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We consider a family of quantum many-body Hamiltonians that show exact Hilbert space fragmentation in
certain limits. The question arises whether fragmentation has implications for Hamiltonians in the vicinity of
the subset defined by these exactly fragmented models, in particular in the thermodynamic limit. We attempt
to illuminate this issue by considering distinguishable classes of transitional behavior between fragmented and
nonfragmented regimes and employing a set of numerical observables that indicate this transition. As one of these
observables we present a modified inverse participation ratio (IPR) that is designed to capture the emergence of
fragmented block structures. We compare this block IPR to other definitions of inverse participation ratios,
as well as to the more traditional measures of level-spacing statistics and entanglement entropy. In order to
resolve subtleties that arise in the numerics, we use perturbation theory around the fragmented limit as a basis
for defining an effective block structure. We find that our block IPR predicts a boundary between fragmented
and nonfragmented regimes that is compatible with results based on level statistics and bipartite entanglement.
A scaling analysis indicates that a finite region around the exactly fragmented limit is dominated by effects
of approximate fragmentation, even in the thermodynamic limit, and suggests that fragmentation constitutes
a phase. We provide evidence for the universality of our approach by applying it to a different family of
Hamiltonians, that features a fragmented limit due to emergent dipole conservation.
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I. INTRODUCTION

Dynamical thermalization and ergodicity breaking in
closed or driven many-body quantum systems have been
subjects of renewed interest in recent years [1–26], with a
particular focus on possible exceptions to what seems to be the
generic mechanism of thermalization. A thermal Hamiltonian
is characterized by eigenstates that look thermal with respect
to local observables and have additional properties that ensure
that arbitrary initial states thermalize, as long as they are not
unphysical. These properties are summarized in what is called
the eigenstate thermalization hypothesis (ETH) [23,27,28].
One of the proposed exceptions to ETH is many-body local-
ization (MBL) [5,9,10,20,29–35], which can be understood as
an emergent integrability caused by local quenched disorder.
The question of whether MBL constitutes a phase in the
sense of robustness against a certain class of or even arbitrary
perturbations remains somewhat controversial [36–46]. While
there is a proposed proof of robustness in one dimension under
certain extra assumptions [47], its validity has recently been
called into question by a number of numerical results [48,49].
In dimensions d > 1 MBL is generally considered to be
unstable but there are proposed exceptions [50].

In order to identify a many-body localized Hamiltonian
and distinguish it from a thermal one, several different nu-
merical probes may be used. One of these probes is the
level statistics of the Hamiltonian’s spectrum. The spacing of
eigenvalues within a thermal regime is well described by the
Gaussian orthogonal ensemble (GOE) from random matrix
theory, meaning the set of random Hermitian matrices with
Gaussian distributed entries [51,52]. Within an integrable or

MBL regime the level spacing matches the Poisson statistics
of independent random levels [53,54]. Another measure is the
entanglement entropy of eigenstates with respect to real-space
partitions of the system. Eigenstates that satisfy ETH are
predicted to have volume-law entanglement [55–58], while
the MBL case should yield area-law entanglement [20,59,60].
A third quantity that is often used in the context of MBL
is the inverse participation ratio (IPR) [61,62], which is a
basis-dependent measure of the randomness of eigenstates.

In this paper we consider Hilbert space fragmentation
[1,2,16–18,63–71], an entirely different mechanism of er-
godicity breaking, which is much less explored than MBL.
It describes the phenomenon that local constraints can sep-
arate the Hilbert space into exponentially many subspaces,
which are spanned by product states and are dynamically
disconnected from each other. The Hamiltonian assumes a
block-diagonal structure with respect to a product basis, and
the number of blocks is exponential in system size L. This
results in a small number of dynamically accessible states
and can prevent a typical initial product state (or their low-
dimensional linear combinations) from thermalizing. As with
the case of MBL, it is not entirely clear how robust this mecha-
nism of ergodicity breaking is. While some argue heuristically
that for physical realizations the fragmentation is merely a
prethermal phenomenon even in the thermodynamic limit
[18], others have demonstrated the possibility of much greater
robustness [72,73]. Instead of arguing in terms of the lifetime
of dynamical constraints based on perturbative effects, we
choose to study properties of the exact eigenstates of mod-
els that have a fragmented limit as well as nonfragmented
regimes. In particular, we introduce a modified notion of IPR
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in order to quantify the degree of fragmentation indicated by
these eigenstates.

A. Stability of fragmentation with respect to finite perturbations

If we consider the parameter space describing locally in-
teracting Hamiltonians, those Hamiltonians exhibiting Hilbert
space fragmentation form a low-dimensional subset. We can
draw an analogy to non-diagonalizable matrices, which form a
similar low-dimensional subset within the space of all square
matrices of a given dimension. Technically, as soon as we
leave the respective subset, embedded as a hypersurface in the
larger space, the Hilbert space ceases to be fragmented, just in
the same way as almost all matrices become diagonalizable.

In practice, we expect that there is a separation of scales
and as long as one is close enough to the respective sub-
set one expects to still observe the physical phenomenon
of fragmentation, just in the same way as a nearly non-
diagonalizable matrix will appear to be ill conditioned for
numerical diagonalization routines. It is therefore a natural
question how we can probe Hilbert space fragmentation per-
turbatively in such a way that we can capture a region around
the strictly fragmented hypersurface, which still shows the
physical phenomena of fragmented evolution, even if the re-
spective Hamiltonians do not give rise to exact Hilbert space
fragmentation in the mathematical sense. Intuitively, it should
be clear that even if time evolution technically connects all
product states within a symmetry sector, the dynamics will
appear to be fragmented if a time-evolved initial state is over-
whelmingly restricted to a quasifragmented subspace with
only little overlap with the rest of the Hilbert space.

To make this intuitive picture precise and quantifiable,
we study three probes of fragmentation—an appropriately
defined inverse participation ratio, bipartite entanglement
entropy, and level-spacing statistics—which allow us to iden-
tify an effective region of quasi-Hilbert space fragmentation
around some well-known fragmented models. For concrete
calculations, we focus on one- and two-dimensional sub-
spaces in the parameter space as illustrated in Fig. 1.
Consequently, our paper is largely based on numerical studies
of specific models, which we consider to be representative
for most known examples of fragmentation. We also develop
the notion of an effective block structure and explain how to
construct it in general for any fragmented model with exact
symmetries such as translation invariance.

