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We develop a machine learning model, which predicts structural relaxation from amorphous supercooled
liquid structures. The trained networks are able to predict dynamic heterogeneity across a broad range of
temperatures and time scales with excellent accuracy and transferability. We use the network transferability
to predict dynamic heterogeneity down to the experimental glass transition temperature Tg, where structural
relaxation cannot be analyzed using molecular dynamics simulations. The results indicate that the strength,
the geometry, and the characteristic length scale of the dynamic heterogeneity evolve much more slowly near
Tg compared to their evolution at higher temperatures. Our results show that machine learning techniques can
provide physical insights on the nature of the glass transition that cannot be gained using conventional simulation
techniques.

DOI: 10.1103/PhysRevB.109.064205

I. INTRODUCTION

Dense liquids display a drastic slowing down of structural
relaxation when approaching the experimental glass transition
temperature [1,2]. The glass transition is characterized by
several important properties, such as a very homogeneous
amorphous structure but a strongly heterogeneous relaxation
dynamics, leading to the spatial coexistence of frozen and
active regions [3]. Understanding the connection between the
microstructure and dynamic heterogeneity is an important
field of research [4–7].

Over the years, several structural order parameters have
been proposed, which show some degree of correlation with
the local relaxation dynamics, including density [8], potential
energy [9,10], geometry of Voronoi cells [11], soft modes [4],
locally-favored structures [5,12–14], and more [6,7,15,16].
Recently, the application of machine learning (ML) tech-
niques to automatically construct suitable structural order
parameters has significantly advanced this line of research.
The range of methodologies includes unsupervised learning
to automatically detect structural heterogeneities [8,17–19]
and supervised learning using linear regression [20–22], sup-
port vector machines [23–26], multilayer perceptrons (MLP)
[27], and graph neural networks (GNN) [28–31]. The perfor-
mance of these techniques significantly surpasses traditional
approaches based on hand-made order parameters, and allows
to infer the microscopic structural relaxation from structural
properties with high accuracy, including aspects of dynamic
heterogeneity [27,29].

These advancements in ML techniques have enabled the
attainment of novel physical insights. Leveraging the scal-
ability of trained neural networks with respect to system
size facilitated new results on dynamic length scales and
the geometry of rearranging domains [27]. Transferability to

other state points has been used to analyze structural differ-
ences between strong and fragile glass formers [32] or extract
system-averaged relaxation dynamics [33]. Trained models
were also applied to construct effective glass models [34].
Transferability to lower temperature has also been analyzed
in one of the first supervised ML applications [28,29]. It
was shown that for GNNs some correlation between structure
and dynamics persists when applying the trained networks to
different temperatures. For maximum performance, however,
the networks need to be trained separately for each state
point, thus requiring that training sets already exist at each
time and temperature [28,29]. Additionally, a full analysis of
transferability is lacking, also with respect to predicting dy-
namic heterogeneity. The aim of this article is to fill this gap,
and present an efficient method to predict physical properties
outside of the training regime, possibly including physical
regimes that cannot easily be accessed using conventional
numerical techniques.

We develop a transferable ML framework, which is able to
learn and predict time-dependent dynamical properties when
given amorphous structures of deeply supercooled liquids.
Different from most previously proposed ML techniques, the
network is trained using data extracted from very different
temperatures and time scales, and is thus able to maintain
both an excellent performance over the whole range of data
provided. We show that the network can be transferred to
predict relaxation beyond the range of temperatures provided
during training. As an important application, we create equi-
librium structures down to the experimental glass transition
temperature Tg, using the swap Monte Carlo algorithm [35,36]
and apply the transferable network to investigate dynamic sus-
ceptibilities and lengths scales at these very low temperatures,
which correspond to time scales that are not accessible by
molecular dynamics (MD) simulations.
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FIG. 1. Geometry of the transferable machine learning model,
which we name “tGlassMLP”. The various layers and their respective
role are described in Sec. II.

The paper is organized as follows. First, the transferable
ML methodology is described in Sec. II. The performance
of the trained network is analyzed in Sec. III, both for state
points within the range of training data and beyond to study
transferability. In Sec. IV we use the transferability to obtain
results for structural relaxation at the experimental glass tran-
sition temperature. In Sec. V, we analyze in detail the dynamic
correlation lengths of our system. To better understand the
trained network, we study some of its intrinsic properties, such
as inherent length scales and properties of the bottleneck layer
in Sec. VI. We discuss the results and conclude in Sec. VII.

II. MACHINE LEARNING METHODOLOGY

The transferable ML technique presented in this paper
is a generalization of the GlassMLP network introduced
in Ref. [27], which we modify and improve to enable
transferability. We will refer to this model as “transferable
GlassMLP” and use the acronym “tGlassMLP” for the model.
The geometry of tGlassMLP is sketched in Fig. 1. It is
comprised of an input layer, an attention layer, and a dense
multilayer perceptron (MLP) network including a bottleneck
layer. We now describe these individual parts, define the glass-
forming system under study and the dynamical observables
used to train the network.

A. Physical system and dynamical observables

We study the same system and dynamical observables used
in Ref. [27], but we briefly recapitulate the most important
details and definitions to make the paper self-contained.

We investigate a two-dimensional ternary glass former,
which generalises the Kob-Andersen binary mixture (KA2D)
[37]. To enable fast equilibration using the swap Monte Carlo
algorithm [35,36,38] we include a third particle type with
an intermediate size [39]. We use reduced units, which are
defined in terms of length σ = 1 (corresponding to the size of
the large particles), mass m = 1 (mass of the particles), and
energy ε = 1 (Lennard-Jones energy scale of the interactions
between large particles). In these units, the standard system
size is LS = 32.896, with periodic boundary conditions, in
which we create amorphous packings of N = 1290 particles

(N1 = 600, N2 = 330, N3 = 360), if not otherwise stated. Us-
ing swap Monte Carlo, we create equilibrium configurations
in a temperature range between T = 0.4, which is slightly
below the onset temperature (Ton ≈ 0.5), and the estimated
experimental glass transition temperature Tg = 0.15 (see SM
in Ref. [27] for details). Equilibrium averages over these
configurations are denoted as 〈. . .〉. No sign of crystalliza-
tion was observed even at Tg. Starting from the equilibrated
configurations we perform molecular dynamics (MD) sim-
ulations for five different temperatures, T = 0.4, T = 0.3,
T = 0.25, T = 0.23, and T = 0.21, to investigate the phys-
ical relaxation dynamics. We analyze the isoconfigurational
average [4,40], which means that we perform NR = 20 dif-
ferent simulations starting from each structure (denoted as
replicas), which are created by randomly drawing initial ve-
locities from the Maxwell distribution. The isoconfigurational
average 〈. . .〉iso for a given initial structure denotes the average
over these NR replicas.

