
PHYSICAL REVIEW B 109, 064206 (2024)

Robust nonergodicity of the ground states in the β ensemble
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In various chaotic quantum many-body systems, the ground states show nontrivial athermal behavior despite
the bulk states exhibiting thermalization. Such athermal states play a crucial role in quantum information theory
and its applications. Moreover, any generic quantum many-body system in the Krylov basis is represented by
a tridiagonal Lanczos Hamiltonian, which is analogous to the matrices from the β ensemble, a well-studied
random-matrix model with level repulsion tunable via the parameter β. Motivated by this, here we focus on the
localization properties of the ground and anti-ground states of the β ensemble. Both analytically and numerically
we show that both the edge states demonstrate nonergodic (fractal) properties for β ∼ O(1), while the typical
bulk states are ergodic. Surprisingly, the fractal dimension of the edge states remains three times smaller than
that of the bulk states irrespective of the global phase of the β ensemble. In addition to the fractal dimensions,
we also consider the distribution of the localization centers of the spectral edge states, their mutual separation,
as well as the spatial and correlation properties of the first excited states.
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I. INTRODUCTION

The physics of thermalization in isolated quantum many-
body systems has intrigued the condensed matter community
over the last few decades [1–4]. The quantum analog of the
classical Boltzmann ergodicity hypothesis, named the eigen-
state thermalization hypothesis (ETH), claims that in general,
an isolated quantum chaotic system will locally thermalize
under its own unitary evolution where any local information
on the initial state will be lost. Such generic systems play
a crucial role in quantum information theory due to their
nonequilibrium dynamics [5].

Typically ETH is probed for the highly excited bulk states
lying at the center of the energy spectrum where the den-
sity of states has the largest value. However, the ground
states are particularly important, as they play a major role
in the conventional (low-energy) physics of complex and
correlated systems while driving collective phenomena like
superconductivity [6], fractional quantum Hall effect [7], and
others. Compared to the bulk states, the ground states are
also more accessible analytically, e.g., through renormaliza-
tion group methods [8], numerically using tensor-network
and quantum Monte Carlo methods [9], and experimentally
in quantum simulators using variational algorithms [10,11]
in the current noisy intermediate-scale quantum era. In this
sense some counterintuitive properties of the ground states
of generic many-body systems have drawn a lot of atten-
tion since a series of seminal works was published [12–14].
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Indeed, in the case of paradigmatic models like Ising and
Heisenberg spin- 1

2 chains [8,13,15] and the Bose-Hubbard
model [16], the ground states do not show ergodic behav-
ior, despite the mid-spectrum states exhibiting thermalization.
Instead, the ground states demonstrate ergodicity breaking,
both in terms of the equipartition over degrees of freedom
(i.e., being fractal states that occupy only measure zero of all
the Hilbert-space configurations) and entanglement [17]. The
ground-state entanglement leads to long-range correlations
at zero temperature, producing quantum phase transition,
e.g., in the Ising [18,19] and Lipkin-Meshkov-Glick model
[20], and Mott insulator-superfluid transitions in bosonic sys-
tems [21]. In addition, the empirical probability distribution
of ground states for various disordered many-body systems
has been recently addressed in several papers; see, e.g.,
Ref. [22].

The many-body systems are notoriously difficult to handle
for larger system sizes due to exponentially increasing Hilbert
space dimensions. Following a recent analogy between a tridi-
agonal Lanczos Hamiltonian in the basis of Krylov operators
for a generic quantum many-body system and the β ensemble
[23,24], we consider the ground-state properties of the latter,
being the proxy of the above many-body interacting systems.
In the case of the β ensemble, the ground-state energy can
be related to the stochastic Airy operators [25], while its
density can be expressed in terms of the multivariate in-
tegrals [26]. The relevant Tracy-Widom laws for arbitrary
β have been extensively studied [27–31]. In particular, for
β → 0 the Tracy-Widom distributions weakly converge to
the Gumbel distribution in the thermodynamic limit [32,33].
Recently a recursion relation was proposed for the probabil-
ity distribution of the ground-state energy of the Laguerre
β ensemble [34].
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In this work we look at the structure of the ground state
of the Gaussian β ensemble. We find that in the nonergodic
extended phase the fractal dimension of the ground state is
1/3 of the typical bulk fractal dimension. In the weak disorder
limit of the one-dimensional (1D) Anderson model [35], the
localization length of the ground state also scales with an
exponent 1/3 compared to the highly excited bulk states. We
will show that our result for the β ensemble can be explained
from an equivalence to the 1D Anderson model. Similar to
the many-body quantum chaotic systems, the ground states
of the β ensemble exhibit nonergodic structure for β ∼ O(1),
when the typical bulk states are known to be ergodic [36].
We also show that the fractal dimension of the ground state is
1/3 of the bulk states even in the extended phase, β � 1. This
feature will be explained from a correspondence to the mean
Hamiltonian model [37,38].

