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Nonadiabatic effect in topological and interacting charge pumping
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Topological charge pumping occurs in the adiabatic limit, and the nonadiabatic effect due to finite driving
velocity reduces the pumping efficiency and leads to deviation from quantized charge pumping. In this paper,
we discuss the relation between this deviation from quantized charge pumping and the entanglement generation
after a pumping circle. In the simplest setting, we show that the purity P of the half-system reduced density
matrix is equal to R, defined as (1 − κ )2 + κ2, where κ denotes the pumping efficiency. In generic situations,
we argue that P < R and the pumping efficiency can provide an upper bound for purity and, therefore, a lower
bound for generated entanglement. To support this conjecture, we propose a solvable pumping scheme in the
Rice-Mele-Hubbard model, which can be represented as a brick-wall-type quantum circuit model. With this
pumping scheme, numerical calculation of charge pumping only needs to include at most six sites, and therefore
the interaction and the finite-temperature effects can be both included reliably in the exact diagonalization
calculation. The numerical results using the solvable pumping circle identify two regimes where the pumping
efficiency is sensitive to driving velocity and support the conjecture P < R when both interaction and finite-
temperature effects are present.
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I. INTRODUCTION

Quantized transport is one of the most direct manifesta-
tions of nontrivial topology in quantum systems. It includes
two different approaches. One is the quantized linear response
to an external constant voltage field, including the quantized
conductance in one-dimensional ballistic metals [1,2] and
various kinds of quantum Hall effects [3–12]. Such mea-
surements have been extensively used in condensed matter
systems to probe topological phases. Generally speaking, this
scheme requires a small voltage field such that the system
remains in the linear response regime. The other is quantized
charge transport in a dynamically driven process with peri-
odic driving parameters [13–18]. The canonical example is
the Thouless pump [14]. Such measurements can be more
easily realized in ultracold atomic gases [19–24]. Generally
speaking, this scheme requires a slow driving velocity such
that the entire dynamic process remains within the adiabatic
limit. In both cases, a small external field or slow dynamics is
necessary for manifesting topology. Deviating from a linear
response or the adiabatic limit inevitably causes deviation
from topological quantization.

However, in practice, the driving speed is always finite
in experiments, and consequently, the nonadiabatic effect re-
sults in a deviation from quantization. This deviation has
been observed in a recent cold-atom experiment [24]. In this
experiment, tunable interactions between particles were also
presented. The sensitivity to finite driving speed depends on
the interaction as well as the temperature. Previously, in the
case of crossing a symmetry-breaking phase transition, a finite

*huizhai.physics@gmail.com

ramping rate leads to the generation of topological defects
whose density reveals the critical exponents, known as the
celebrated Kibble-Zurek mechanism [25–28]. The response
of a physical observable to a finite driving rate has also been
used to probe intrinsic many-body correlations [29]. Never-
theless, theoretical investigations of the nonadiabatic effect
in topological charge pumping are still limited [16,30–32].
Here we would like to understand whether the nonadiabatic
effect can characterize the intrinsic properties of this physical
system after pumping, such as entanglement generation [33],
and whether there exists a reliable way to compute the nona-
diabatic effect in an interacting system.

II. RELATION BETWEEN PURITY AND
PUMPING EFFICIENCY

To begin with, let us first discuss an intuition connect-
ing entanglement entropy generated by pumping and the
nonadiabatic effect. As shown in Fig. 1, we consider a one-
dimensional chain and divide it into left and right halves,
whose particle numbers are denoted by NL and NR, respec-
tively. In the adiabatic limit, a quantized charge is pumped
from the left to the right, and the particle numbers become
NL − 1 and NR + 1, respectively. However, in the nonadia-
batic case, let us denote κ as the pumping efficiency; that is
to say, there are certain possibilities, approximated by 1 − κ ,
that the charge is not pumped and the particle numbers remain
NL and NR after a pumping circle, as shown in Fig. 1.