The labels used to train tGlassMLP are extracted from the
MD trajectories using the bond-breaking correlation function
(BB). The isoconfigurational average of BB, which we refer to
as “propensity” in the following [4,40], is defined as C i

B(t ) =
〈ni

t/ni
0〉iso, where ni

0 denotes the initial number of neighbors
of particle i, and ni

t the number of these neighbors, which
remain neighbors of i after a time t [41]. Therefore, C i

B(t ) ∈
[0, 1], where C i

B(t ) = 1 denotes arrested particles, which did
not loose a single neighbor in any of the replicas (visualized
as blue in all snapshots) and C i

B(t ) � 1 denotes very active
particles (visualized as red). From the averaged propensity
C̄B(t ) = 1

N1

∑N1
i=1 C i

B(t ), we extract a bond-breaking structural
relaxation time τBB

α , which is defined as 〈C̄B(t = τBB
α )〉 = 0.5.

More details are documented in the SM of Ref. [27]. We
mostly report results for particles of type 1 but verified that all
findings are independent of the particle type. We calculate BB
from MD simulations for each temperature introduced above
at various times, yielding many sets of labels at different state
points for the supervised learning procedure of tGlassMLP.

To describe the state point of each set of labels, we use
the temperature T and the averaged propensity 〈C̄B(t )〉. In
particular, using 〈C̄B(t )〉 instead of the time t itself is a crucial
choice due to a near perfect time-temperature superposition,
i.e., perfect collapse of the function 〈C̄B(t/τBB

α )〉 measured
at different temperatures. Interchanging time for the value of
〈C̄B(t )〉 simplifies the training procedure significantly since
〈C̄B(t )〉 ∈ [0, 1], while t grows exponentially with decreasing
temperature. To translate 〈C̄B(t )〉 back into a time, we assume
that time-temperature superposition continues to hold at any
temperature, combined with the extrapolated value for τBB

α .

More details of this procedure are provided in Appendix A.
While this assumption might affect slightly the time depen-
dence of the ML predictions presented in Secs. IV–VI, they
do not change the quality of the predictions themselves. Thus,
the above encoding of time does not affect our analysis of
transferability.

B. Physics-inspired structural input

The structural input is the same as for GlassMLP [27].
In particular, we use MS physics-inspired and coarse-grained
input features for the description of the local structure of
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each particle i. The descriptors are based on K = 4 different
observables:

(1) The coarse-grained local density:

ρ i
L,β =

∑
j∈Ni

β

e−Ri j/L, (1)

which sums over the Ni
β particles of type β within distance

Ri j = |Ri − R j | < 20 of particle i.
(2) The coarse-grained potential energy:

E
i
L,β =

∑
j∈Ni

β

E je−Ri j/L/ρ̄ i
L,β , (2)

extracted from the pair interaction potential Ei =∑
j �=i V (Ri j )/2.
(3) The coarse-grained Voronoi perimeter:

pi
L,β =

∑
j∈Ni

β

pje−Ri j/L/ρ i
L,β , (3)

based on the perimeter pi of the Voronoi cell around particle
i, extracted using the software Voro++ [42].

(4) The local variance of potential energy:

�E
i
L,β =

∑
j∈Ni

β

(E j − E
i
L,β )2e−Ri j/L/ρ i

L,β . (4)

Particle positions are evaluated in inherent structures
Ri. Slightly differently from Ref. [27], we use only
MCG = 11 different values of the coarse-graining
lengths L, which are nonuniformly distributed, L =
{0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0}. The four
descriptors are separately coarse-grained by iterating over
each of the Mtype = 3 particle types. We additionally calculate
the coarse-grained average by running over all particles
independently of their type.

Overall, we start with a set of MS = KMCG(Mtype + 1) =
176 descriptors. To enable more efficient training, each de-
scriptor is shifted and rescaled to have zero mean and unit
variance.

C. Attention layer

The first real difference between tGlassMLP and its
GlassMLP ancestor is the introduction of an attention layer
between the input and bottleneck layers (see Fig. 1). The con-
cept of attention and transformers have increased significantly
the performance of many ML models in computer science
[43], and it has already been used in glass physics for the
development of an improved GNN [31]. The purpose of the
attention layer in tGlassMLP is to learn a state-dependent
weight w j , which is assigned to each structural descriptor j.
In this way, the dependence of the dynamical descriptor on the
considered state point is efficiently encoded in the network.

If we denote the MS values of the physics-inspired descrip-
tors by {S1, ..., SMS }, then the attention layer can be written
as

Ak = Sk f k
1 + MLP11

out f k
2 + MLP12

out f k
3 + f k

4 , (5)

wk = softmax({A1, . . . , AMS })k, (6)

Sk
out = Skwk. (7)

Here, f k
n denote the learnable parameters (4×MS = 688 in

total) and MLP1n
out is the two-dimensional output of a small

MLP (denoted as MLP1). The softmax function ensures that
the weights are normalized. The output of the attention layer
still has dimension MS , where each input descriptor, Sk is
multiplied by its specific weight wk . The attention layer is able
to reweight the input before encoding it in the bottleneck layer.
It can thus learn, for example, that the relative importance of
different structural indicators depends on time and tempera-
ture. We will explicitly analyze these weights wk , obtained
after training tGlassMLP, in Sec. VI to extract meaningful
physical information from interpreting the network itself.

D. Dense MLP with bottleneck

Similar to GlassMLP, after the attention layer, the high-
dimensional input is encoded into a two-dimensional bottle-
neck layer, to avoid having a huge amount of free parameters
in the subsequent hidden layers, which would lead to overfit-
ting. The optimal choice of a two-dimensional geometry has
been found empirically by testing different bottleneck sizes.
As for GlassMLP [27] we have found that a one-dimensional
description is not sufficient to maintain the same level of
predictability, while three and more dimensions included
additional fitting parameters without leading to significant
improvement. We visualize and interpret the bottleneck layer
of trained tGlassMLP networks in Sec. VI.