While the focus of this paper lies on the study of Hilbert
space fragmentation in a perturbative regime near an exactly
fragmented model, the question regarding the nature of transi-
tion between different regimes is more general. In many cases,
it is natural to define probes, i.e.,functions f (ε) ≡ f (Ĥε ),
which are expected to characterize the respective properties
in the different regimes. For finite systems, one generally
expects a smooth or even analytical transition between dif-
ferent regimes, but it is a natural question to analyze how this
transition behaves in the thermodynamic limit. Generally, we
can distinguish three cases (see Fig. 2): (a) there are separate
phases, that is f is nonanalytical at some critical value ε∗; (b)
there is a crossover, that is f stays analytical or smooth in the
transitional regime; or (c) there is a critical, lower-dimensional
surface, i.e.,the probe function is discontinuous exactly at

FIG. 1. We illustrate the basic idea of studying classes of Hamil-
tonians and their properties near subsets with special properties
(many-body localization, Hilbert space fragmentation). Here, Ĥdis +
J Ĥtb represents the Hamiltonian (6).

ε = 0 in the thermodynamic limit. Note that we focus on a
given probe f relative to a single parameter ε. We can consider
different probe functions and different parametrizations Ĥε to
explore higher dimensional regions.

B. Quantifying fragmentation

Previous works have looked at the interplay between dif-
ferent types of fragmentation and the possibility of localized
dynamics in various one-dimensional models [63,69], con-
cluding that they seem to be independent. One may find strong
fragmentation along with localized or delocalized dynam-
ics. The notion of localization in this context differs from
many-body localization and is concerned with the mobility
of charges as indicated by active and inactive lattice sites.
In a single-particle problem this kind of localization may
be detected by the standard IPR defined for single-particle

FIG. 2. Comparison of the three potential cases in the thermody-
namic limit, i.e.,that the respective subset for a given probe f (ε) may
(a) form a phase with sharp transition, (b) have a crossover with soft
transition, or (c) form a lower-dimensional critical surface. We plot
a probe function f (ε), where ε describes the distance from a given
surface.
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wavefunctions. For a many-body system a more general IPR
may be defined that is sensitive to this notion of localization.

Parametrized MBL models typically have a trivial limit in
which eigenstates are exactly local product states. This makes
an IPR defined with respect to this product basis a suitable
measure of many-body localization. However, the ideal limit
of a fragmented model only constraints eigenstates to blocks
with respect to a local product basis. Typical blocks may grow
in size with increasing system size, leading to a vanishing IPR
in the thermodynamic limit. In order to circumvent this issue,
we define an inverse participation ratio with respect to the
ideal block structure. We then show that this quantity captures
the crossover or transition between fragmentation and a quan-
tum chaotic regime when considering finite perturbations by
comparison to other indicators such as entanglement entropy
and level-spacing statistics: The eigenstate entanglement en-
tropy studies the bipartite entanglement entropy averaged over
all energy eigenstates, which for general quantum chaotic
systems is expected to satisfy a volume law [55–58]. The
leading-order asymptotics should be independent of model
parameters within a thermal regime, since it is determined
by the tensor product structure of the Hilbert space and con-
served quantities alone. The level-spacing statistics studies
the normalized distance between different energy eigenvalues
(after taking physical symmetry sectors into account) and is
expected to follow the predictions of the Gaussian orthogonal
ensemble for quantum chaotic systems [51].

II. INVERSE PARTICIPATION RATIOS
FOR FRAGMENTED SYSTEMS

In this section we discuss different definitions of the
inverse participation ratio and their applicability. We first
consider the older definitions of single-particle, one-particle-
reduced, and product basis IPR, and the context in which
they arise naturally. We then elucidate potential issues when
applied to fragmented systems and present the block IPR as a
suitable alternative in this case.

A. Traditional inverse participation ratios (IPRs)

The state of a single quantum particle on a lattice defined
by the set of points {x} is characterized by the normalized
wavefunction ψ (x) with

∑
x |ψ (x)|2 = 1. One may define the

single-particle IPR via

IPRsp =
∑

x

|ψ (x)|4. (1)

It can easily be verified that 1/L � IPRsp � 1, where L is
the number of lattice sites. IPRsp is maximal when ψ only
has finite weight on exactly one lattice site, i.e., it represents
a fully localized state, and minimal when it has equal weight
on all lattice sites, representing a fully delocalized state.

The generalization of IPRsp to N > 1 particles on the lat-
tice {x} is not obvious, since the state is now a wavefunction
ψ (x1, . . . , xN ) on {x}N . Considering a fermionic many-body
system, one possible approach [74] is to consider the one-
particle reduced density matrix ρ, which in the language of
second quantization may be expressed as

ρxx′ = 〈ψ |ĉ†
x ĉx′ |ψ〉, (2)

with ĉ† creation and ĉ annihilation operators. ρ can then be
diagonalized to give eigenvectors φα with eigenvalues 0 �
nα � 1 with

∑
α nα = N ,

ρφα = nαφα. (3)

Since φα,x is a unitary matrix, one may choose ˆ̃cα =∑
x φα,xĉx as a new fermionic basis. The many-body state

|ψ〉 can be characterized as one where the single-particle
orbitals c̃α each have occupancy nα . A natural generalization
of IPRsp is therefore the one-particle reduced IPR defined as
the weighted average of single-particle IPRs of the orbitals c̃α ,

IPRopr = 1

N

∑
α

nα

∑
x

|φα,x|4. (4)

This definition may be used to quantify many-body local-
ization in finite systems.

A different approach is to pick an orthonormal basis {|b〉}
of the many-body Fock space H and define the many-body
IPR for a state |ψ〉 = ∑

b αb|b〉 with
∑

b |αb|2 = 1 as

IPRbasis =
∑

b

|αb|4. (5)

What constitutes a sensible choice of {|b〉} depends on the
system. Generally we can say that 1/dim(H) � IPRbasis � 1,
where the lower bound is realized if the state has equal weight
over the entire basis. This may be the case for Haar-random
states, in which case the IPR is independent of the choice of
{|b〉} unless fine tuned. Typically one might choose a local
product basis in the context of MBL, since thermal states
should look highly random when expressed in terms of local
product states. A many-body localized state, however, may
have finite weight on a significantly smaller number of local
product states. We will use the “standard model” of MBL as
an example, which can be expressed in the spin language or
fermionic language respectively as

ĤMBL =
L∑

x=1

hxσ̂
z
x + J σ̂ z

x σ̂ z
x+1

+ J
(
σ̂ x

x σ̂ x
x+1 + σ̂ y

x σ̂
y
x+1

)
=

L∑
x=1

[2hxn̂x + 4J n̂xn̂x+1 − hx

+ 2J (ĉ†
x ĉx+1 + ĉx ĉ†

x+1)] + J (L − 4N ), (6)

where n̂x = ĉ†
x ĉx is the particle number at site x, N the to-

tal number of particles, and hx are real random numbers.
The limit J → 0 is trivially localized, since the eigenstates
of ĤMBL become bit strings in the fermionic language. It is
therefore natural to choose the set of bit strings with a fixed
total number of occupied sites N as our basis {|b〉} and to use
the corresponding IPRbasis as a probe for MBL when ε > 0.
We note that a different choice of local product basis can
yield very different results even if the state is localized. For
example, the state |→→ · · · →〉, here expressed in the spin
language, has minimal IPRbasis = 1/2L with respect to the
basis {|↑ / ↓ . . . ↑ / ↓〉}. Unlike entanglement entropy, using
IPR as a probe of ergodicity requires some knowledge of the
nonergodic limit of the model.
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B. Definition: Block inverse participation ratio