The rest of the paper is organized as follows. Section II de-
scribes the model in focus, summarizing the main properties
of the β ensemble. In Sec. III we consider both numerically
and analytically the ground-state properties of the nonergodic
phase of the model, focusing on the fractal dimensions of the
ground state and the statistics of the localization centers. In
Sec. IV we look at the ground state in the extended phase
(β � 1), shown to be dominated by a deterministic part of the
Hamiltonian. Section V summarizes our results.

II. MODEL

A. Model description

The β ensemble is a random-matrix model with a joint
probability distribution of eigenvalues known exactly and con-
trolled only by the Dyson’s index β, interpreted as the inverse
temperature of an equivalent Coulomb gas model [39,40].
Consequently, the standard joint probability distributions of
the Gaussian ensembles, with β = 1, 2, and 4, depending
on the symmetry, are generalized over any real β values in
case of the β ensemble. Such an ensemble consists of real
symmetric tridiagonal matrices having independent random
elements [41]. The corresponding symmetric N × N Hamil-
tonian matrix H has the following nonzero elements, Hm,n,
1 � m � n � N :

Hn,n ∼ N (0, 1), Hn,n+1 = yn,
√

2yn ∼ χnβ, (1)

where the diagonal elements obey the Gaussian distribu-
tion N (0, 1), with zero mean and unit variance, while the
off-diagonal ones follow the Chi distribution χnβ , with the
site index n-dependent width parameter nβ, 1 � n � N . In
the above site basis, H represents a random single-particle
model on a 1D lattice with open boundary conditions and
site-dependent hopping term [38]. The relative strength of
the on-site (Hn,n) and the hopping terms (yn) at a typical site
n ∼ O(N ) indicate a suitable scaling of the system param-
eter β = N−γ , where γ is a certain real-valued parameter
[36,42,43].

B. Bulk phase diagram

Equation (1) implies that the hopping amplitudes increase
on average along the lattice as 〈yn〉 = √

βn for βn � 1 and
present a highly inhomogeneous system. Such inhomogeneity

allows for phase transitions in the β ensemble, whereas criti-
cality is forbidden in a generic 1D system with uncorrelated
short-range hopping [44,45]. Particularly, for all the typical
bulk states, there are the Anderson transition at γ = 1 and the
ergodicity breaking transition at γ = 0, leading to a noner-
godic extended (NEE) phase for 0 < γ < 1. Therefore, other
than long-range hopping [46,47], quasiperiodicity [48], drive
[49], interaction [50], or correlated disorder [51], inhomo-
geneity in short-range hopping strength is another ingredient
for phase transition in 1D systems. Apart from the hopping
terms, inhomogeneous interaction [52] or inhomogeneity in
on-site terms can lead to criticality as well, e.g., Wannier-
Stark localization induced by linear potential [53].

In the ergodic regime of the β ensemble, the bulk eigen-
states span over the entire Hilbert space and the eigenvalues
are correlated over distances much larger than the mean level
spacing [54]. The degree of energy correlation is controlled
by β [55] such that the standard Wigner-Dyson level repul-
sion is observed for β ∼ O(1). Contrarily, the localized phase
(γ > 1) reflects the characteristics of the integrable systems
where all the eigenvalues are uncorrelated and the eigenstates
are spatially localized [56].

In the NEE phase, the typical bulk eigenstates are fractal
with the dimension D2 = 1 − γ , given by the scaling of the
inverse participation ratio (IPR), which is the second moment
of the density of the eigenstate intensities,

I2 =
∑

n

|�E (n)|4 ∼ N−D2 , (2)

where �E (n) is the nth component of the eigenstate at en-
ergy E in the chosen basis. The fractional value 0 < D2 < 1
implies that the typical bulk states occupy an extensive part
but vanishing fraction of the Hilbert space. Such NEE states
are observed in various random-matrix ensembles [46,51,57–
74], physical models [49,50,75–91], and realized in experi-
mental setups [92–94]. However, in the NEE phase of the
β ensemble, nearby eigenvalues remain uncorrelated with
nonhybridizing eigenstates but two distant eigenvalues sepa-
rated by �E > N