After the bottleneck layer, the state point (T, 〈C̄B(t )〉) is
again explicitly inserted into the network using a second small
MLP (denoted as MLP2). The bottleneck layer concatenated
with the output of MLP2 will then be further processed in two
hidden layers to yield the final output (see Fig. 1).

E. Two-step training of tGlassMLP

The total number of free parameters of tGlassMLP is
slightly above 1000. This number is several orders of mag-
nitude less than for the GNNs proposed in Refs. [28–31].
Importantly also, this number is not much larger than in the
original version of GlassMLP where about 650 fitting parame-
ters were used [27]. To be as efficient as GlassMLP, which was
separately trained at each state point, the tGlassMLP network
is therefore inherently forced to learn universal aspects in
the structural relaxation across time scales and temperatures.
This appears instrumental to construct a model with good
transferability.

To train the network, we use a supervised ML procedure,
in which the output of tGlassMLP X i

MLP is rated by a differ-
entiable loss function, which is the same as used in Ref. [27].
It includes the mean absolute error, but also additional terms,
which penalize deviations between the predicted and the true
variance, as well as spatial correlations of the propensities
(see SM of Ref. [27]). We use NS = 300 initial structures,
which are equally divided into a training and a test set. For the
training we apply stochastic gradient descent with an Adam
optimizer [44].

The training of tGlassMLP is performed in two steps. First,
we train in an “equal-time” mode, meaning that separate net-
works are trained for given values of 〈C̄B(t )〉 (i.e., at equal
times relative to the structural relaxation time), but different

064205-3



JUNG, BIROLI, AND BERTHIER PHYSICAL REVIEW B 109, 064205 (2024)

temperatures T � Tmin. We found that these individual net-
works transfer better to lower temperatures than the ones who
were directly trained on all state points.

These individual networks are then applied to lower tem-
peratures T < Tmin and the average of the predicted propensity
XMLP = 1

N1

∑N1
i X i

MLP is calculated. We have found that de-
pending on the initial condition of the training, not all
resulting networks are equally efficient. We keep all networks,
which fulfill |XMLP − 〈C̄B(t )〉| < 10−4 for further process-
ing. This is a self-consistency test, as the average predicted
propensity is an input data. The networks, which satisfy the
above criterion are used to predict propensities for the low
temperature configurations T < Tmin at the values of 〈C̄B(t )〉
for which MD results are not available [typically low values
of 〈C̄B(t )〉]. Similarly to knowledge distillation in machine
learning, we include them into the training procedure of the
full and final tGlassMLP model. See Table I in the Appendix B
for a more detailed description.

In the second training step, a single tGlassMLP network is
trained using data from all times and temperatures, includ-
ing the extrapolated data at T < Tmin produced in the first
step. As before, we only retain networks such that |XMLP −
〈C̄B(t )〉| < 10−4 for predicted propensities at T < Tmin. Out
of 16 networks trained initially in this way in the second
step, four networks were selected for the predictions shown in
the remainder of this paper. Error bars on dynamic quantities
calculated from the predictions of tGlassMLP correspond to
the variance between the predictions made by these individ-
ual networks. Large error bars, in particular for extrapolated
results, are therefore an indication of strong overfitting.

Once the network is trained, predictions are extracted on
the test set for all configurations at the different target temper-
atures T . For this task, the physics-inspired structural input
is calculated for each configuration and fed into the network
along with the temperature T and a series of 〈C̄B(t )〉. Since
this input is continuous, predictions of tGlassMLP will be
represented as continuous lines in the following.

Additional details on hyperparameters, values for 〈C̄B(t )〉
and temperatures used for training are presented in
Appendix B. The training of tGlassMLP was performed on
a Laptop GPU (NVIDIA T600 Laptop) and with a total com-
putational cost of about one day. This includes the training of
all 16 individual networks per time scale in the first training
step, and of 16 networks using the full data for all times and
temperatures in the second step.

In the following we present our results, which are or-
ganized in four parts. In the first part we validate the
performance and the transferability of tGlassMLP using re-
sults known from MD simulations. In the second part, we use
the trained models to predict structural relaxation at the exper-
imental glass transition temperature, which is not accessible
by computer simulations. The third and fourth parts include
a detailed analysis of dynamic correlation lengths and of the
properties of the trained tGlassMLP network itself.

III. VALIDATION OF tGLASSMLP

We follow common practice [28] and investigate the per-
formance of the trained model using the Pearson correlation

FIG. 2. Pearson correlation coefficient of several trained ML
models with MD simulations. Squares correspond to results shown
in Ref. [27] for GlassMLP trained at each state point. Dotted lines
correspond to a GlassMLP model trained at t = τα and Torig = 0.25
and transferred to different times and temperatures. Full and dashed
lines describe results for two transferable tGlassMLPs trained until
minimum temperatures Tmin = 0.21 and Tmin = 0.25. Vertical lines
indicate the structural relaxation times τBB

α at each temperature.

coefficient,

ρP = cov
(
C i

B,X i
MLP

)
/

√
var

(
C i

B

)
var

(
X i

MLP

)
, (8)

which quantifies the correlation between the predicted
propensities and the ground truth extracted from the MD
simulations. The Pearson correlation varies between ρP = 1
(perfect correlation) and ρP = −1 (perfect anticorrelation),
while no correlation yields ρP = 0.

We find that the maximum of the Pearson correlation
reaches values of roughly ρmax

P ≈ 0.8 for the lowest temper-
atures, thus indicating very strong correlations (see Fig. 2).
Most importantly, we observe that the performance of the
trained tGlassMLP networks (full lines) is as good as the
results reported in Ref. [27] in which the networks were
individually trained on each state point (squares). This is a sig-
nificant result considering that the tGlassMLP network only
uses twice the number of fitting parameters to describe more
than 50 different state points. This shows that the transferable
network indeed discovers common features in the description
of structural relaxation from the microscopic structure at dif-
ferent times and temperatures. The performance of the model
is similar to the one of other recently proposed techniques
such as CAGE [22], BOTAN [30], and the SE(3) extension
to GNNs [29]. For comparison of the Pearson correlation to
other ML techniques we refer to a recent roadmap [45], which
presents benchmarks based on similar data as used for this
paper (KA2D T = 0.3).