If we take a partial trace over the right system and obtain
the reduced density matrix for the left system ρL, we can intro-
duce the second Rényi entropy S2 = − ln Trρ2

L to describe the
entanglement between two sides. Here, Trρ2

L is also called the
purity, denoted by P . For noninteracting-type Gaussian states,
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FIG. 1. Schematic of the relation between entanglement or
density matrix purity generated by pumping and the pumping
efficiency κ .

there exists a formula relating purity with particle numbers.
The formula reads [34]

Trρ2
L =

1/2∏

p=−1/2

Tr(ρLeiπ pN̂L ). (1)

Using this formula, we obtain

P = Trρ2
L ≈ [

(1 − κ )ei π
2 NL + κei π

2 (NL−1)
]

× [
(1 − κ )e−i π

2 NL + κe−i π
2 (NL−1)

]

= (1 − κ )2 + κ2. (2)

This establishes the relation between purity and pumping ef-
ficiency. For quantized charge pumping, κ is either unity or
zero, leading to P = 1 and no generation of entanglement
entropy. When the nonadiabatic effect occurs, κ can take any
value between zero and unity, reducing purity and generating
entanglement.

To arrive at this relation, we have assumed that the initial
state has fixed particle numbers for both the left and right
sides. Strictly speaking, this relation also does not hold when
interaction and finite-temperature effects are taken into ac-
count. However, we will show that P and R exhibit the same
trend, where R denotes (1 − κ )2 + κ2 as the right-hand side
of Eq. (2).

Let us denote the probability of transporting n charges as
Pn. The discussion above only considers P0 and P1. Suppose
we would like to consider other possibilities ignored above,
and the next order contribution should be two particles being
pumped or the backflow of one particle from the right to the
left, which are denoted by P2 and P−1, respectively. Including
all four possibilities and following Eq. (1), we have

P = (P1 − P−1)2 + (P0 − P2)2. (3)

On the other hand, we have the pumping efficiency as

κ =
∑

n

nPn = 2P2 + P1 − P1, (4)

and therefore R is given by

R = (2P2 + P1 − P−1)2 + (P0 − P2 + 2P−1)2. (5)

It is easy to verify that

R − P = 4[P−1P0 + P1P2 + (P−1 − P2)2] > 0. (6)

Hence we further conjecture that P < R as long as the nona-
diabatic effect is still perturbative. That is to say, the pumping
efficiency provides an upper bound for purity and a lower
bound for the entanglement generated during pumping.

III. RICE-MELE-HUBBARD MODEL AND A SOLVABLE
PUMPING CYCLE

The Rice-Mele model is the most widely used model for
studying charge pumping [35]. By adding interactions, we
consider the Rice-Mele-Hubbard model at half filling [36,37]:

H = −
∑

i,σ

(J + (−1)i+1δ)(c†
i,σ ci+1,σ + H.c.)

+ �
∑

i,σ

(−1)i+1niσ + U
∑

i

ni,↑ni,↓, (7)

where ni,σ = c†
i,σ ci,σ and ci,σ and c†

i,σ are fermionic annihi-
lation and creation operators. J ± δ is the hopping amplitude
between neighboring sites, alternating between two neighbor-
ing bonds. The odd and even sites form two sets of sublattices,
and � denotes the energy detuning between them. U is the
on-site interaction strength between different spins. In the
pumping process, J , δ, and � are functions of time t . We set
h̄ = kB = 1, with h̄ and kB being the reduced Planck constant
and the Boltzmann constant, respectively.

In the adiabatic limit, for the noninteracting case, a quan-
tized charge pumping can be observed when the trajectory of
parameters δ and � encloses the gap-closing point δ = � = 0
in a pumping circle. This quantized charge pumping is stable
in the presence of interaction until the repulsive Hubbard
interaction U exceeds 2|�0| (see below). Then, the charge
pumping breaks down, and the pumped charge is always zero
no matter what parameter trajectory is chosen [24,36,37].