γ−1
2 can be correlated [95]. Moreover, in the

middle of the spectrum, a small energy window, (−EG, EG),
EG ∼ O(1), contains O(Nγ ) localized states along with the
NEE states without forming any mobility edge [36], there-
fore challenging Mott’s argument [96]. Such emergence of
localized or extended states at a given energy in different
realizations of β ensemble for 0 < γ < 1 can be attributed
to three ingredients: residual level repulsion, nonergodicity
of most bulk states, and spatial separation of extended and
localized states. These criteria have been recently identified
and demonstrated in case of the β ensemble [36]. The dis-
tinct eigenstate and eigenvalue structure in the NEE phase of
β ensemble can be analytically understood from a spatially
local mapping to the 1D Anderson model with N-dependent
hopping strength [36]. Such spatially local mapping can also
explain the behavior of the ground state of the β ensemble, as
we show in this work.

III. GROUND STATE IN THE NEE PHASE

We start this section with the numerical exploration of the
ground |�−〉 and anti-ground |�+〉 eigenstates of (1) at both
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FIG. 1. Ground-state exponential decay. (a) Ground-state com-
ponents �−(i) vs lattice index i from a single realization of
β ensemble for N = 8192, γ = 0.5 where iloc is the localization
center, i.e., the location of the wave-function intensity maximum.
Markers denote raw data and solid lines denote linear fit of ln |�−(i)|
vs |i − iloc|, Eq. (3). Inset shows the ensemble-averaged decay length
scale ξ vs the system size N for various γ . (b) Fractal dimensions of
ground state vs γ where the dashed line denotes D = 1−γ

3 . D2 and Dξ

extracted from the system-size scaling of the typical IPR, Eq. (2), and
ξ , i.e., 〈ln I2〉 ∝ −D2 ln N and 〈ln ξ〉 ∝ Dξ ln N for 210 � N � 215.
Error bars denote 95% confidence interval.

the smallest and the largest eigenenergies. In Secs. III A and
III B we focus on the scaling properties, the spatial spread,
and the localization-center distribution of |�±〉 separately.
Section III C is devoted to the correlations between |�+〉 and
|�−〉. In Sec. III D we provide analytical explanation of the
numerical results.

A. Ground-state fractal dimension

In Fig. 1(a) we plot the absolute values of the ground-state
components with regard to the lattice indices from a single re-
alization of the β ensemble for N = 8192 and γ = 0.5. Even
for a single realization, the exponential decay of the ground
state |�−〉 is immediately apparent, i.e.,

|�−(i)| ∼ exp

(
−|i − iloc|

ξ

)
, (3)

where ξ is the decay length scale and iloc is the localization
center, where the eigenstate has the largest intensity. In the
inset of Fig. 1(a) we show that the ensemble-averaged decay
length scale 〈ξ 〉 has a power-law scaling with regard to the
system size, i.e., 〈ξ 〉 ∝ NDξ . In Fig. 1(b) we show that Dξ ≈
1−γ

3 for 0 � γ � 1. We find that the fractal exponent D2,
defined by the system-size scaling of the IPR for the ground
state |�−〉, Eq. (2), is consistent with Dξ , i.e., D2 ≈ 1−γ

3 . We
further observe the anti-ground state, |�+〉, i.e., the eigenstate
with the largest energy also has the same fractal dimension
1−γ

3 .
Note that the typical bulk eigenstates have the fractal di-

mension Dbulk ∼ 1 − γ , i.e., three times that of the spectral
edge states. Moreover, in the Appendix we compare the dis-
tribution of IPR of the bulk and ground states, see Fig. 5.
We show that, unlike the distribution of IPR of the bulk
states, which is bimodal and fat-tailed, see Fig. 5(a), the corre-
sponding ground-state IPR distribution is well described by a
Gaussian distribution with both mean and standard deviation
scaling as N

1−γ

3 , see Fig. 5(b).

FIG. 2. Ground-state localization-center distribution. (a) Proba-
bility distribution P(iloc ) of the localization center iloc of the ground
states for various γ and N = 32 768. (b) Width of P(iloc ) vs N for
various γ , extracted from an exponential tail, P(iloc ) ∝ exp( iloc

σ
). The

markers and solid lines denote raw data and linear fit in log-log scale,
respectively. The inset shows the system-size scaling ασ of σ ∝ Nασ

as a function of γ , where the dashed line denotes ασ = 2γ+1
3 .