We have also trained tGlassMLP using a smaller dataset
down to Tmin = 0.25 (dashed line in Fig. 2). The model
very favorably transfers to lower temperatures and can pre-
dict structural relaxation on time scales that are orders of
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FIG. 3. Snapshots comparing the spatial variations of the struc-
tural relaxation at T = 0.21 and 〈C̄B〉 = 0.8 obtained in MD
simulations, to three different models: tGlassMLP networks trained
using Tmin = 0.21 and Tmin = 0.25, and GlassMLP trained at Torig =
0.25 and t = τBB

α .

magnitude longer than in the training dataset with nearly as
much accuracy as the directly trained model. This demon-
strates excellent transferability of tGlassMLP in the regime
where this can be tested quantitatively.

In addition, tGlassMLP outperforms the directly trans-
ferred GlassMLP model, which was trained at the state point
t = τα and Torig = 0.25 (dotted lines). This conclusion simi-
larly holds when comparing the results to other ML techniques
such as GNNs [28,29]. In particular, the equivariant network
proposed in Ref. [29] shows very comparable transferability
as the original GlassMLP network [27], but cannot match the
improved transferability performance of tGlassMLP.

To visualize the correlation between the propensities ob-
tained from MD simulations and the different ML models we
show snapshots for a large configuration with N = 25800 at
T = 0.21 in Fig. 3. The tGlassMLP models are very accurate
in predicting the location of both strongly rearranging regions
and frozen regions in which no rearrangements take place.
Stronger differences with the MD result are observed when
using the GlassMLP network trained at Torig = 0.25 and trans-
ferred to T = 0.21. While also for this model, the propensities
are correlated with the MD results, dynamic heterogeneities
are less pronounced and the contrast between active and
frozen regions is not captured properly. This analysis shows
that the quality of a given ML model is not uniquely quantified
by a strong Pearson correlation, but that accurate modeling
of additional glassy properties, for example, also requires

FIG. 4. Dynamic four-point susceptibility χ4(t ). Points are MD
results, squares are results shown in Ref. [27] for GlassMLP trained
at each state point. Full and dashed lines correspond to transferable
tGlassMLPs trained until minimum temperatures Tmin = 0.21 and
Tmin = 0.25. Vertical lines indicate τBB

α at each temperature. Here
and in the following, error bars of MD results correspond to the
variance between three independent datasets, each averaged over 100
independent structures.

correct representation of dynamic heterogeneities, which is a
nontrivial task.

To analyze spatial correlations of the propensity quantita-
tively, we compute the four-point susceptibility χ4(t ),

χ4(t ) = N1
(〈
C̄2

B(t )
〉 − 〈C̄B(t )〉2

)
, (9)

which was used extensively to characterize dynamic het-
erogeneity in supercooled liquids [3]. As expected after
inspection of the snapshots in Fig. 3, we find very good
agreement between the susceptibilities extracted from the MD
results and the trained ML model (see Fig. 4). The results are
as good as those reported in Ref. [27] for GlassMLP models
trained at each state point. In fact, for T = 0.4, the trans-
ferable tGlassMLP model even surpasses the performance of
GlassMLP, despite being much more broadly applicable to
dynamic susceptibilities, which can differ by more than two
orders of magnitude in amplitude.

This conclusion holds for the two models trained using
different values of Tmin. Therefore, the tGlassMLP model is
able to predict a realistic increase in dynamic heterogeneity
with decreasing the temperature even when it is extrapolated
beyond the range used in the training set. This excellent trans-
ferability sets it apart from techniques, which are trained on a
single state point and are therefore unable to capture variations
in the overall dynamic heterogeneity. The tGlassMLP models
also predict a realistic decay of the susceptibility for times
longer than the structural relaxation time even though for
T < 0.25 no training data for times t > 0.3τBB

α were used
during training. The models are therefore not only transferable
in temperature, but also in time.

The above analysis clearly highlights that the tGlassMLP
network is able to extrapolate its predictions outside of the
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range covered in the training set. It is therefore tempting to
train tGlassMLP with as much data as is currently possible
using MD simulations, and then use the network to predict
features of structural relaxation at times and temperatures
where MD simulations can no longer be performed. This is
investigated in the next section.

IV. PREDICTING THE DYNAMICS AT THE
EXPERIMENTAL GLASS TRANSITION TEMPERATURE

The glass transition temperature Tg is conventionally de-
fined as the temperature at which structural relaxation occurs
roughly 1012 times slower than in the simple liquid. Simulat-
ing the relaxation of supercooled liquids at Tg would require
integrating about 1014 time steps. The computational cost of
the data provided in this section would thus roughly amount
to 1011 CPU hours. Equivalently, this would require about
100 days of simulation by completely exhausting the Top 500
supercomputers in the world.

Our approach is obviously more parsimonious and com-
bines two algorithms: (i) the swap Monte Carlo algorithm
allows us to efficiently create independent equilibrium con-
figurations of our glass model down to Tg, and (ii) the
transferable tGlassMLP model, which can predict dynamic
propensities for each particle from the equilibrium configu-
rations obtained in (i). This unique combination enables us to
predict and analyze the strength, geometry, and length scale of
dynamic heterogeneity at unprecedentedly low temperatures
and large times.

In Fig. 5 we show snapshots describing the predicted time
evolution of the structural relaxation in a given sample at
T = Tg with N = 82560 using the tGlassMPL model. The
same process is displayed as a movie in the SM, which better
highlights how relaxation sets in at specific localized regions
within the amorphous structure before slowly spreading over
the entire system. This qualitative description is similar to
results produced by MD simulations performed for a lesser
degree of supercooling.

Since these predictions are made for temperatures where
direct MD simulations can no longer be performed, there is
no way to directly test the quality of these predictions. The
plausibility of the result is guaranteed by the excellent trans-
ferability demonstrated in the previous section for a higher
temperature regime and the physically consistent behavior
that is predicted.