Finally, we consider fragmented systems. The ideal, non-
ergodic limit of a fragmented model is characterized by a
Hamiltonian that is block diagonal (typically) with respect to
a local product basis after resolving all conventional symme-
tries. This suggests that the IPRbasis defined with respect to
said product basis is a good measure for the extend of frag-
mentation when considering finite perturbations away from
the exact limit. However, there are two potential issues: The
size of typical blocks may grow with increasing system size,
such that IPRbasis → 0 in the thermodynamic limit both in the
fragmented regime and the thermal regime. Second, IPRbasis

is expected to be sensitive to additional perturbations such as
local disorder, which either do not or only weakly affect the
level to which eigenstates respect the ideal block structure. We
therefore define a block IPR with respect to the set B of ideal
blocks of the exactly fragmented limit

IPRblock (|ψ〉) =
∑
b∈B

‖P̂b|ψ〉‖4 , (7)

with P̂b the projector onto block b. This quantity ranges be-
tween 1/#B � IPRblock � 1, where #B is the cardinality of B.
Unlike IPRbasis, it is expected to approach 1 in the fragmented
limit independently of system size L, whereas the lower limit
approaches 1/#B → 0 as L → ∞.

III. THREE PROBES OF FRAGMENTATION BREAKING

In order to study the emergence and dissolution of the
fragmented block structure numerically, we consider three
different probes. Two of these probes, the statistics of level
spacing and bipartite entanglement entropy, are standard indi-
cators of thermal to nonthermal transitions.

The concept of level-spacing statistics has its origin in
random-matrix theory and we expect the spectrum of a generic
real, symmetric Hamiltonian to match the statistics of the
Gaussian orthogonal ensemble. On the other hand, conven-
tionally integrable models should satisfy Poisson statistics.
An emergent integrability such as in many-body localized
systems also yields Poisson statistics. In the case of fragmen-
tation, the particular value of the level-spacing parameter may
not be universal, hence we take any significant deviation from
GOE as an indicator for the emerging block diagonalization.

Real-space entanglement entropy of eigenstates is expected
to satisfy a volume law for thermal systems, while many-body
localization implies an area law. Fragmentation predicts a re-
duction in entanglement entropy relative to the thermal value
due to the emergent constraints on the eigenstates.

While level statistics and entanglement entropy are quite
universal probes and basis independent, inverse participa-
tion ratios are typically basis dependent and specific to the
problem. We study the block IPR introduced in Eq. (7) and
compare it to the other numerical probes in order to establish
its validity as an indicator of the transition between thermal
and fragmented regimes.

A. Block inverse participation ratio

Our first probe is the inverse participation ratio with respect
to the fragmented block structure IPRblock [Eq. (7)]. Given a

family of Hamiltonians Ĥ (η) parametrized by η = (ηi )i=1,...,m

that shows fragmentation in the limit ηi → ∞, we calculate
all (normalized) energy eigenvectors |E (N,k)

m (η)〉 for fixed
particle number N and momentum k and compute the
averaged IPR with respect to the block structure found in said
limit ηi → ∞,

IPR(N,k)
block,i(η) = 1

N (N, k)

∑
m

∑
b∈Bi

∥∥P̂b

∣∣E (N,k)
m (η)

〉∥∥4
, (8)

where N (N, k) is the number of states with particle number
N and momentum k, and Bi is the set of M blocks,
i.e.,disconnected subspaces (Hi

j ) j=1,...,M of the Hilbert space

H = ⊕M
j=1 Hi

j , found in this limit. The Hi
j may be identified

as the connected components of the adjacency matrix Ĥ i
∞, the

latter being obtained as the effective Hamiltonian that is the
limit limηi→∞Ĥ (η). In the limit of exact fragmentation the
eigenvectors can be chosen such that |E (N,k)

m (η)〉 ∈ Hi
j(n). One

would therefore naively expect limηi→∞ IPR(N,k)
block,i(η) = 1.

However, the block structure of Ĥ i
∞ is generally not invariant

under exact symmetries of the model, such as translation by
one site T̂ , leading to exactly degenerate blocks and possibly
a discontinuity in IPR(N,k)

block,i(η) in the limit. In order to address
this issue, we use perturbation theory around the exactly
fragmented limit (see Sec. V).

B. Level spacing

The second probe is the statistics of level spacing.
Denoting the lth ordered eigenvalue of Ĥ by El ,
one may define the level-spacing parameter rl =
min{δ(l ), δ(l+1)}/max{δ(l ), δ(l+1)}, where δ(l ) = El+1 − El .
This quantity is independent of the overall density of states.
Averaging over the index l in the middle of the spectrum
yields r̄ with a value of r̄GOE ≈ 0.5307 if the system is
ergodic and r̄Poisson ≈ 0.386 if the system is localized or
otherwise integrable. Here it is assumed that degeneracies
due to symmetries have been resolved. It has been shown that
unresolved discrete symmetries result in GOE-like statistics
but with a value of r̄ that lies in between r̄Poisson and r̄GOE

[52,75,76]. Random matrices comprised of m independent
and equal-sized symmetry blocks show level-spacing
statistics that interpolates between GOEm=1 = GOE and
GOEm→∞ = Poisson. This will be relevant when we consider
the half-filling sector and is also the reason why we do
not consider k = 0 or k = L/2. Since we do not resolve
particle-hole symmetry in the half-filling case, we have
m = 2 and therefore expect a value of r̄GOEm=2 = 0.423 [52].

C. Eigenstate bipartite entanglement entropy

Our final probe is the bipartite entanglement entropy
SA(|ψ〉) of a pure state |ψ〉 with respect to a Hilbert space
decomposition H = HA ⊗ HB, defined as

SA(|ψ〉) = − Tr ρA log ρA with ρA = TrB |ψ〉〈ψ |. (9)

It is well known that this quantity is symmetric under ex-
changing the subsystems A ↔ B. The maximal entanglement
entropy is given by Smax = min ( log(dim HA), log(dim HB)).
Consequently, for a Hilbert space constructed as a tensor
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product of local Hilbert spaces of dimension d associated to
individual lattice sites, the maximal entanglement entropy
is given by Smax = min(VA log d,VB log d ), where VA and
VB represent the number of lattice sites in the respective
subsystems (out of a total of V = VA + VB lattice sites).