B. Localization center

Next we consider the spatial distribution of the localization
centers iloc of the ground state. We find that the typical iloc

scales linearly with N , Fig. 5(c), i.e., the ground state has
the largest probability to stay near the right edge of the lat-
tice. In Fig. 2(a) we show the spatial distribution of iloc for
N = 32 768 and various values of γ . The exponential tails
of such distributions imply that P(iloc) ∝ exp( iloc

σ
), where σ is

the width of the distribution. Figure 2(b) demonstrates that σ

increases with N in a power-law manner while the system-size
scaling exponent ασ , shown in the inset, indicates that σ ∝
N

2γ+1
3 . The same scaling behaviors are also observed in case

of the anti-ground state due to (i) the statistical homogeneity
of the hopping terms Hnn, i.e., P(Hnn) = P(−Hnn), and (ii) the
transformation E → −E leading to �E (n) → (−1)n�−E (n)
in Eq. (1).

C. Overlap of ground and anti-ground states |�±〉
It is now pertinent to ask whether the ground and anti-

ground states are correlated with each other, i.e., whether they
are formed via a single strong level resonance or via an ex-
tensive set of many parametrically smaller ones. To start with,
in the inset of Fig. 3(a) we show the locations of the ground
and the anti-ground states, |�±〉, from a single realization
of the β ensemble for N = 8192 and γ = 0.3 and 0.7. One
can see that |�±〉 has a significant degree of overlap close to
the ergodic transition point, γ = 0, while near the Anderson
transition point, γ = 1, the overlap is almost negligible. To
understand such an overlap with respect to various disorder
realizations, we look at the random variable |i+loc − i−loc|, which
is the distance between the localization centers of the ground
and anti-ground states. As shown in Fig. 3(a), the probabil-
ity distribution of |i+loc − i−loc| decays exponentially and has a

width σ ∝ 3
2γ+1 N

2γ+1
3 . The distribution of the rescaled gap,

�̃ ≡ |i+loc−i−loc|
σ

, shown in Fig. 3(a), collapses onto a single
curve for different system sizes and parameter values. The
same scaling of the widths, σ , of the distributions P(i±loc)
and P(|i+loc − i−loc|) indicates that the localization centers of
the ground and anti-ground states are independent from each
other and identically distributed according to the exponential
distribution ∝ exp(N− 2γ+1

3 i±loc).
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FIG. 3. Correlations of ground and anti-ground states. (a) Prob-
ability distribution of the gap �̃ = |i+loc − i−loc|/σ of localization
centers of the ground and anti-ground states, rescaled by σ =

3
2γ+1 N

2γ+1
3 . Different colors denote three different system sizes, N =

1024, 4096, 16 384. Inset shows the ground (blue) and anti-ground
(red) states from a single realization of β ensemble for N = 8192
where γ = 0.3 (solid) and 0.7 (dashed). (b) Covariance of ground
and anti-ground state vs γ for various N . Inset shows collapsed data
where γ ′ = γ (log N )

1
ν , with γ = 0 being the critical point with the

critical exponent ν ≈ 1 [42].

To quantify the overlap of |�±〉 more accurately, we com-
pute the covariance, M = ∑

i |�−(i)�+(i)| [36]. For two
states with the complete overlap, M = 1, whereas M → 0 for
states with no significant hybridization. Figure 3(b) shows that
the covariance vs γ for various system sizes shows a crossover
from M = 1 deep in the regime γ < 0 to M → 0 in the NEE
phase (0 < γ < 1). Moreover, the crossover curves tend to
intersect at γ = 0 and get steeper upon increasing N . The
finite-size collapse of the data, shown in the inset of Fig. 3(b),
suggests a second-order phase transition with a critical point at
γ = 0. For all values of γ > 0, ground and anti-ground states
do not hybridize in the thermodynamic limit, thus confirming
the multiple-resonance nature of these states.

D. Analytical consideration

We now present an analytical understanding of the above
numerical results. Let us begin by recalling that the 1D An-
derson model with constant hopping strength t and disordered
on-site potentials εn can be represented as a two-dimensional
(2D) classical Hamiltonian map [35,97]:

Ĥ =
N∑

n=1

εnc†
ncn + t

N−1∑
k=1

ckc†
k+1 + c†

kck+1

⇔
{

xn+1 = xn cos μ − (pn + Anxn) sin μ

pn+1 = xn sin μ + (pn + Anxn) cos μ,

(4)

where c†
k , ck are the creation and annihilation operators at the

kth site and (xn, pn) are the position and momentum of a linear
kicked oscillator. In terms of the parameter μ, we can express
the energy, E = 2t cos μ, and the kick strength, An = − εn

t sin μ
.