We quantify the dynamic heterogeneities visible in these
snapshots using the four-point susceptibility χ4(t ), defined
in Eq. (9). The results are presented in Fig. 6. The time
dependence is extracted by predicting the value of Ci

B for
each particle for a given value of the average quantity 〈C̄B〉,
and converting 〈C̄B〉 into a time using time-temperature su-
perposition, as discussed above in Sec. II A. The predicted
χ4(t ) functions continue to have the nonmonotonic time de-
pendence they have at higher temperatures, and we note that
the amplitude of the maximum of χ4 grows very modestly
for temperatures T < 0.21 (see Fig. 6). It should be empha-
sized that this is not a trivial result. Indeed in Sec. III we
have observed that tGlassMLP with Tmin = 0.25 has correctly
predicted a slowly-increasing χ4 when transferred beyond the
temperature range it has been trained on.

FIG. 5. Snapshots visualizing the time evolution of the struc-
tural relaxation at Tg = 0.15, with the corresponding value of
the average 〈C̄B〉 indicated, corresponding to estimated times t =
1011, 3×1011, 1012, 3×1012. The corresponding movie can be found
within the Supplemental Material [46].

From the time-dependent susceptibility we can extract
for each temperature the maximum in time maxt χ4(t ) =
χmax

4 and the corresponding time scale χ4(τχmax
4

) = χmax
4 . In

practice, we extract the maximum by fitting a log-normal

FIG. 6. Dynamic four-point susceptibility χ4(t ) for tGlassMLP
(using Tmin = 0.21). Square data points correspond to results shown
in Ref. [27] and points to MD results. Vertical lines indicate τBB

α

at each temperature. Error bars of tGlassMLP correspond to the
variance between individual networks, trained using the same dataset
but with different initial weights, as described in Sec. II E.
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FIG. 7. (a) Maximal values χmax
4 (T ) as shown in Figs. 4 and

6 for each temperature extracted from tGlassMLP (tGM), using
Tmin = 0.21 and Tmin = 0.25, as well as MD simulations. The black
line corresponds to an exponential increase and serves as guide for
the eye. (b) Time scale of the maximal values τχmax

4
(T ) for the same

data, compared to the structural relaxation time τBB
α .

distribution to χ4(t ) around the maximum, which describes
the temporal evolution very well. For the two temperatures
T = 0.23 and T = 0.21 our MD data does not reach a maxi-
mum, we therefore fix the time scale τχmax

4
= τBB

α /2 to extract
an estimate for χmax

4 .

Figure 7(a) confirms our previous discussion in highlight-
ing the crossover predicted by tGlassMLP in χmax

4 (T ) at a
temperature around T = 0.25, which is slightly below the
mode-coupling temperature. While the MD data also show
a crossover within the accuracy of our measurement it is
not obvious how strongly χmax

4 (T ) will continue to grow
beyond T < 0.25. Additional simulations, also for longer
times, to reduce the statistical errors would be necessary to
obtain a clearer picture. In contrast to the predictions by
tGlassMLP such measurements would, however, be compu-
tationally extremely expensive. The situation is much clearer
for the timescale τχmax

4
, which very consistently follows

τχmax
4

= τBB
α /2 for all methods investigated [see Fig. 7(b)].

This observation also justifies the above choice for fixing
the time scale of the maximum for the low temperature
MD data.

V. DYNAMIC LENGTH SCALES

A. Four-point dynamic length scale

The dynamic heterogeneities visualized in Fig. 5 and
quantified via χ4(t ) in Fig. 6 can also be characterized by a dy-
namic correlation length, which describes spatial correlations
of the dynamic propensity. Calculating static and dynamic
length scales, in particular at very low temperatures, is of
high importance in glass physics, since the emergence and
growth of dynamic correlation length scales is a key element
of various different theories of the glass transition [47–50].

Here, we first adopt the same methodology as used in
Ref. [27] to extract a dynamic length scale from the four-point
dynamic structure factor [48],

S4(q, t ) = N−1
1 〈W (q, t )W (−q, t )〉,

W (q, t ) =
∑
i∈N1

(
C i

B(t ) − 〈C̄B(t )〉) exp[iq · Ri(0)]. (10)

FIG. 8. Four-point dynamic length scale ξ4(t ) extracted from
S4(q, t ). Results are shown for the tGlassMLP model with Tmin =
0.21. We also show the length scale extracted in Ref. [27] using
GlassMLP. Colors are the same as in Fig. 6.

The dynamic structure factor S4(q, t ) characterizes the geom-
etry and spatial extent of the regions defined by correlated
fluctuations of C i

B(t ). In the limit q → 0, it has been predicted
to decay quadratically with 1/q, according to the Ornstein-
Zernicke form [48],

S4(q, t ) ≈ χ̃4

1 + (qξ4(t ))2 . (11)

Here, χ̃4 is connected (but not equal) to the dynamical
susceptibility χ4 [48] defined above, and ξ4(t ) denotes the
time-dependent dynamic length scale. This correlation length
can be extracted by fitting the measured dynamic structure
factor for small q. Recently, we have applied this method to
GlassMLP networks by utilizing the scalability of the network
in system size [27]. This last step was necessary, since an
accurate extraction of ξ4 requires very large system sizes with
linear size LS 	 ξ4 [48,51–53]. Here, we apply the same
methodology as in Ref. [27], using the same fitting param-
eters, to extract the dynamical length scale ξ4 from systems
with N = 82560 particles, but we now use tGlassMLP mod-
els. The idea is that we can efficiently generate equilibrium
configurations for such large systems using swap Monte Carlo
[35] and use the tGlassMLP model to predict the emergent
dynamic propensity. Consistent with Ref. [54] we have shown
in the SI of Ref. [27] that this procedure is not affected by
strong finite size effects and allows us to extract dynamical
information from large systems.

The results for ξ4 are shown in Fig. 8. At any given temper-
ature, the length scale increases with time up to a maximum
value, which is located roughly at the structural relaxation
time τBB

α . This maximum increases steeply with decreasing
the temperature up to T = 0.25, below the growth is much less
pronounced to reach maximal values of the order ξ4 ≈ 6 − 7
at most. This result is consistent with the findings in Ref. [27]
for T � 0.23, and is also consistent with the slow increase of
the dynamic susceptibility χ4 in Fig. 6.

