiot(12), Hrot(73)]] 4 (1 <> 3)}
N N
=—n |:A(0) > S+ B®) ZS{|, (C3)
i=1 i=1

where

A(0) = sin 6, sin(6; + 63) — 2 sin 0 cos 6, sin 3,
B(0) = cos 6, sin(0; + 63) — 2cosb; sinbrcosf3.  (C4)

Thus, using the integrals in Eq. (A25), we get

N N
HY =a(p) Y Si+b(p) > S, (C5)
i=1 i=1

064303-16



EMERGENT STRONG ZERO MODE THROUGH LOCAL ...

PHYSICAL REVIEW B 109, 064303 (2024)
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N 0.005
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= 0.000
s
& -0.005
o
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_. 0.0000f (b)
&
% ~0.0004 — HO(1/)]
% —  HpO(1/7%)]
= _0.0008 ¢+« Exact
74 75 76 7.7

w

FIG. 11. The matrix element Hp(2,1) vs o for global driv-
ing comparing H}z) with exact numerical data. y =15, h=1,
and N = 8.

where

3

h‘
a(p) = ——I[2(sin A +sin21) — 3y T cos A],
67y3

3

h
b(p) = F[é —2(2cos A +cos2Ar) —3ytsinA]. (C6)
2%

Note that, unlike the local driving, the [ = 2 terms here are
at least O(1/y?) or smaller. Finally, the full Hr can be ob-
tained by adding all these contributions : Hp[O(1/y3)] =
Héo) +H;1) +H,§2). Thus we see, only the field terms are
renormalized but no additional interacting term is generated.
Therefore, in this case, the global driving only induces a fully
coherent oscillation from the initial x-polarized () state at
any drive parameter regime. The driven state being a globally
rotated version of ¥ always remains an eigenstate of the
SU(2) symmetric Heisenberg interaction part and hence does
not suffer any dephasing. In this case, the field terms can get
completely canceled at fine-tuned drive frequencies resulting
in true freezing of the wave function. The exact numerical
data including the shift of the freezing frequencies (from w*
to wfn) can be accurately captured by Hp[O(1/ y3)] as shown
in Fig. 11.

APPENDIX D: LEVEL STATISTICS OF THE FLOQUET
HAMILTONIAN

In this Appendix, we study the level statistics of the Floquet
Hamiltonian (Hf). At generic drive frequencies (o < y) Hr
hardly has any symmetry and hence we increasingly order
the Floquet eigenvalues (¢;) in the entire first Floquet BZ.
At the freezing frequencies, D, is an emergent conserved
quantity and we confine ourselves in a specific D, sector.
We then calculate the gap between consecutive eigenvalues:
gi = €i11 — €; (we are using a different symbol for the gap to
distinguish it from the spectral gap defined in the main text)

=l

FIG. 12. Level statistics of the Floquet eigenvalues, (a) at a
generic drive frequency w = 5.6 (b) at the freezing frequency w =
) =17.53. The blue line corresponds to the Wigner surmise (an
approximation to the GOE statistics of chaotic systems), while the
red line is the Poisson distribution (integrable systems). N = 14,
y = 15.

T T T

T T T T
5=1{1.5,9,13})  <r>=0.3928

i

e

g i T

N oo

* Tt

* (A
|

———

2 0.4 0.6 0.8 1
r

and their ratios defined as
__ min(g;, &i+1)
max (g, gi+1)

The distribution of 7; gives important information about the in-
tegrability of the system. For example, chaotic (nonintegrable)
systems exhibit a GOE distribution, whereas integrable
systems admit Poisson level statistics. In our case, we find
the distribution to be more like Poissonian at generic drive
frequencies [see Fig. 12(a)]. Here we note that in addition to
integrability (an unlikely possibility in our case), Poissonian
statistics can appear in several other situations, for example,
if there is some hidden unresolved symmetry or if the Hilbert
space is fragmented. We find the following operator to be a
good candidate of an approximate discrete symmetry at any
frequency

M:zN]_[[

i€sy

(D1

(D2)

A A
cos E‘(Sf + tan 55{)] HSlZ

i¢sq

064303-17



BHASKAR MUKHERIJEE et al.