A natural probe of a Hamiltonian Ĥ with an orthonormal
basis of eigenvectors |Ei〉 is the average eigenstate entangle-
ment entropy [59,60,77]

〈SA〉J = 1

dJ

∑
i∈J

SA(|Ei〉), (10)

where J is an index set, potentially only including a subset
of the eigenstates, e.g.,in a symmetry sector. An additional
subtlety arises if the Hamiltonian has degeneracies, as the
entanglement entropy (and its average) will depend on how
the |Ei〉 are chosen in these degenerate subspaces.

For a general quantum chaotic model, one expects that
the eigenstate entanglement entropy satisfy a volume law
〈SA〉J = a(n)VA + o(V ), where VA is the volume of the
smaller subsystem in a bipartition and the constant a(n) typ-
ically only depends on Hilbert space structure and particle
density n per site. For a random pure state in Hilbert space
with particle density n, the expected bipartite entanglement
entropy was computed up to constant order [56] as

〈SA〉0
n = a0(n)VA + b0(n, f )

√
VA + c0(n, f ) + o(1), (11)

where f = VA
V describes the subsystem fraction of the smaller

subsystem. While a0(n) appears to be universal with a(n) =
a0(n) for quantum chaotic models, i.e.,the analytical calcula-
tion for a Haar random pure state coincides with the finite-size
scaling analysis of the eigenstate entanglement entropy for
general quantum chaotic models, the next order coefficients
b(n, f ) and c(n, f ) appear to be mildly model dependent.
Still, the analytical prediction for a Haar random pure state
often gives a good approximation of the model-dependent
thermodynamic value.

Integrable models and in particular quadratic fermionic
models [77–80] have been found to also satisfy such a vol-
ume law, but with a model-dependent coefficient a = a(n, f ),
which also depends explicitly on the subsystem fraction f ,
such that a(n, f ) < a0(n) when compared to the entangle-
ment entropy of a random pure state. We expect a similar
discrepancy in the fragmented regime of Hamiltonians that
show Hilbert space fragmentation. As the difference a0(n) −
a(n, f ) is maximal at f = 1

2 , we evaluate the number

sA = 〈SA〉J (L/2)

〈SA〉0
n(L/2)

� a(n, f )

a0(n)
, (12)

i.e.,we compare the average eigenstate entanglement entropy
to the average entanglement entropy of a random pure state at
half of the system size. We expect sA → 1 in the thermody-
namic limit within the quantum chaotic regime, while sA < 1
in integrable, MBL or fragmented regimes. For finite systems,
we expect a significant quantitative change when crossing
between a thermal and a nonthermal regime, such as a drop
in sA at the onset of fragmentation. We will use this drop as a
numerical indicator to distinguish between different regimes
or phases when the respective thermodynamic limits are not
satisfied due to insufficient system size.

IV. APPLICATION: EXTENDED
FERMI-HUBBARD MODEL

We consider the t-V1-V2 spinless fermionic chain with pe-
riodic boundary conditions

Ĥ = −t
∑

x

(ĉ†
x+1ĉx + H.c.)

+ V1

∑
x

n̂xn̂x+1 + V2

∑
x

n̂xn̂x+2. (13)

This model has been studied as a genuine fermionic model
in [69], but also in its closely related hard-core boson form
[37,56,81]. The important limit V1 → ∞ and V2 = 0 was ex-
plicitly worked out in [68]. We will henceforth set t = 1.

In this limit (V1 → ∞, V2 = 0) the hopping term is locally
constrained as

Ĥ (1)
∞ = −

∑
x

P̂(1)
x (ĉ†

x+1ĉx + H.c.)P̂(1)
x , (14)

with the local projector P̂(1)
x = 1 − (n̂x+2 − n̂x−1)2. In the

limit V2 → ∞ and V1 = 0, the hopping term is instead con-
strained as

Ĥ (2)
∞ = −

∑
x

P̂(2)
x (ĉ†

x+1ĉx + H.c.)P̂(2)
x (15)

with the local projector P̂(2)
x = 1 + 1

4 [(n̂x−2 + n̂x+2 − n̂x−1 −
n̂x+3)4 − 5(n̂x−2 + n̂x+2 − n̂x−1 − n̂x+3)2]. In the limit where
V1 → ∞ and V2 → ∞ independently, both constrains act si-
multaneously. Note that P̂(1)

x and P̂(2)
x commute.

The relevant symmetries of this model are conservation of
particle number N̂ , translation symmetry T̂ , parity (reflection)
P̂ and, in the case of half-filling, particle-hole symmetry Ŝ.
We will exploit translation symmetry by considering differ-
ent momentum sectors separately. This allows us to study
larger system sizes. In the following, momentum k refers
to the eigenspace of the translation operator T̂ with eigen-
value exp(−i 2πk/L). We generally find no significant k
dependence in our results apart from the effect of discrete
symmetries on level statistic outlined above. Hence we present
results for a single momentum sector k = 1.

A. Inverse participation ratios

In this section we apply two different definitions of IPR
to the extended Fermi-Hubbard model (13). First, we demon-
strate how the one-particle reduced IPR Eq. (4) can be used to
show a tendency towards real-space localized dynamics when
combining nearest- and next-nearest-neighbor interactions.
Second, we use our block IPR Eq. (7) to quantify the onset
of fragmentation when considering the strongly correlated
limits.

1. Real-space localization transition within the fragmented regime

Previous study on the model (13) has shown that fragmen-
tation due to large V1 or large V2 does not result in localized
dynamics, while a combination of large V1 and V2 does [69].
Typical states will be characterized by dynamical bubbles that
are disconnected from each other by inactive regions. Eigen-
states are therefore expected to show localization as indicated
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FIG. 3. One-particle reduced IPR for L = 14 and different fixed
values of V1. Red arrow: Increase in IPR due to frozen states emerg-
ing as V1 → ∞ for V2 ≈ 0. Purple arrow: Increasing IPR due to
frozen states emerging as V2 → ∞ for V1 = 0. Green arrow: Effect
of additional localization of states in large blocks at finite V1 ∼ 10
when adding nearest-neighbor interactions V2 � 10 (compare to red
arrow). Based on our previous analysis of this model [69] we expect
reduced fragmentation around V1 = V2 and V1 = 2V2 due to weaker
constraints. This is indicated by dips in the one-particle reduced IPR,
which are resolved as two separate features for very large V1 = 103.

by the one-particle reduced IPR Eq. (4). However, transla-
tion symmetry may mask this transition. We therefore add a
weak local disorder term W