Similarly to Ref. [27] we have also extracted a higher-
order contribution to the dynamic structure factor, as shown
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in Appendix C. Its evolution with time and temperature again
mirrors the behavior of χ4 and ξ4.

B. Average chord length

To enable a more detailed comparison of these results to
MD simulations we propose an alternative definition for a
dynamic length scale, which is connected to the average chord
length recently defined in Ref. [50]. One advantage of the
chord length is that it does not require very large system sizes,
in contrast to the extraction of ξ4, which does [48,51–53]. To
calculate the average chord length, particles are mapped onto
a discrete lattice, and the propensity a of each lattice site is
defined as the average propensity of the particles within the
lattice site. If the propensity of a site is a < 0.5, it is denoted
as mobile, and immobile otherwise. After discretization and
thresholding, chords are defined as series of adjacent mobile
sites along all rows and columns of the lattice. The linear size
of a chord is ξchord, and the average over all chords provides
the average chord length 〈ξchord〉. The average chord length
〈ξchord〉 is a good measure for the average cluster size, but does
not require a cluster analysis. See Sec. VI D and Fig. 18 in
Ref. [50] for further explanations and visualization.

We adapt the definition of the lattice propensity a to make
the resulting chord length more comparable to ξ4, in particular
for times of the order of τBB

α . For each time and temperature,
we calculate the median of the bond-breaking propensities for
all particles. If a particle propensity is below this median it
is defined as active (ai = 0), and passive otherwise (ai = 1).
Afterwards, we follow the same procedure as described above
by mapping the newly defined dynamical quantity ai onto a
lattice, thus redefining the lattice propensity a, and calculating
the chord length ξchord. This leads to a different time evolution
compared to the definition in Ref. [50], which features a
monotonic growth of the average chord length with time as
relaxed regions gradually fill the entire system. In the present
version, only the clustering of the mobile particles contributes
to the calculation of the chord length.

We show the results for the time and temperature evolution
of 〈ξchord〉 in Fig. 9. As anticipated, the average chord length
behaves similarly to ξ4 (compare with Fig. 8). Both quan-
tities display a nonmonotonic dependence in time, although
the nonmonotonicity is less pronounced for 〈ξchord〉. Most
importantly, both length scales display the same temperature
dependence when evaluated in the order of the structural re-
laxation time τBB

α . This result therefore establishes 〈ξchord〉 as
an interesting measure to extract dynamic length scales, also
from smaller systems and for times t < τBB

α . Consequently,
we can also calculate 〈ξchord〉 from the MD simulations per-
formed to train tGlassMLP. The MD results are in good
agreement with the predictions of the ML model (see Fig. 9).
The MD length scales are systematically slightly larger than
the ones extracted using tGlassMLP, which is likely caused
by small inaccuracies in the ML predictions. Importantly,
however, both methods clearly display a strong crossover at
around T = 0.25. The MD results therefore draw the same
picture of a dynamic correlation length, which does not grow
significantly beyond 〈ξchord〉 > 14.

FIG. 9. Average chord length 〈ξchord〉, which can be used to mea-
sure dynamic length scales. Colors are the same as in Fig. 6. For each
temperature we show times in the range 0.95 > 〈C̄B(t )〉 > 0.3.

VI. EXTRACTING PHYSICAL INFORMATION
FROM THE NETWORK

A natural question when applying machine learning to
science is whether one can interpret what the neural network
learns in order to achieve its task, and whether it is possible to
extract some physical information from the trained network.
In the following we will focus on this question for tGlassMLP.

A. Attention layer

We presented in Sec. II the structure of the tGlassMLP
network, where we emphasized the addition of an attention
layer, which enables tGlassMLP to adapt the weight of differ-
ent structural descriptors depending on the temperature. We
now study these weights explicitly, and relate the observed
evolution to the dynamic length scales discussed in Sec. V.

After training, each of the physics-inspired structural input
descriptors is assigned a statistical weight, which depends
on time and temperature. To relate these weights to a length
scale, we first calculate the particle-averaged weight of each
descriptor, and average this result over all descriptors, which
are coarse-grained over the same length scale L. The resulting
normalized averaged weights for each L value are then used to
construct the function Pint(L). This function is estimated after
training the network, and depends on temperature T .

The temperature evolution of the distribution Pint (L) is
shown in Fig. 10. One can clearly observe how the net-
work puts increasing weight on larger length scales when
the temperature is decreased. This evolution demonstrates
that descriptors, which are coarse grained over larger length
scales have an increased weight at lower temperatures. This
implies that the network learns the existence of a length scale
growing at low temperature and thus determining the range
over which structural heterogeneities matter for dynamical
behaviors.

We have studied this length scale ξint(T ) = ∫
dLPint (L)L

[recall that Pint (L) is normalized]. The temperature evolution
of ξint(T ) compares well to the other dynamic length scales, as
shown below in Fig. 13 and discussed further in Sec. VII. This
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FIG. 10. Normalized distribution of statistical weights Pint(L),
determined from the average weights of the attention layer of the
tGlassMLP model with Tmin = 0.21 for each coarse-graining length
L. Results are shown for different temperatures T and a single
time corresponding to 〈C̄B〉 = 0.8. These distributions can be used
to define an intrinsic, temperature-dependent dynamic length scale
ξint(T ) = ∫

dLPint (L)L.

result confirms, a posteriori, the utility of the attention layer in
tGlassMLP to represent different temperatures with different
dynamical correlation lengths. Additionally, it gives an inter-
esting interpretation from the perspective of glass physics to
the weights learned by the model.

B. Bottleneck layer

Following the attention layer, the structural input is
encoded into a two-dimensional bottleneck layer. This dimen-
sional reduction implies that the dynamics mainly depends on
two variables. However, those two variables are obtained by
the nontrivial aggregation of several physical local features.
Hence, it is unclear how to provide a simple interpretation of
those two variables. It is even possible that such an interpreta-
tion does not exist.