PHYSICAL REVIEW B 109, 064303 (2024)

sa=11,5} sa=1{1,5,9} sq=1{1,5,9,13}
- (0) SN () — S} e
] :".5:[- SN e T )
. LA L]
'.:.:': e | cot
, (@ e €y — e (Mg e am
o t ot
[eed :-;~" .
1 -‘_ ﬁ‘. ... |
Sl | .
0.0 05 LO 15 00 05 Lo 0.0 0.5 1.0 0 3 6
A x1073 |A| x107% |A| x107> N x1077

FIG. 13. The behavior of |(®; |S}|®;")| in the upper panels (a-d) in parallel with the behaviors of R, in the lower panels (e)—(h). The driven
sites are mentioned on top of the upper panels (valid for both panels in each column). The values of [(®~|S{|PT)] are (a) 0.4275, (b) 0.4942,
(c) 0.4996, (d) 0.4998 and the values of R are (e) 0.8550, (f) 0.9883, (g) 0.9991, (h) 0.9996. y = 15, w = 7.53, N = 14 for all the plots.

with eigenvalues +1. In fact, M is conserved exactly at
the level of H}O) for s, = {1}, ie. [M,H}O)] =0 for any
A. Note that M converts to D, when A =2mxk. We also
numerically find that for any driving protocol with every
fourth site driven, (®,|M|®,) &~ 1 on a broad range of A.
The existence of such operators, which may remain weakly
conserved, is most likely the origin of the Poissonian nature
of the level statistics at generic drive frequencies. At the
freezing frequency, after resolving D,, we find the distribution
to resemble GOE for s; = {1} but again Poissonian for pro-
tocols s; = {1, 5}, {1,5,9},{1,5,9, 13}. This suggests that
additional symmetries may emerge when increasing number
of suitably chosen (every fourth) sites are driven with the
freezing frequency.

APPENDIX E: MORE RESULTS ON THE EMERGENCE OF
SZM AND ENTANGLEMENT OF THE FLOQUET
EIGENSTATES

Here we corroborate the emergence of SZM (presented
in the main text) with more numerical results. If a Floquet
system described by the Floquet Hamiltonian Hr possesses
a SZM with S7 as the leading part, then the whole Floquet
spectrum can be decomposed into quasidegenerate eigenpairs
|®%) (with D |®F) = +|®%) and Hp |®F) = €X|dE)) where
|®%) can be obtained from |®F) under the action of S up to

a global phase. We increasingly order both €;' and € s within
the first Floquet-BZ. Such labeling of eigenpairs may lead
to some subtleties in some cases which we clarify now. We
find that some Floquet eigenpairs (say, ej), obtained in this
way, may yield a super low value of |(<I>;|S’1‘|<I>;)| instead
of ~0.5. Such ghost eigenpairs are found to appear always
in pairs (say, p, p+ 1) and a cross pairing may restore the
value of the rr}a.trix element i.e. |(<I>;(p+1)|S’f|d>;ﬂ(p))| ~0.5.
Such cross-pairing may also reduce one of the pairing gaps but
then the other one will definitely increase. This kind of ghost
pairs get rarer with the emergence of SZM. However, when
one of the Floquet eigenvalues of a normal pair crosses the
Floquet BZ boundary, that results in a cascade of mismatch
between the increasingly ordered € which generates ghost
pairs throughout the spectrum. This leads to a sharp drop in
[(®~|S{|®T)| at some w which are mostly away from the
special frequencies (w! ) where even the conservation of D,
the first criteria of having a SZM, does not satisfy. We discard
such rare pathological points from our consideration while
plotting Fig. 8(b) in the main text. Thus the correspondence
between the increasingly ordered €* may get ill-defined at
drive frequencies away from the slowest relaxation points
(k). But as we increase the number of optimally chosen
driven sites (nf,th) and tune the drive frequency towards w,,, the
correspondence gradually becomes more and more accurate
signaling the emergence of SZM.
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FIG. 14. The behavior of S}~ in all the Floquet eigenstates in the upper panels in parallel with the behavior of |§*| (not distinguished) in
the lower panels. The average deviations of S} from the maximal value In 2 (shown in red dashed line) are (a) 1.21 x 1072, (b) 1.42 x 1074,
(c) 8.89 x 1073, (d) 8.34 x 1075, and the average values of |§F| are (€) 0.11, (f) 1.38 x 1072, (g) 1.09 x 1072, and (h) 1.05 x 1072, All other

parameters are the same as in Fig. 13.