∑
x hxn̂x to break the degeneracy

and ensure that numerical diagonalization gives the localized
eigenstates whenever possible. We choose uniformly random
distributed hx ∈ [−1, 1] and W = 10−2, which is too weak
to induce MBL [1]. Figure 3 shows the V2 dependence of
IPRopr for fixed values of 0 � V1 � 103 for L = 14. Taking
V1 → ∞ for V2 held constant results in an increased average
IPRopr due to the emergence of frozen states (indicated by
directions of red and green arrows). Eigenstates associated
with large blocks remain delocalized at V2 = 0 and hence the
increase in IPRopr is relatively small (red arrow). This is the
motivation behind defining a block IPR that fully displays the
fragmented limit. Likewise, taking V2 → ∞ for V1 = 0 results
in an increased average IPRopr due to the emergence of frozen
states (indicated by purple arrow). Typical states remain de-
localized as shown in [69], but some states associated with
large blocks exhibit localization and contribute to this change
in IPRopr. Crucially we find a much stronger V2 dependence
for finite, but relatively small, V1. In particular, for V1 = 10
(highlighted in red) we find that IPRopr rapidly approaches
the maximum value found at V1,V2 → ∞ when increasing V2.
This is further demonstration that the dynamics of this system

FIG. 4. Comparison of three different numerical probes for L = 20, N = 9, and momentum k = 1. (a) Block IPR defined with respect to
the effective block structure at V1 → ∞ (lower right half) and the effective block structure at V2 → ∞ (upper left half). (b) Level-spacing
statistics with color scale highlighting GOE to indicate thermal regime. (c) Average eigenstate entanglement entropy normalized to theoretical
prediction for quantum chaotic system (compare 12). (d) Constant-V2 cuts of all three probes corresponding to colored lines in [(a)–(c)]. The
black diamond indicates the midpoint of the jump in average IPRblock, while the black triangle indicates the position of maximal variance in
IPRblock across eigenstates. (e) Scaling analysis of the respective values for V ∗

1 obtained in (d) across varying system size and for two different
values of V2 (fit is based on the four largest values of L).
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become localized when adding next-nearest-neighbor interac-
tions to the Fermi-Hubbard model with finite nearest-neighbor
interactions. The tendency to localize becomes strong when
nearest-neighbor interactions approach the threshold V1 ∼ 101

where our numerical probes indicate the onset of fragmenta-
tion (see below).

2. Block IPR

In Fig. 4(a) we show the average block IPR of exact
eigenstates as a function of V1 and V2 at L = 20, N = 9
and momentum k = 1. The lower right triangle displays
IPRblock computed with respect to the block structure found at
V1 → ∞, while the upper left triangle displays IPRblock com-
puted with respect to the block structure found at V2 → ∞.
We find a distinct region of low IPRblock for sufficiently small
V1,V2. It approaches the maximum value of IPRblock = 1 even
at moderate values V1,V2 ∼ 101.

3. Scaling analysis

Figure 4(d) shows block IPR along with level statistics
and entanglement entropy (discussed below) taken from a cut
along fixed V2 = 5.77 [see colored lines in Figs. 4(a)–4(c)],
along with the normalized variance of IPRblock. The transi-
tion indicated by a sharp increase in IPRblock is accompanied
by drops in r̄ and sA. In addition, the variance of IPRblock

spikes at the same value of V1. We consider the maximum
of this variance, as well as the mid-point of the IPRblock

itself as indicators of a critical value V ∗
1 . Figure 4(e) shows a

finite-size scaling analysis based on these two indicators for
V2 = 5.77 and for the integrable limit V2 = 0. We see that
both quantities converge to the same value as L → ∞ and
indicate a finite critical value V ∗

1 . Comparing with Fig. 2,
we seem to have ruled out option (c), meaning that IPRblock

seems to define a finite region around the exactly fragmented
limit that matches the nonthermal regime indicated by more
conventional quantities like level statistics and entanglement
entropy.

B. Level statistics

Figure 4(b) shows the level-spacing parameter r̄ as a func-
tion of V1 and V2. We find that there exists a thermal island
at intermediate values of V1 and V2 that is consistent with
the island of low IPRblock found in Fig. 4(a). Since the data
is obtained for L = 20, N = 9, we see conventional GOE
statistics within the thermal region, as opposed to the gen-
eralized GOEm=2 observed at half-filling (see Appendix B).
We also find that the level statistics follow GOE along the
diagonal V1 = V2, indicating that in this case the local con-
straints are sufficiently weak and do not lead to a fragmented
block structure. However, there is an additional nonthermal
region at small values of V2 that is not captured by the block
IPR. This is due to proximity to the exactly integrable case
V2 = 0 and shows that IPRblock captures nonergodicity caused
by fragmentation specifically.

C. Entanglement entropy

We evaluate the probe sA introduced in Eq. (12) for the
fixed momentum sectors k and fixed filling n = N/L at given

system size L, as shown in Fig. 4. Note that sA is defined as
first evaluating the average half-system eigenstate entangle-
ment entropy 〈SA〉J with respect to eigenstates in this sector
(fixed k, n = N/L and L) and then normalizing this quantity
by dividing the average entanglement entropy 〈SA〉0

n of a Haar
random state in this filling sector.

For the system under consideration, the leading order coef-
ficient of 〈SA〉0

n [compare Eq. (11)], expected to be universal,
is given by [55,56,77]

a0(n) = −n log(n) − (1 − n) log(1 − n). (16)

The finite-size corrections for typical pure states are given
by [56]

b0(n, f ) = −
√

n(1 − n)

2π
log

1 − n

n
δ f , 1

2
, (17)

c0(n, f ) = f + log(1 − f )

2
− 1

2
δ f , 1

2
δn, 1

2
, (18)

which we can use as an approximation for the true model-
dependent values. This allows us to compute 〈SA〉0

n up to
constant order, which we use then to evaluate sA. For L = 20
and N = L

2 − 1 (used in Fig. 4), the asymptotic expansion
yields 〈SA〉0

n= L−2
2L

≈ 6.607. Due to the slight deviation from

n = 1/2 (half-filling), the approximation to the exact value of
6.253 is reasonable but not great. The latter can be evaluated
as a sum, as explained in Eq. (45) of [56], and will be used for
the evaluation of sA instead. In the case of exactly half-filling,
or far away from half-filling, one may use the asymptotic
expansion as an excellent approximation.

In Fig. 4(c) we show our entanglement probe sA from
Eq. (12). Again, we find a distinct region of highly entangled
states that matches the outlines of the corresponding low-
IPRblock and GOE-level spacing regions in Figs. 4(a) and 4(b),
including the nonthermal region close to the integrable line.

V. PERTURBATION THEORY AND COARSE
GRAINED BLOCK STRUCTURE

In order to analyze the transition between exact frag-
mentation and large but finite interaction strength, we apply
perturbation theory in the form of a Schrieffer-Wolff transfor-
mation [82] to our model. For a detailed derivation we refer to
Appendix A.