In [35], it has been shown that in the weak disorder limit,
|An| � 1, the localization length of the ground/anti-ground
state is given by

ξ ∝
(

t2〈
ε2

n

〉
)1/3

. (5)

On the other hand, it has been recently shown that for
the β ensemble in the NEE phase, there exists a spatially
local mapping to the 1D Anderson model with N-dependent
hopping strengths [36]. Specifically, a 1D lattice of length N
governed by the β ensemble can be partitioned into nearly
independent spatial blocks �0,�1, . . . , �lmax where the ze-
roth block represents first Nγ sites, �0 = [1, Nγ ], and the lth
block for l � 1 has the length |�l | ∼ Nγ+ζl and is defined as

�l ≡ [Nγ+ζl , cNγ+ζl ], ζl = (l − 1)
ln c

ln N
, (6)

where lmax = (1 − γ ) ln N
ln c and c ∼ O(1) is a constant. On one

hand, within �0, the hopping terms are negligible compared to
the typical on-site potential O(1); hence all the sites within are
effectively disconnected from the rest of the lattice and host
single-site-localized eigenstates. On the other hand, the model
in �l for l � 1 can be shown to be asymptotically equivalent
to the 1D Anderson model of length |�l | ∼ Nγ+ζl with un-
correlated diagonal disorder O(1) and nearly homogeneous
hopping t  y�l ∼ Nζl /2 growing with l . This mapping works
in the nonergodic phases at β � 1.

According to the above mapping, eigenstates are exponen-
tially decaying at a length scale ξl ∼ Nζl , and hence the block
�l consists of Nγ sub-blocks of length Nζl . In addition, each
of these sub-blocks has Gaussian density of states (DOS) with

bandwidth N
ζl
2 and, thus, the mean level spacing δl ∼ N− ζl

2 .
As a result, the last spatial block, �lmax (ζlmax = 1 − γ ),

is the largest one containing a finite fraction O(N ) of states
that exponentially decays within the length scale N1−γ and
has the largest energy bandwidth N

1−γ

2 among all possible
spatial blocks. Consequently, the ground state of the �lmax

block should coincide with the ground state of the entire
β ensemble.

In the �lmax block, t2 ∼ N1−γ � 1 and 〈ε2
n〉 = 1 corre-

spond to the weak disorder limit of |An| � 1 in [35]; hence
the decay length scale of the edge states should scale as in
Eq. (5), i.e., ξ ∼ N

1−γ

3 . This explains the fractal dimension of
the ground (and anti-ground) state of �lmax and, thus, of the
β ensemble to be 1−γ

3 , in contrast to the typical bulk states
having a fractal dimension 1 − γ . This supports the numerical
results of Fig. 1. Note that even at the ergodic transition, γ =
0, both the ground and anti-ground states remain nonergodic,
with the fractal dimension D2 = 1/3, while for the typical
bulk states, D2 reaches its ergodic value of 1. This is fully
consistent with the results of the entire extended phase γ < 0
in the next section and Fig. 4(c), where formally the above
mapping is not applicable.

In order to understand the width of the distribution of
the ground-state localization centers, one has to consider the
inhomogeneity in the hopping terms within �lmax . As we have
explained above, at the edge of the spectrum, the energy
E ∼ O(N

1−γ

2 ), being large compared to the on-site potential
εn ∼ O(1), is determined solely by the hopping amplitude
yn ∼ √

nN−γ . Thus the ground state with localization center
at iloc = N − σ should have the energy E ∼ √

(N − σ )N−γ

and

cos μ = E

2t
=

√
1 − σ

N
≈ 1 − σ

2N
. (7)
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FIG. 4. Eigenstate structure for γ < 0. (a) Ground and first few
excited states from a single realization of the β ensemble for N =
128 and γ = −0.7 where in the legend, 1 (3) corresponds the ground
(second excited) state and so on. Inset shows the eigenspectrum.
In both main plot and the inset, dashed (solid) lines correspond to
the exact-diagonalization numerical result [analytical expression in
Eq. (10)]. (b) Covariance Mi j between all possible pairs of eigen-
states i and j of H for N = 64. (c) Fractal dimension D2 for the
ground state of β ensemble vs γ . Error bars denote 95% confidence
interval. γET = 0 and γAT = 1 denote the ergodic and Anderson tran-
sitions, respectively. Inset shows finite-size fractal dimensions for H
as a function of 1/ log N , where extrapolation of 1/ log N → 0 (i.e.,
N → ∞) estimates D2 = 1/3.