Charge pumping with finite driving velocity is a chal-
lenging dynamical problem when both interaction and finite-
temperature effects need to be considered. To this end, we
will introduce a pumping scheme allowing us to compute the
dynamics in a numerically exact way. This pumping scheme
is illustrated in Fig. 2(a) and contains the following steps:

(1) A → B. We set J0 = J (t = 0) = 1. All energies are
measured in units of J0, and the pump velocity v is measured
in units of J0/h̄. We start with δ0 = δ(t = 0) = 1, under which
the system forms disconnected double wells. Initially, �0 =
�(t = 0) < 0, and we linearly ramp � as � = �0(1 − 2vt )
for a time duration t1 = 1/v to � = −�0 > 0, with J and δ

fixed during the process.
(2) B → C → D. We fix � = −�0 and linearly ramp J

and δ to zero as J = J0[1 − v(t − t1)] and δ = δ0[1 − v(t −
t1)]. In this process we keep the relation J = δ such that
the system remains as disconnected double wells. When t =
t2 = t1 + 1/v, we reach the point J = δ = 0, and all sites are
disconnected. After that, we ramp up J as J = J0v(t − t2)
and δ as δ = −δ0v(t − t2) until we reach J = J0 and δ = −δ0

at t3 = t2 + 1/v. In this process, we always have J = −δ,
and the system is also disconnected double wells. However,
these disconnected double wells are different from those in
A → B → C. Suppose site i is connected to site (i + 1) during
A → B → C; then site i is connected to site (i − 1) and site
(i + 1) is connected to site (i + 2) during C → D.
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FIG. 2. Illustration of the solvable pumping cycle. (a) The trajec-
tory of the pumping cycle in the δ-�-J parameter space. Here, B →
C and F → A lines obey δ = J , and C → D and E → F lines obey
δ = −J . The lattice potentials are illustrated at the starting points of
each step, where the hopping between two adjacent sites is nonzero
(zero) if they are connected (disconnected). (b) The same trajectory
as in (a), but shown in the (δ/J )-(�/J ) parameter space. For com-
parison, the dashed line shows the conventional topological pumping
trajectory, which can be continuously stretched to our trajectory.
(c) This pump protocol is represented by a three-layer brick-wall
quantum circuit. The first layer represents A → C, the second layer
represents C → F , and the third layer represents F → A. The charge
transport during one pumping cycle through a given lattice site, say,
one marked by a star, can be computed exactly from only six sites
within the information light cone denoted by the dash-dotted lines.

(3) D → E . We ramp � from −�0 to �0 with the same
velocity v and by keeping J and δ fixed.

(4) E → F → A. This process reverts B → C → D with
� fixed. After this step, the parameters return to their initial
values, and a pumping circle is closed.

Intuitively, charge transports from site i to site (i + 1) from
A to B. Then, sites i and i + 1 are disconnected, and site
(i + 1) is connected to site (i + 2), which allows subsequently
charge transport from site (i + 1) to site (i + 2) during D →
E . In such a way, unidirectional charge transport is realized.
In this setting, it is straightforward to see that the quantized
charge is stable for U < 2|�0|.

We remark on the difference between our pumping circle
and the conventional ones. Normally, one fixes J and tunes
δ/J and �/J to form a closed loop during a pumping circle.
In the noninteracting case, the pumping is topological or not
depending on whether the trajectory loop in the (δ/J )-(�/J )

diagram encloses zero. As we deform the trajectory, topolog-
ical pumping remains topological as long as no gap closing
occurs in the loop. Here, although we change J during the
pumping, we can still plot the parameter trajectory in the
(δ/J )-(�/J ) diagram, as shown in Fig. 2(b). Especially from
B to C, it corresponds to fixing δ/J = 1 and tuning �/J to
positive infinity. Then, from C to D, δ/J is fixed to −1, and
�/J is tuned from infinity to a finite number. In other words,
in the (δ/J )-(�/J ) diagram, we stretch the trajectory loop
to �/J = ±∞, and the parameter trajectory becomes two
parallel straight lines. However, during this stretching process,
no gap closing happens. Hence our pumping circle is still
topologically protected.

A key feature of this designed pumping cycle is that the
system is always constituted by disconnected double wells at
any given time. Therefore it can be represented by a three-
layer brick-wall quantum circuit, as shown in Fig. 2(c). The
first layer represents steps A to C, the second layer represents
steps C to F , and the last layer represents steps F to A. During
one pump cycle, the pumped charge equals the net current
passing through any given site. As shown in Fig. 2(c), a given
site marked by a star in Fig. 2(c) is only influenced by at most
six sites within the light cone, as indicated by the dash-dotted
lines in Fig. 2(c). Therefore we only need to compute the six
sites by exact diagonalization, and we can obtain an exact
result of charge pumping, including interaction, finite driving
rate, and finite-temperature effects.