We demonstrate this in Fig. 13 where we show the behavior
of [(®;|S7|®;)| in parallel with the behaviors of R, (as
defined in the main text) with increasing n4". One can see that
there are many pairs with [(®;|S{|®;)| < 0.5 including the
ghost pairs with [(®;[S]|®;")| ~ O for s, = {1}. The number
of such pairs decreases with increasing nyh and totally disap-
pears when every fourth site is driven in a chain of fixed length
N [as shown in Figs. 13(d) and 13(h)]. This follows from
the consistent behavior of R [as shown in Figs. 13(e)-13(h)]
which was conjectured in the main text as a requirement for
the emergence of SZM. We note here that the lower value of
[(®~|S{|DT)| for s4 = {1} compared to the value for other
higher n/" is not an artifact of just the presence of ghost pairs.
There are many pairs with [(®~[S|®T)| a bit less than 0.5
for direct pairing albeit much higher than the corresponding
value for cross pairing. Such pairs also reduce in number

and disappear with increasing n}", ramping up the value of

[(®~|S7|DT)| towards 0.5. The parallel approach of all the
R, towards one enable us to arrive at the condition: S7|®F) =
1e*%|®F) via the ansatz used in Eq. (22) in the main text.

In Fig. 14, we show the behavior of S{N for all the Floquet
eigenstates in parallel with the behaviors of §* = (£X|E*).
There are lots of low-entangled Floquet eigenstates for s; =
{1} but all of them get strongly entangled for s; = {1, 5}. This
is accompanied by a huge reduction in the average value of
|6%|, we denote by |8%|. Further increase of driven sites (nzlh)

is found to reduce [6%| only a little bit. Consequently, the
entanglement spectrum also becomes only slightly narrower,
though by now they are already saturated at their maximal
value to a good extent. Thus in the asymptotic limit, when
every fourth site is driven, the boundary spin forms Bell like
pairing with the rest of the system in all the Floquet eigen-
states.

APPENDIX F: SEMIANALYTICAL STUDY
OF THE PAIRING-GAP

We now seek to have some more understanding of the
vanishing of the pairing gap which is given by

A, = (O] |Hp|®) — (D] |HF|D;)
= (=, & |Hp| =, &F) — (=, & |Hp|—>, &7))
+ (<=, EF|Hp| <, &) — (<, & |Hp| <, E7))]

+Re[(—, & |Hr | <=, &)1 + Rel[(—, & [Hr | <, §7)],

F1

The quantities inside the first parenthesis in the sec(on(%
and third line of Eq. (F1) get canceled with the emergence
of SZM due to the condition R, ~ 1, which we have verified
numerically. The vanishing of the quantities in the last line of
Eq. (F1) (let us call it A’) is less straightforward to see and
here we will adapt a semi-analytical approach to understand
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FIG. 15. Comparison of the scaling of |A[ and [A’[. The latter
is calculated from exact numerics as well as using a semianalyti-
cal expression [Eq. (F3)]. Parameters: h=1, y =15, o = o}, =
7.53, and N = 14.

this. To this end, we first decompose Hp into three parts:
Hp = hjy + h} ; + hj;, where the subscripts denote part of
the chain (sites) on which each term is supported: A and B
represent site 1 and rest of the chain respectively, whereas hi} B
represent terms that connect these two parts,

hz,B = _SJICSch

sin A ' sin A ;
— |:< T cm(p))S}Sﬁ + (T — a3(p)>S§S§i|

n 1 —cosh
A

1 —cosi
- <— - aG(p)) S{S§:| + ng,zrionloc' (F2)

+ as(P)>STS§

A

The purpose of such decomposition of the Floquet Hamilto-
nian together with the eigenstates as in Eq. (22) will be clear
now. We first note that (— |h§ | <) is nothing but Hr (2, 1) as
discussed in Sec. III. Secondly, note that though we have quite
accurate knowledge of 4 and hﬁy - the analytical structure of
h% is not very well known particularly for multisite driving.
The former also remain almost unchanged as we increase
n4™ but the latter must change drastically with it. However,
(—, £E|hE | <, ) = 0 and hence h% has zero contribution in
A This enables us to write down a semianalytical expression
of A7,

A, =Re[(— |y |<) (8 +87) + (=, TG gl <. &)
+ (= E |y gl <. ED)] (F3)

(—|h%| <) becomes very small at w ~ w,, whereas |6%)
get smaller with increasing nfi‘h. We found in Appendix E that
ﬁ reduces strongly when we go from nj‘h =1 (sq ={1})

to n4h =2 (s, = {1, 5}) but further increase in n}" does not

reduce the value of [§¥| much (Fig. 14). Interestingly, the
contribution to the gap (A) which comes only from the real
part of these complex numbers, gets significantly smaller due
to some cancellations between 8*. We compare |A’[ from
Eq. (F3) with fully exact numerics [using the final line of
Eq. (F1)] in Fig. 15 and find very good agreement. Moreover,
we find, |A/] itself is not much different than |A|. This again
implies that our understanding of the structure of the Floquet
Hamiltonian is quite accurate.
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