For the ground state of �lmax block, μ ∼ t−2/3 = N−(1−γ )/3 →
0 in the weak disorder limit [35]. On the other hand, Eq. (7)
implies that for μ → 0,

σ ≈ 2N (1 − cos μ) ≈ Nμ2 ∼ N
2γ+1

3 . (8)

Therefore the ground state is likely to have a localization
center close to the right edge of the lattice (N − iloc � N) and
its distribution should have a width scaling as σ ∼ N

2γ+1
3 . This

confirms the numerical results observed in Figs. 2, 3(a), and
5(c).

All the above results are valid as long as the conditions
for (i) the local spatial mapping of [36] and (ii) the weak
disorder limit of [35] are satisfied. The latter is applicable
in the delocalized phases, γ < 1. Otherwise, all the states,
including the ground state, are localized and results can be
formally extended to the localized phase. On the other hand,
the former local mapping is valid for γ > 0. Thus the uncor-
related nature of the ground and anti-ground states of the 1D
Anderson model together with local mapping of [36] confirms
the results of Fig. 3(b) that the correlations are absent in all
the nonergodic phases, γ > 0. The constraint of local spatial
mapping to the 1D Anderson model breaks down as soon as
β � 1. Hence, the region γ < 0 needs to be treated separately,
as discussed in the next section.

FIG. 5. Comparison of bulk- and ground-state IPR distributions.
(a) Probability distribution of IPR of all the eigenstates in log-log
scale for various γ and N = 8192. (b) The collapse of the probability
distribution of Ĩ of ground state for N = 8192, where Ĩ = I−〈I〉

SD(I) ,
stands for the rescaled fluctuations relative to the standard deviation
(SD), while the solid line denotes normal distribution N (0, 1). Inset
shows SD(I) ∝ N−α1 , |�−(iloc )|2 ∝ N−α2 where dashed line denotes
α = D− ≡ 1−γ

3 . (c) Typical ground-state localization center iloc vs N ,
where dashed line denotes ityp

loc = N . Inset shows c and a vs γ where
ityp
loc = cNa.

IV. EXTENDED PHASE FOR γ < 0

In the region γ < 0, the typical hopping amplitude,
ytyp

n ∼
√

nN |γ |
2 , is large for all n at N � 1 and yn+m − yn ∼

mN
|γ |
2 /n � 1 even for m = 1. Thus the smallest mean hop-

ping term is large compared to both the typical on-site
terms and off-diagonal fluctuations ∼O(1). Consequently, a
Hamiltonian H from the β ensemble for γ < 0 rescaled as
H → √

2N
γ

2 H can be approximated by its mean [37,38]:

Hm,n = √
mδm,n−1 + √

m − 1δm,n+1. (9)

H is equivalent to â† + â represented in the first N eigenstates
of the Harmonic oscillator where â, â† are the corresponding
annihilation and creation operators, respectively. Solving the
characteristics equation det(H − EI) = 0, we get the eigen-
states of H as

�λn (k) = Zn
Hk−1(λn)√
2k−1(k − 1)!

, (10)
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where Zn is a normalization factor and �λn (k) is the kth
component of the eigenstate |�λn〉 with energy λn, which is
the nth zero of the N th-order Hermite polynomial,

HN (x) = (−1)N ex2 dN

dxN
e−x2

. (11)

The energy of the original Hamiltonian H from the
β ensemble is En ≈ N

|γ |
2 λn. For a single realization of

the β ensemble with N = 128 and γ = −0.7, we show
the ground state and a few excited states in Fig. 4(a) while
the eigenvalues are shown in the inset. In the same figure we
also show the analytical expressions from Eq. (10) valid for
the Hamiltonian H . We observe that the analytical estimates
from Eq. (10) perfectly match the results of the exact di-
agonalization in case of both energy levels and eigenstates,
even for a single realization of a β ensemble with a relatively
small system size. Thus H is indeed a good approximation
of the β ensemble for γ < 0, where exponential decay of the
eigenstates observed in the NEE phase is absent.

The largest zero of the Hermite polynomial in Eq. (11)
is [98]

λmax =
√

2N + O(N−1/6). (12)

Thus the energy bandwidth of H is ∼√
N . Then we can

estimate the bandwidth of the original Hamiltonian H as√
N · N

|γ |
2 = N

1−γ

2 and the mean level spacing as δ ∼ N− γ+1
2 .