We find that exact degeneracy between blocks related by
translation symmetry can lead to discontinuities in the ex-
act eigenstates at ε = 1/V1 = 0 (see Fig. 5). This is to be
expected whenever the fragmented block structure does not
respect symmetries of the model. The result is that product
states of one block may dynamically evolve into a state that is
partially or completely contained in a symmetry-related block
with identical quantum numbers. Unlike the amplitude for
scattering into other bond sectors, which is arbitrarily small,
this type of transition can only be delayed to arbitrarily late
times ∼1/ε2 = V 2

1 . Experimentally, it can only be detected
by resolving local particle number and prior knowledge of the
block structure.

In the following we show that translation symmetry can
be used in order to determine whether discontinuous mix-
ing of eigenstates occurs at ε = 0 for the case V1 → ∞.
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FIG. 5. We illustrate a finite perturbation to the ideal block
structure before and after applying a Schrieffer-Wolff (SW) trans-
formation. Displayed is a single bond sector defined by the bond
number N•• = ∑

x n̂xn̂x+1 with its internal block structure of frozen
states and large blocks, marked in colored squares. Due to N•• being
only approximately conserved, there are block-off-diagonal terms of
order ε = 1/V1. T represents the action of the translation operator,
where blocks that are related by translation share the same color.
After applying SW, different bond sectors become disconnected and
acquire additional matrix elements as indicated by ∗ symbols, which
predict discontinuities in the exact eigenstates due to higher-order
perturbative effects.

We make use of the spin-mover mapping that has been
used in the past to study this model [1,68,69] (see Fig. 6).
Consider a block A that is characterized by a nonzero num-
ber of movers, i.e.,not a frozen state. We can conclude
based on the spin-mover dynamics that for any product
state |a〉 in said block the state T̂ 2|a〉 is also contained in
the same block. Therefore we can group the product states
in A into closed orbits under T̂ 2. Consider one such set
|a, 1〉, |a, 2〉, . . . . Applying T̂ to each state yields a corre-
sponding set |b, 1〉, |b, 2〉, . . . in the block B whose basis
states are the translated states of A. Note that T̂ |a, n〉 = |b, n〉
and T̂ |b, n〉 = |a, n + 1〉. We can construct translation eigen-
states by first constructing T̂ 2 eigenstates with eigenvalue t2,
|ψA/B, t2〉 = ∑N

n=1(t̄2)n−1|a/b, n〉 and then taking the linear
combination |ψA, t2〉 + t̄ |ψB, t2〉. Using T̂ |ψA, t2〉 = |ψB, t2〉

and T̂ |ψB, t2〉 = t2|ψA, t2〉, one can easily verify that these are
translation eigenstates with T̂ eigenvalue t . In the fragmented
limit ε = 0, the eigenstates of Ĥ can be chosen to be linear
combinations of product states purely in A or B. Since A
and B are invariant under T̂ 2, we can choose simultaneous

eigenstates ˜|ψA, t2〉 of Ĥ and T̂ 2 that generally are combi-
nations of several T̂ 2 eigenstates {|ψA, t2〉 j} constructed in
the fashion outlined above. Applying T̂ yields a degenerate

state ˜|ψB, t2〉 in block B and simultaneous diagonalization of
Ĥ and T̂ requires equal weight superpositions of these states

|ψ, t〉 ∝ ˜|ψA, t2〉 + t̄ ˜|ψB, t2〉. We recover the block local-

ized eigenstates via ˜|ψA/B, t2〉 ∝ |ψ, t〉 ± |ψ,−t〉. Suppose
there is no discontinuous mixing of eigenstates, i.e., there

exists a well-defined perturbative expansion ˜|ψA, t2〉ε>0 ∝
˜|ψA, t2〉 + ε · · · . Applying T̂ yields the corresponding de-

generate perturbative eigenstate ˜|ψB, t2〉ε>0 that is mostly
localized on B and the hence by the same construction the

combined Ĥ and T̂ eigenstates ˜|ψ,±t〉 must be degener-
ate. We also conclude that a perturbative expansion for all
eigenstates exists if and only if all simultaneous Ĥ and T̂
eigenstates can be sorted into exactly degenerate pairs with T̂
eigenvalues ±t .

Next we consider systems where L is a multiple of 4.
Here we expect large blocks to contain states with t2 = −1,
which can be combined with translated eigenstates to give T̂
eigenvalues ±i. By construction [Ĥeff , T̂ ] = 0, [Ĥeff , P̂] = 0
and P̂T̂ P̂ = T̂ †, which implies degeneracy between i and −i
translation eigenvalues. Therefore 〈ψB, t2|Ĥeff |ψA, t2〉 = 0 to
all orders in ε and there is no discontinuous mixing of these
states. We find numerically that these are the only translation
eigenstates that can be perfectly matched into degenerate pairs
and the block localization of eigenstates can be preserved at
finite ε > 0.

Additionally, there exist an extensive number of frozen
states in the fragmented limit, which are degenerate even if
not related by symmetry. In order to avoid numerical disconti-
nuities at, say, V1 → ∞, we replace the naive block structure

FIG. 6. Spin-mover mapping [68] and effective hopping rules [69] for the fragmented regimes of the extended Fermi-Hubbard model. In
the limit of V1 → ∞ and V2 = 0 large blocks are comprised of states that host one ore more movers that hop by changing position with a
neighboring spin. When all movers traverse the entire system once (periodic boundary conditions assumed) the resulting state corresponds to
a spatial translation by two sites in the fermionic Fock state.
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FIG. 7. (a) Comparison of IPRblock, level statistics, and entanglement entropy for the L = 16 Wannier-Stark Hamiltonian [Eq. (19)] at
half-filling and V1 = 1. The black circle indicates the midpoint of the jump in average IPRblock, while the black square indicates the position of
maximal variance in IPRblock across eigenstates. (b) Scaling analysis of the respective values for E∗ obtained in (a) across varying system size
and for V1 = 1.

obtained from Ĥ (1)
∞ with a coarse grained one. The latter

is obtained by combining blocks that are either related by
translation symmetry or are frozen states within the same bond
sector.

VI. APPLICATION: WANNIER-STARK PROBLEM

So far we have demonstrated the block IPR for one par-
ticular model. In order to provide evidence for the claim that
our approach is universal and indeed applies to any family of
Hamiltonians that have a fragmented limit, we now apply the
same methods to another, popular type of fragmented model.

We consider a spinless fermionic chain with open boundary
conditions and constant transverse electric field, also known
as the Wannier-Stark problem [83],

Ĥ = −t
∑

x

(ĉ†
x+1ĉx + H.c.)