In practice, we compute the current during each step from
the change in particle number �n at a given site i labeled
by a star in Fig. 2(c). Since the system always consists of
disconnected double wells, the current and �n are equal (op-
posite) when site i is connected to site i − 1 (site i + 1). When
computing the pumped charge, we do not need to assume
boundary conditions. As shown in the brick-wall circuit, at
any given time the sites outside the light cone denoted by
the dash-dotted lines are always disconnected from site i and
do not contribute to �n. Therefore, diagonalizing the six-site
problem is equivalent to solving an infinite chain.

IV. RESULTS

With the pumping circle introduced above, typical numer-
ical results on the charge pumping in the Rice-Mele-Hubbard
model are shown in Fig. 3. We have fixed J0 = δ0 = 1, �0 =
−2, −7 � U � 7, and T = 1. We have also varied the tem-
perature range and find that the results are not sensitive to
temperature for the parameters we considered.

First, we plot the pump efficiency in Fig. 3(a) for different
driving velocities v. We find two regimes where the pump-
ing efficiency strongly depends on velocity. One regime is
U < −2|�0|. In this regime, attractive interaction binds two
fermions with different spins to form a tightly bound pair, and
the hopping of pairs scales as ∼1/|U |. Hence, when the in-
teraction is attractive and large, the kinetic energy of fermion
pairs becomes small. Therefore a small driving velocity can
yield a large deviation. Another regime is U ∼ 2|�0|. As
shown in the inset of Fig. 3(a), when U � 2|�0|, the pumping
efficiency κ decreases as v increases; in contrast, when U �
2|�0|, κ increases as v decreases. Hence, when we plot κ as a
function of U for different v, these curves cross nearly at the
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FIG. 3. Numerical results of charge pumping for the Rice-Mele-
Hubbard model using the solvable pumping circle shown in Fig. 2.
Here we fix J0 = δ0 = 1, �0 = −2, and temperature T = 1. (a) The
pump efficiency κ as a function of U/|�0| for various driving speeds
v. The inset shows a zoomed-in plot around U = 2|�0| where the
pumping efficiencies with different driving velocities nearly cross
at a single point. (b) Comparison between purity P and R = (1 −
κ )2 + κ2 for two different driving velocities.

same point U = 2|�0|. This point marks the transition from
topological to nontopological charge pumping in the adiabatic
limit, which is rooted in the ground state phase transition
from a band insulator to a Mott insulator at U = 2|�0|. In
other words, we show that even with the experimental data
measured at finite velocity, one is able to accurately locate the
transition point of quantized charge pumping in the adiabatic
limit.

Here we should also note the difference between pump-
ing efficiency and the deviation from quantization. When
U � 2|�0|, topological pumping is quantized to unity, and
κ is always greater than 0.5. The deviation is 1 − κ . When

U � 2|�0|, pumping is quantized to zero in the adiabatic
limit, and the deviation is κ , which is always smaller than
0.5. The largest deviation from quantization is 0.5 occurring
at U = 2|�0|, where R reaches its minimum at 0.5.

Finally, in Fig. 3(b), we support our conjecture that P < R.
When computing the purity, we assume the open boundary
condition. We compare P and R for two different driving
velocities, v = 0.1 and v = 0.2. We have calculated the re-
sults for a number of different temperatures and velocities. All
results are similar and so are not repeatedly shown here. We
can see that R also decreases significantly as v increases in
the regime U < −2|�0|. Meanwhile, R exhibits a minimum
around U ≈ 2|�0| where the deviation from quantization is
the largest. This shows that P and R exhibit the same trend.
Meanwhile, we also see that P is always smaller than R.

V. CONCLUSION

In summary, we propose a pumping scheme that allows us
to compute charge pumping for interacting cases in a numeri-
cally exact way. This scheme is also equivalent to a quantum
circuit model, potentially bringing out the connection be-
tween charge pumping and digital quantum computing. We
discuss the connection between deviation from quantization
and generation of entanglement, both rooted in nonadiabatic
dynamics. We also note that the relation between charge trans-
port and entanglement has also been noticed in quantum point
contact [38] and recently in quantized nonlinear conductance
[2,34,39,40]. All these phenomena might point to a unified
picture behind them.

The open-source code is available [41].
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