Both of these scalings match with those of the β ensemble for
γ < 0.

The eigenstates in Eq. (10) along with the symmetry
Hn(−x) = (−1)nHn(x) are such that the absolute values of
the components of two eigenstates with energy ±E are
equal. Hence, the jth and (N + 1 − j)th energy-ordered states
should fully hybridize with each other and show perfect corre-
lations as shown in Fig. 4(b), inferred from the covariance of
each pair of eigenstates. In particular, the ground state |�−〉
and the anti-ground state |�+〉 have perfect overlap in the
case of H . As H is a good approximation of the β ensemble
for γ < 0, |�±〉 of the β ensemble should have high degree
of overlap, which is reflected by M being close to unity in
Fig. 3(b) for γ < 0, where M is the covariance of |�±〉 quan-
tifying their hybridization.

Additionally, we look at the short-range energy correlation
at the edge of the spectrum using the level-spacing ratio,
r statistics [99,100]. In the Gaussian orthogonal ensemble,
ensemble-averaged r statistics have a value ≈0.53, which is
typical for the bulk spectrum of the chaotic quantum systems.
On the other hand, 〈r〉 ≈ 0.39 for the Poisson ensemble rep-
resenting the regular spectrum. In Appendix B we show that
at the spectral edges, 〈r〉  0.8187 for H . Such a value of r
statistics is obtained in case of the β ensemble for γ < 0 upon
increasing system size or decreasing γ , as shown in Fig. 6(a).
In contrast, 〈r〉 → 1 in the bulk spectrum, as we get a rigid
picket-fence spectrum for γ < 0 and N � 1.

Ground state for γ < 0

Finally, to explain the behavior of low-energy eigenstates
as in Fig. 4(a), we need to look at the expansion of the Hermite

FIG. 6. Level-spacing ratio r± at edge of the spectrum:
(a) ensemble-averaged 〈r±〉. Inset (i) shows the collapsed data as-
suming second-order phase transition. Inset (ii) shows 〈r±〉 for the
mean Hamiltonian vs N , Eq. (9). Solid line denotes power-law fit-
ting: 〈r±〉 = 0.1158N−0.6543 + 0.8187. (b) Coefficient of variation,
CV(r) ≡

√
〈r2〉 − 〈r〉2/〈r〉. Inset (i) shows collapsed data, whereas

inset (ii) shows system-size scaling, i.e., CV(r±) ∝ NαCV .

polynomials for the large argument

Hn(x)|x|→∞ = (2x)n

(
1 − n(n − 1)

(2x)2
+ O(x−4)

)
. (13)

The second term in the above expansion can be neglected for
x �

√
n(n−1)

2 or equivalently at n � 2x. Then the scaling of E

with N in x, Eq. (10), implies that for |E | � N− γ

2

√
n(n−1)

2 ,
or equivalently, for n � |E |N γ

2 , Hn(λ) ∼ (|E |N γ

2 )n and, thus,
the eigenstate with energy E decays with m = N − n as

�E (m) = Z (|E |N γ

2 )N−m

√
(N − m)!

≈ Z

⎛
⎝ |E |

N
1−γ

2

√
e

1 − m
N

⎞
⎠

N−m

. (14)

The largest root of the nth Hermite polynomial Hn(x) is at
x ≈ √

2n; see Eq. (12) for N → n. Then Hn(x) oscillates as
a function of n without causing any decay in the eigenstate
(10) at n � x2

2 = E2

3N−γ . On the other hand, there is a decay

slower than that in Eq. (14) within the interval 2x � n � x2

2 ,
where no zeros of Hn(x) are present. All these three intervals
describe the spatial behavior of the eigenstates for γ < 0, see
Fig. 4.

In the inset of Fig. 4(c), we show the finite-size fractal
dimension D(N )

2 ≡ − logN I2 of H as a function of 1/ log N ,
indicating that D2 ≈ D(N )

2 − c/ log N where D2 ≈ 1/3 is the
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true fractal dimension of the ground state of H . In Fig. 4(c) we
show D2 as a function of γ for the β ensemble. We find that
D2 ≈ 1/3 for γ � 0, therefore matching with the prediction
from H . Therefore the ground state has a fractal dimension
three times smaller than that of the bulk states in the entire
parameter regime of the β ensemble.