Still, we can provide some direct evidence of the relation-
ship between these two variables and the dynamical behavior.
The output of the bottleneck layer for T = 0.25 and different
time scales 〈C̄B(t )〉 is shown in Fig. 11. Each point in the
figure represents a single particle, its coordinates correspond
to the values of the bottleneck layer while the color is used
to code for the value of the particle propensity extracted from
MD simulations. In this representation, we can observe a clear
separation of structure into active and passive particles. All
the intricacies of amorphous structure are therefore hidden in
the complex encoding from the structural descriptors to the
bottleneck layer. Interestingly, in this description structural
relaxation over time is “simple”. Indeed, the figure clearly
demonstrates how the red color, corresponding to the most
mobile particles, gradually spreads from the bottom left corner
towards the top right. Thus, at early times, only those particles
with small values in both bottleneck nodes are likely to rear-
range. At longer times, more particles become mobile even
at larger values of the bottleneck nodes, until eventually all
particles rearrange at very long times.

FIG. 11. Visualization of the amorphous structure, encoded by
the two-dimensional bottleneck layer, at T = 0.25 for different
times. Each point represents a single particle (N = 90000 particles
shown in total) at coordinates given by the value of the bottleneck
layer. Each point is colored according to the value of the particle
propensity C i

B(t ), as indicated by the color bar.

We also study the temperature dependence of the bottle-
neck layer for a fixed timescale relative to τBB

α in Fig. 12.
The aggregate output of the bottleneck layer is slightly de-
formed by the change in temperature, which arises from the
temperature-dependent weights in the attention layer. More
importantly, however, we observe that the separation between
active and passive particles becomes more pronounced at
lower temperatures, which indicates some sort of increasing
structural heterogeneity. This observation explains the im-
proved performance of tGlassMLP at lower temperatures, as
quantified by the Pearson correlation in Fig. 2.

FIG. 12. Visualization of the amorphous structure, encoded by
the two-dimensional bottleneck layer at fixed time, 〈C̄B〉 = 0.8, and
different temperatures. The figure is constructed as in Fig. 11.
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FIG. 13. Temperature-dependent length scales ξ as extracted
from various techniques described in the paper at 〈C̄B〉 = 0.8. The
figure demonstrates a good agreement between the different lengths.

VII. DISCUSSION AND CONCLUSIONS

We presented and analyzed the tGlassMLP model, which
can predict the relaxation dynamics of deeply supercooled liq-
uids from the amorphous microstructure over a large range of
time scales and temperatures. The approach has been verified
by calculating Pearson correlation coefficients ρP with direct
MD simulations and by evaluating dynamic susceptibilities χ4

and dynamic correlation length scales ξ4.
Overall, the predictions of tGlassMLP regarding spatial

correlations support a scenario in which dynamic hetero-
geneities do not grow significantly when the temperature is
decreased far below TMCT and approaches the experimental
glass transition Tg. To summarize these results, we compare
in Fig. 13 the different techniques used above to calculate
dynamic length scales at a time t corresponding to 〈C̄B(t )〉 =
0.8. We scale the results with a method-dependent factor
and thus find very good overlap between all results [55].
The figure shows that all methods produce the same trend
of a dynamic length scale increasing quite rapidly at high
temperatures, followed by a much slower evolution when
T < TMCT = 0.3. The length scales directly determined by
MD follow the same trend, although of course on a much
smaller temperature range. We also found that the evolution
of the dynamic susceptibility χ4(t ) follows a trend similar to
the length scales shown in Fig. 13.

Our data-driven approach to predict dynamic heterogeneity
is quite general and is based on detecting structural hetero-
geneity, which can easily be measured using the swap Monte
Carlo algorithm at very low temperatures. Nevertheless, it still
leaves open the possibility that the extrapolated tGlassMLP
networks do not capture all important mechanisms leading to
growing heterogeneities at low temperatures. However, taking
the extrapolated data at face value, it is interesting to compare
the emerging scenario in which dynamic heterogeneities only
grow very weakly below T < TMCT to available numerical and
experimental data.

Several articles have featured strongly increasing dynamic
heterogeneities and correlation lengths, including colloidal
experiments [56] and computer simulations [47,48,57,58] in
the high temperature regime. This is in agreement with our

results. The change of this behavior toward a weaker increase
at temperatures lower than TMCT is also found in several
simulation and experimental studies. In the three-dimensional
Kob-Andersen mixture a crossover from strongly increasing
dynamic heterogeneities to weakly-increasing has recently
been observed [59–64]. Also in other models, such as binary
mixtures of quasihard spheres [65] it has been observed that
dynamic heterogeneities do not continue to grow significantly.
A plateau and a crossover to a weakly increasing heterogene-
ity has been observed in Ref. [66] for Kob-Andersen binary
mixtures over a range of mixing ratios. Only very recently
were measurements performed at much lower temperatures
in a two-dimensional soft sphere system [50], but here the
saturation was less pronounced. These above numerical find-
ings in three dimensions are consistent with experiments on
molecular glass formers near the experimental glass transition
temperature, which show length scales in the order of five
molecular diameters [67,68] and weakly increasing dynamic
heterogeneity [69,70].

The analysis of the intrinsic properties of the trained
tGlassMLP model shows that the effect of structure on dy-
namics can be reduced to just two variables. However, we
could not find any direct interpretation for them, because they
are an aggregate of several physical local features. Despite
their good predicting power, there is no clear separation be-
tween mobile and immobile particles in this two-dimensional
representation, thus casting doubts on the possibility of find-
ing a connection between simple form of amorphous order or
simple local structures and dynamics by unsupervised learn-
ing (similar “potato-shaped” dimensional reductions were
found in various glass formers in Ref. [71]). It would be
interesting to study whether this conclusion applies to the
dynamics observed in individual trajectories [72,73] instead
of the dynamic propensity.

Finally, we believe that the transferable ML approach pre-
sented in this paper can be an important step towards the study
of dynamic heterogeneities in a manifold of glass-forming
materials. This includes models in different spatial dimen-
sions, continuously polydisperse models [50] as well as more
fragile glass formers, in which dynamic heterogeneities might
show a different fate at low temperatures [74]. Furthermore,
quantifying the performance of transferability is an important
topic in the machine learning community [75,76]. Future work
could include advanced transferability measures [77] or self-
supervised learning [78]. Employing such techniques to our
model would be an important step to strengthen further the
reliability of transferred results.
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APPENDIX A: CONVERSION BETWEEN TIMES
AND BOND-BREAKING CORRELATION VALUES

In Sec. II A we introduced the bond-breaking correlation
and explained how the average value 〈C̄B(t )〉 is used to encode
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FIG. 14. Average bond-breaking correlation 〈C̄B(t )〉 for different
temperatures. Top and bottom show the same results, where bottom
is rescaled by the estimated structural relaxation time τBB

α .

time in the machine learning procedure. Here, we provide
further evidence to support this approach.