+ V1

∑
x

n̂xn̂x+1 + E
∑

x

x n̂x. (19)

Again setting t = 1, we now take V1 ∼ 1 and E � 1. Since
the tight binding term has no block-diagonal component with
respect to eigenspaces of the dipole moment D̂ = ∑

x x n̂x,
one needs to go to second order in perturbation theory to
arrive at an effective Hamiltonian that is proportional to V1 and
whose nondiagonal component is described by pair-hopping
processes [65],

Ĥeff

V1
= − 1

E2

∑
x

(ĉ†
x ĉ†

x+3ĉx+2ĉx+1 + H.c.)

+
(

1 − 2

E2

)∑
x

n̂xn̂x+1 + 2

E2

∑
x

n̂xn̂x+2. (20)

From this it is clear that in the limit E → ∞ the bond
number N̂•• = ∑

x n̂xn̂x+1 is conserved along with the dipole
moment D̂. The finite perturbation in the vicinity of the frag-
mented limit, however, is now given by the dipole conserving
pair-hopping. These types of models have been studied in the
past and are known to be fragmented [17,63]. We can apply
the same arguments and techniques outlined in Secs. IV and

V in order to define an effective block structure with respect
to which we compute the block IPR as a function of E . Since
nearest-neighbor interactions are crucial in order to obtain
dipole conserving hopping in this manner, we find that the
block structure is somewhat different from the one obtained
in other studies, which only consider a pair-hopping term. It
is defined by the connected components of the block-diagonal
part of pair hopping with respect to eigenspaces of N̂••. In
other words, the relevant adjacency matrix is given by

Ĥblock =
∑

x

P̂x (ĉ†
x ĉ†

x+3ĉx+2ĉx+1 + H.c.) P̂x, (21)

where P̂x = (n̂x−1 − n̂x+4)2 is a projection operator. Here we
define n̂0 = n̂L+1 = 0.

In Fig. 7(a) we show the level statistics, entanglement
entropy, block IPR and variance of IPRblock as a function of
E for fixed V1 = 1. Due to lack of translational symmetry,
we are limited to L = 16 and half-filling. Similarly to the
extended Fermi-Hubbard model, all three probes indicate the
existence of two distinct regimes. We find that the onset of
fragmentation seems to coincide with the distinct drop in the
level ratio and entanglement entropy. Figure 7(b) shows the
corresponding scaling analysis for the midpoint of IPRblock

and peak variance of IPRblock respectively. We find overall less
agreement between the two predicted values of E∗, likely due
to the limitation in system size.

VII. DISCUSSION AND OUTLOOK

We studied the possibility that fragmentation may be an
identifiable phase with a suitable order parameter. As we will
summarize in the following, we have defined a numerical
probe, the block inverse participation ratio IPRblock, as such an
order parameter, allowing us to quantify the degree to which
a parameter-dependent model is fragmented. We do not argue
in terms of perturbative effects on the lifetime of fragmenting
constraints. Instead, IPRblock and our other probes (level spac-
ing, entanglement entropy) directly test the properties of the
exact eigenstates for a continuum of model parameters.

Using perturbation theory, we were able to deal with de-
generacy to ensure that the IPRblock is well defined when using
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numerical exact diagonalization. Comparing this IPRblock with
more conventional probes of ergodicity like level-spacing
statistics and entanglement entropy, we were able to show that
its prediction of a transition between nonfragmented and frag-
mented regimes is exactly in line with the predicted transition
between thermal and nonthermal regimes at strong interac-
tions based on level statistics and entanglement entropy.

Additional nonthermal regimes in proximity to the in-
tegrable limit of the extended Fermi-Hubbard model are
not indicated by IPRblock. This shows that it is a nu-
merical probe that specifically detects and quantifies frag-
mentation as opposed to general mechanisms of ergodicity
breaking. It therefore explains the mechanism behind the
transitions/crossovers in those parts of the phase diagram
where its predictions agree with the generic probes.

Based on finite-size scaling, we were also able to show that
it is robust in the thermodynamic limit and defines a regime of
proximity to the exactly fragmented limit that is dominated by
the effects of (approximate) fragmentation. We demonstrate
that IPRblock can be used in rather general settings that shows
a fragmented limit by applying the same approach to a dipole
conserving model. Let us emphasize that defining and calcu-
lating the block structure for such models is numerically very
inexpensive, as it only requires finding connected components
of a sparse matrix, for which there are efficient algorithms.
In practice, one may first look at the conventional IPR with
respect to a local product basis, in the case of a finite system,
or generally any universal probe such as level statistics or
entanglement entropy in order to identify potentially frag-
mented, nonthermal regimes. Once such appropriate limits are
identified, one finds the (approximate) adjacency matrix in
order to compute IPRblock and thereby identify the cause of
ergodicity breaking as either fragmentation or through some
other mechanism.

While infinite interaction strengths are not experimentally
realizable, very large but finite ones most certainly are ac-
cessible in quantum simulators or quantum computers. The
effect and methods presented in this paper can therefore be
studied in experiments. Our results suggest that fragmentation
is not restricted to a low-dimensional subset (hypersurface)
of Hamiltonians in the thermodynamic limit, but rather rep-
resents a finite volume around the exactly fragmented regime
and may constitute a separate phase with IPRblock serving as
the order parameter.
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APPENDIX A: SCHRIEFFER-WOLFF TRANSFORMATION

Without loss of generality we consider the case where
V1 � 1.

We begin by rescaling Ĥ → Ĥ/V1 and splitting the Hamil-
tonian into Ĥ0(ε) + ε∗Ĥpert with ε = 1/V1,

Ĥ0 = N̂•• + εĤ (1)
∞ , (A1)

Ĥpert =
(

−
∑

x

(ĉ†
x+1ĉx + h.c.) − Ĥ (1)

∞

)
. (A2)

The unperturbed eigenstates of Ĥ0 can be indexed by the
eigenvalue of N̂•• and an additional index i,

Ĥ0|i, N••〉 = (
N•• + EN••

i (ε)
)|i, N••〉. (A3)

We can write EN••
i (ε) = eN••

i · ε. These eigenstates are in-
dependent of ε > 0 and can be made continuous at ε = 0,
since each block takes the form N•• · 1̂ + ε · X̂ , with X̂ inde-
pendent of ε.

The effective Hamiltonian projected onto a manifold N••
up to corrections of order ε4 may be written as

〈i|ĤN••
eff | j〉

= (
N•• + EN••

i (ε)
)
δi, j + ε · 0

+ ε2
∑

k

{
〈i, N••|Ĥpert|k, N•• − 1〉

× 〈k, N•• − 1|Ĥpert| j, N••〉

×
[

1 − ε

(
eN••

i + eN••
j

2
− eN••−1

k

)
+ O(ε2)

]

− 〈i, N••|Ĥpert|k, N•• + 1〉〈k, N•• + 1|Ĥpert| j, N••〉

×
[

1 + ε

(
eN••

i + eN••
j

2
− eN••+1

k

)
+ O(ε2)

]}
+ 0 · ε3.