V. CONCLUSIONS

Motivated by the peculiarity of the ground-state physics
in quantum chaotic many-body systems [13], we consider
the ground and anti-ground states of the β ensemble in this
work. We show that in the extended phase (γ < 1), the ground
state of the β ensemble exhibits nonergodic properties with
the fractal dimension, being three times smaller than its bulk
value. The localization centers of these spectral edge states
are exponentially distributed close to those of the most delo-
calized states, while the widths of the density of localization
centers scale nontrivially with the system size.

The main difference between the low-energy physics of
the region γ < 0 and nonergodic phase (0 < γ < 1) is the
correlations between the ground and the anti-ground states. In
the nonergodic phase, these two edge states do not hybridize
while the respective localization centers and the energies are
uncorrelated. In contrast, the correlations become rigid for
γ < 0: adjacent level repulsion is strong while the ground and
anti-ground states have a perfect overlap.

In both the localized and the extended nonergodic phases,
the spatial local mapping to the 1D Anderson model as sug-
gested in [36] provide analytical understanding of the above
results in the NEE phase. Using the standard weak-disorder
limit for the spectral edge states, we found the ground-state
fractal dimension to be one-third of its bulk value while
the ground and anti-ground states remain uncorrelated. On
the other hand, for γ < 0 the physics is controlled by the
mean Hamiltonian matrix, and we have explicitly computed
the corresponding eigenstates and eigenvalues. Hence, we
claim that similar to the quantum chaotic many-body mod-
els, the β ensemble shows a peculiar fractal structure of the
ground-state eigenfunctions, even for a highly correlated en-
ergy spectrum (γ < 0). It will be of particular interest to see
how the nonergodicity of the ground state affects the finer
structures of the bulk states, e.g., the possibility of a Hilbert
space blockade [101–107]. Such a constraint can enforce
weak ergodicity leading to nontrivial thermalization, simi-
larly to other random-matrix models [59,72,108] and random
graphs [109–113].
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APPENDIX A: ENERGY-WINDOW SIZE OF SPECTRAL
EDGE PHYSICS IN THE ERGODIC PHASE

In the parameter region γ � 0, the DOS of the β ensemble
follows the semicircle law, ρ(E ) = 2

π

√
1 − E2, upon scaling

the energy spectrum as E → E/2
√

〈E2〉, where 〈E2〉 ≈ N1−γ

is the variance of the DOS [36]. In the interval [1 − �, 1], if
only the edge states are present, then N

∫ 1
1−�

dEρ(E ) = O(1).
Note that [114]∫ 1

1−�

dEρ(E ) = 1

π

(
2 sin−1

√
�

2
+ (� − 1)

√
�(2 − �)

)

= 4
√

2

3π
�

3
2 + O(�

5
2 )

⇒ N × �
3
2 = O(1) (A1)

⇒ � = O(N− 2
3 ).

Then the actual width of the energy window containing the
edge states is

�edge =
√

〈E2〉 × � = O(N− 3γ+1
6 ). (A2)

APPENDIX B: r STATISTICS AT SPECTRAL EDGES
IN THE ERGODIC PHASE

To quantify the short-range energy correlations at the edge
of the spectrum, we look at the ratio of the level spacing
between the edge state energies, r± = min{r̃±, 1

r̃± }, where
r̃− = E3−E2

E2−E1
and r̃+ = EN −EN−1

EN−1−EN−2
[99,100], assuming the eigen-

values are in the ascending order. In Fig. 6(a) we show
ensemble-averaged r± as a function of γ for various sys-
tem sizes. Inset (i) shows that r± undergoes a second-order
transition at γ = 0. In inset (ii) we show the r± for the
Hamiltonian H in Eq. (9) as a function of system size,
which can be fitted using a power-law function. Thus 〈r±〉 →
0.8187 in the thermodynamic limit for H , which is also the
r± observed for the β ensemble in the ergodic regime for
N � 1. Note that in the bulk spectrum, the level-spacing
ratio becomes unity in the thermodynamic limit owing to
the full rigidity of the picket-fence structure of the energy
spectrum [115].

In Fig. 6(b) we show the coefficient of variation of r±
as a function of γ . We observe that CV(r±) also under-
goes second-order transition at γ = 0 [inset (i)]. For γ > 0,
CV(r±) converges towards the Poisson limit,

CVPoisson =
√

3 − 2 ln 4

(ln 4 − 1)2
− 1 ≈ 0.723 855. (B1)

Inset (ii) shows the system-size scaling of CV(r±) ∝ NαCV

where

αCV =
{

γ

2 , γ < 0

0, γ � 0.
(B2)
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