In Fig. 14 it can be observed that the decay of 〈C̄B(t )〉
at various temperatures is very similar, although the curves
at different temperatures decay on different time scales. We
extract the structural relaxation time 〈C̄B(t = τBB

α )〉 = 0.5 also
for the curves, which are not simulated long enough by maxi-
mizing the overlap between the curves. The result is shown
in bottom panel of Fig. 14. The curves display nice time-
temperature superposition, indicating that the shape of the
time decay changes very little (if at all) over a wide tempera-
ture range.

Based on the extracted values for τBB
α , which show an

Arrhenius dependence above T � 0.25, we extrapolate the
corresponding values for τBB

α at lower temperatures and find
that the glass transition temperature τBB

α (T = Tg) = 1012 can
be estimated as Tg = 0.15, which is the lowest temperature
considered in the paper. To reconstruct the time dependence
of propensity at such low temperatures, we predict propensity

at a certain value of 〈C̄B〉, use Fig. 14 to estimate t/τBB
α and

thus deduce t using the previously estimated value for τBB
α .

APPENDIX B: DETAILS ON TGLASSMLP
AND THE TRAINING PROCEDURE

The core of tGlassMLP is the MS-dimensional input layer,
followed by the attention layer, as described in Sec. II and
sketched in Fig. 1. The state point is inserted into the at-
tention layer via MLP1. MLP1 has a six-dimensional input
layer, in which we feed the slightly transformed state point,
[1/T , 1/T 2, 1/T 3, 〈C̄B(t )〉, 〈C̄B(t )〉2, 〈C̄B(t )〉3], and two six-
dimensional hidden layers, each with an ELU activation
function [79]. The two-dimensional output is then calculated
using a linear activation function.

After the attention layer, the data is encoded into the two-
dimensional bottleneck layer, which is concatenated with the
output by MLP2, and followed by two ten-dimensional hid-
den layers, each with an ELU activation function. MLP2 is
similar to MLP1 just formed of two seven-dimensional hidden
layers and a four-dimensional output layer. The performance
of tGlassMLP, however, does not crucially depend on any of
these choices. The final output X i

MLP is then calculated using
a linear activation function.

TABLE I. Overview over the different state points used for the
training of tGlassMLP. “x” denotes training data extracted from MD
simulations, “t” are transferred results using the first training step
in “equi-time” mode. “r” are results shown for the final trained
tGlassMLP networks.

tGlassMLP (Tmin = 0.21)

〈C̄B(t )〉 � T 0.15 0.18 0.21 0.23 0.25 0.3 0.4

0.99 t t x x x x x
0.94 t t x x x x x
0.90 t t x x x x x
0.85 t t x x x x x
0.8 t t x x x x x
0.75 r t t x x x x
0.65 r t t t x x x
0.5 r t t t x x x
0.25 r r r r r x x
0.15 x
0.075 x

tGlassMLP (Tmin = 0.25)

〈C̄B(t )〉 � T 0.21 0.23 0.25 0.3 0.4

0.99 t t x x x
0.94 t t x x x
0.90 t t x x x
0.85 t t x x x
0.8 t t x x x
0.75 t t x x x
0.65 t t x x x
0.5 t t x x x
0.25 r r r x x
0.15 x
0.075 x
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TABLE II. Accuracies of the Adam optimizer used for training.
“e” stands for the number of epochs.

Phase 1 10e, 10−3 50e, 5×10−4 25e, 2×10−4

Phase 2 50e, 4×10−5

As described in the main text, tGlassMLP is then trained
in two steps: The first “equi-time” step for constant 〈C̄B(t )〉 is
followed by a self-consistency check and transfer procedure.
The results are then used for the final training of the full
tGlassMLP model. The data that is used for the tGlassMLP
models presented in this paper is summarized in Table I.

Each training step is performed in a similar way as the
training of GlassMLP [27]. The batch size is equal the number
of type 1 particles per configuration, Nbatch = N1 = 600. The
training of both the “equi-time” step and the final step is
separated into two phases. In the first phase, the model is
trained for 85 epochs with a loss function that only considers
the mean squared error. The accuracy of the Adam optimizer
is varied as described in Table II. Afterwards, the model is
trained for another 50 epochs using the loss function with the
same parameters as for GlassMLP.

When applying tGlassMLP on a large set of amor-
phous structures, in particular at low temperatures and
long times, we use an iterative procedure to constrain the
predicted mean propensity XMLP = 1

N1

∑N1
i=1 X i

MLP to the ex-
pected value 〈C̄B(t )〉. To achieve this we define C0

B = 〈C̄B(t )〉
as the initial input in tGlassMLP. Using the output in it-
eration j, we update the input via the recursive relation

C j+1
B = C j

B + 0.75(XMLP
j − 〈C̄B(t )〉). We iterate for a maxi-

mum of 6 iterations, and check for convergence. The final C j
B

is never very different from 〈C̄B(t )〉 due to the self-consistency
check described in the main text.

FIG. 15. Higher-order prefactor A, extracted from S4 after fitting
the length scale ξS4 .

APPENDIX C: HIGHER-ORDER TERM IN FOUR-POINT
STRUCTURE FACTOR

In this Appendix we analyze the higher-order prefactor A
as extracted from fitting the dynamic structure factor S4 with
an additional contribution, which is of third order in q,

S4(0.2 < q < 0.6, t ) = χ̃4(t )/(1 + (ξq)2 + A(ξq)3). (C1)

As discussed in Ref. [27] this quantity shows a very pro-
nounced increase around the mode-coupling temperature
TMCT, which we can perfectly reproduce using tGlassMLP
(see Fig. 15). Now, we can also systematically study
temperatures below TMCT. We find that when entering deep
into the glassy regime, also the prefactor A reaches a plateau,
indicating that the geometry of rearranging clusters is not
significantly changing anymore, consistent with Ref. [61].
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