(A4)

Using the relations

Heff = T̂ Ĥ T̂ †, T̂ = eiŜ, Ŝ = εS1 + ε2Ŝ2 + . . . , (A5)

we find that the eigenvectors of Ĥ can be computed by
first finding the eigenvectors of Ĥeff and then applying T̂ † =
1̂ − iεŜ1 − iε2Ŝ2 − ε2Ŝ2

1 + . . . . The eigenvectors of Ĥeff can
in turn be expanded perturbatively unless degeneracies are
only lifted by the diagonal corrections, i.e., at order ε2, while
off-diagonal terms couple the degenerate states. In particular,
there are exactly degenerate diagonal entries to all orders due
to translation symmetry and the noninvariance of the frag-
mented block structure under translation. Note that Ŝ is chosen
to be purely off-diagonal with respect to the different bond
sectors. The matrix elements of Ŝ1 are given by

〈i, N•• ± 1|iεŜ1| j, N••〉 = 〈i, N•• ± 1|εĤpert| j, N••〉
EN••±1

i (ε) − EN••
i (ε)

,

〈i, N••|iεŜ1| j, N••〉 = 0. (A6)
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FIG. 8. Individual plots for (a) block IPR with respect to V1 and (b) block IPR with respect to V2 across all values of V1,V2 [Fig. 4(a) com-
bines these plots] and (c) level-spacing statistics for half-filling follows GOEm=2 within the thermal regime. We indicate system size L, particle
number N and momentum sector k.

A naive perturbative expansion of the eigenstates takes the
form

|i, N••〉ε = |i, N••〉0 − iεŜ1|i, N••〉0 − iε2Ŝ2|i, N••〉0

+ ε2
∑
j �=i

〈 j, N••|0ĤN••
eff,2|i, N••〉0

EN••
i (ε) − EN••

j (ε)
| j, N••〉0

− ε2Ŝ2
1 |i, N••〉0 + . . . (A7)

The corrections appearing in line two only mix in states
from different bond sectors, while those in line three can mix
in states from other blocks within the same bond sector. No-
tably, EN••

i (ε) − EN••
j (ε) = ε(eN••

i − eN••
j ) and so the first term

in row three is a first-order correction in ε unless the matrix
element of ĤN••

eff,2 between degenerate eigenstates, in particular
in different blocks related by T̂ symmetry, is finite. In this case
we find a discontinuity in the eigenstates at ε = 0. This results
in a transition between blocks on a timescale ∼1/ε2 = V 2

1 .
These types of discontinuities are generally expected when

the Hamiltonian takes the following form:
(1) Ĥ = ε−1D̂ + ĥ, with D̂ diagonal in product basis
(2) ĥ = ĥd + ĥnd with [ĥd, D̂] = 0 and [ĥnd, D̂] = 0
(3) εĤ = D̂ + εĥd︸︷︷︸

strong pert

+ εĥnd︸︷︷︸
pert

(4) Ĥ0 = D̂ + εĥd is fragmented, i.e., in general
〈d, 1|ĥd|d, 2〉 = 0 for |d, 1〉, |d, 2〉 in same eigenspace
of D̂

(5) A symmetry Ŝ of Ĥ does not leave the block structure
invariant: 〈d, 1|Ŝ|d, 2〉 �= 0

(6) The effective Hamiltonian couples degenerate states
at some order, i.e., 〈d, 1|Ĥ (n)

eff |d, 2〉 �= 0. It is sufficient if
〈d, 3|Ĥ (n)

eff |d, 1〉 �= 0, where 〈d, 3|(ĥd )k|d, 2〉 �= 0 for some
k ∈ N.

APPENDIX B: ADDITIONAL DATA

In Fig. 8 we present the individual plots for IPRblock with
respect to V1 and with respect to V2 across the entire range
of V1 and V2 values. It is evident that there is some amount
of overlap between the respective limiting block structures.
This is indicated by the slight increase in V1-IPRblock when
approaching the V2 → ∞ limit and vice versa. Due to this
overlap one may identify the thermal region by only consider-
ing one of these IPRs. We also show data for the level-spacing
statistics at half-filling, here for L = 18, N = 9. As out-
lined in Sec. III B, one expects generalized GOE statistics
in this case because of the presence of particle-hole symme-
try. We find this to be the case and also note the washing
out of the outline and features of the thermal to nonthermal
transition when compared to the level statistics away from
half-filling (compare Fig. 4). We observe much less difference
between different filling fractions in the entanglement entropy
and IPRblock.

[1] G. De Tomasi, D. Hetterich, P. Sala, and F. Pollmann, Dynamics
of strongly interacting systems: From Fock-space fragmenta-
tion to many-body localization, Phys. Rev. B 100, 214313
(2019).

[2] S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum
many-body scars and Hilbert space fragmentation: A review of
exact results, Rep. Prog. Phys. 85, 086501 (2022).

[3] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[4] P. Hauke and M. Heyl, Many-body localization and quantum
ergodicity in disordered long-range Ising models, Phys. Rev. B
92, 134204 (2015).

[5] A. Pal and D. A. Huse, Many-body localization phase transition,
Phys. Rev. B 82, 174411 (2010).

[6] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Many-body
localization in a quantum simulator with programmable random
disorder, Nat. Phys. 12, 907 (2016).

[7] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, In-
teracting electrons in disordered wires: Anderson localiza-
tion and low-T transport, Phys. Rev. Lett. 95, 206603
(2005).

[8] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Possible ex-
perimental manifestations of the many-body localization, Phys.
Rev. B 76, 052203 (2007).

064302-11

https://doi.org/10.1103/PhysRevB.100.214313
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevB.92.134204
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevB.76.052203


FREY, MIKHAIL, RACHEL, AND HACKL PHYSICAL REVIEW B 109, 064302 (2024)

[9] V. Oganesyan and D. A. Huse, Localization of interacting
fermions at high temperature, Phys. Rev. B 75, 155111 (2007).

[10] E. V. H. Doggen, F. Schindler, K. S. Tikhonov, A. D. Mirlin, T.
Neupert, D. G. Polyakov, and I. V. Gornyi, Many-body local-
ization and delocalization in large quantum chains, Phys. Rev.
B 98, 174202 (2018).

[11] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L.
Sondhi, Localization-protected quantum order, Phys. Rev. B 88,
014206 (2013).

[12] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Ob-
servation of many-body localization of interacting fermions in
a quasirandom optical lattice, Science 349, 842 (2015).

[13] J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal,
T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross,
Exploring the many-body localization transition in two dimen-
sions, Science 352, 1547 (2016).

[14] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig,
H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao,
and M. D. Lukin, Critical thermalization of a disordered dipolar
spin system in diamond, Phys. Rev. Lett. 121, 023601 (2018).
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