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The front dynamics in the Harper (or Aubry-André) model (which has a localization transition) is investigated
using two different settings: the particle number front, where the system is at zero temperature and, initially,
the particle numbers differ on the two sides, and the temperature front, where the two sides have different
temperatures initially. The two differently prepared half systems are connected suddenly, and the following
dynamics is investigated. In the extended phase, the dynamics is ballistic, similar to the dynamics of a pure
system. At the critical point, one finds a power-law time dependence of the particle number and the entanglement
entropy of the zero-temperature setting. In the localized phases, the observables oscillate around an average
value, which is independent of the system size. The particle number front shapes have been investigated at the
zero-temperature setting: In the extended phase they scale together exactly as in the homogeneous XX chain;
however, at the critical point the scaling relation contains a power (t0.55) of time. The mutual information between
neighboring intervals at the front has been calculated, and it is proportional to the logarithm of the interval length
and also to the logarithm of time in the extended phase and at the critical point. The prefactors of the time and
size dependence are equal for the zero-temperature process but differ for the finite-temperature front.

DOI: 10.1103/PhysRevB.109.064204

I. INTRODUCTION

When two systems prepared in states with different prop-
erties (e.g., particle number and temperature) are suddenly
connected, a nontrivial dynamical process starts, where the
disturbed region (the so-called front) broadens with time
starting from the point of connection; this process is usually
referred to as front dynamics.

From analytical results involving the XX chain [1–4], one
learns that as the disturbed region broadens with time, its
shape varies. In an infinite system, the front broadens without
limit, and in a finite system the front is reflected from the ends.
For example, the magnetization in the XX chain when the
starting state is a magnetic kink evolves according to a simple
scaling function m(n, t ) = �(n/t ) (n is the place coordinate,
and t is time). This means the ballistic broadening of the front.

In one of the first studies of dynamical steady states [5,6]
the authors proved that the steady state in the XX chain can
be prepared as a ground state of the Hamiltonian with current
generators added.

A later study [7] investigated the XX chain after connect-
ing two half-infinite segments with different temperatures (I
call it here the temperature front). The authors of Ref. [7]
investigated the mutual information between two neighboring
intervals and both intervals inside the front region when the
steady state was already built up. It has been found that the
mutual information grows with the log of the interval size, I ∼
ln l , and (between the two half-infinite chains) with the log of
time, I ∼ ln t ; in addition, the two prefactors are equal. There
are a series of further results involving the details of the XX
front dynamics: The statistics of particle numbers at the front
has been calculated [8], there are analytical results regarding
the magnetization profile scaling in an external magnetic field
[9], the spin current fluctuations have been obtained [10],
and the entanglement Hamiltonian has been obtained using

bosonization [11]. In the transverse Ising model and in the XY
model [3,12–19], the general scaling of the front is similar to
the scaling of the front of the XX model, with several minor
differences.

Several studies have investigated the XXZ chain [20–30].
From these results involving the XXZ chain, I would like to
highlight that although the dynamics is ballistic (as in XX or
Ising chains) for most initial states, there are special initial
states with subdiffusive behavior [23] and a region has been
found where the transport stops [30]. So the dynamics is
strongly dependent on the initial state, which is an important
difference compared with quench dynamics, where the effect
of the initial state is small [31].

Talking about methods, there are results in exactly solv-
able models, for example, a canonical transformation [32]
after a Jordan-Wigner transformation [33] in the XX, XY,
and Ising chains, and using other analytical solutions in the
harmonic chain [34] or the sine-Gordon [35] model. When
the analytical solution is not known, one may approximate the
original model with a solvable one (in one dimension it is of-
ten a Luttinger liquid approximation obtained by bosonization
[11,22,24,27]) or follow the time evolution with a numeri-
cal method, such as time-evolving block decimation [25,26]
or the time-dependent density matrix renormalization group
(DMRG) [28,30].

On the other hand, one may concentrate on the physical
impact of local disturbances rather than strictly following
the unitary dynamics. Local disturbances in one-dimensional
quantum systems create an effect, which spreads according to
a light cone. This physical observation led to the invention
of the quasiclassical description of the dynamics of one-
dimensional noninteracting quantum systems, first applied to
the description of global quenches [36–39]. This method and
its generalization to Bethe ansatz integrable systems has been
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successfully applied to the front dynamics [40–54]. Depend-
ing on the model, precise approximations or even exact results
have been obtained using semiclassical dynamics and gener-
alized hydrodynamics.

For noninteracting aperiodic and disordered models, nu-
merical results for global sudden quenches have been
qualitatively interpreted assuming that signals spread with
anomalous diffusion (aperiodic systems) or with the logarithm
of time (in disordered systems) [55–57].

The goal of the present study is to investigate the front
dynamics at a localization transition and answer the following
question: If the shapes of the fronts are different at the transi-
tion point, what is the behavior of the mutual information in
the front region?

The rest of the paper is organized as follows. In Sec. II the
model is defined, and its equilibrium properties are presented.
In Sec. III the local particle numbers, entanglement entropy,
and mutual information are defined. In Sec. IV the numerical
results are presented, and in the Conclusions, I discuss the re-
sults. In the Appendix, technical details of the time evolution
are given.

II. MODEL

The Harper model is defined as follows:

H = −1

2

L−1∑
l=1

c†
l cl+1 + c†

l+1cl + h
L∑

l=1

cos (2πκl )c†
l cl , (1)

where cl and c†
l are the fermionic annihilation and creation

operators for l = 1 · · · L, L is the length of the systems, h
is an external parameter (the amplitude of the inhomogene-
ity), and κ = (1 + √

5)/2. There is a localization transition
in the model [58]: For h < 1, every eigenstate is delocalized,
free-wave-like; for h > 1, every eigenstate is localized. The
localization length for h > 1 is given by [58,59]

lloc = 1

ln h
. (2)

The system is self-dual to the critical point: A (modified)
Fourier transform maps the H operator with h to a similar
operator with 1/h [31,58–60]. The localization transition oc-
curs for every irrational κ; the localization length [Eq. (2)] and
the self-duality are also not sensitive to κ , until κ is irrational
[61]. However, the details of the transition are sensitive to
the κ value. It has been shown with renormalization group
studies [62] and numerical calculations [63] that the z critical
exponent depends on κ .

The spectrum is continuous in the extended phase, fractal
at the critical point, and pure point spectra in the localized
phase [64]. The one-particle eigenstates are multifractals at
the critical point [65,66]. In the ground state at half filling [67]
the entanglement entropy of an interval of length l scales as

S = 0.33 ln l; (3)

so the scaling is identical to that of the homogeneous XX
chain (ceff = 1). At the critical point of the system, the

effective central charge changes [67]:

S = 0.21 ln l. (4)

This corresponds to ceff ≈ 0.78. In the localized phase the
entanglement entropy saturates to a constant value in the
L → ∞, l → ∞, l/L = const limit. This entropy depends on
the localization length as

Ssat ∼ ceff

3
ln(lloc). (5)

The scaling of the logarithmic negativity follows the same
effective central charges [67].

There are gaps in the spectrum of the Aubry-André model,
both in the extended phase and at the critical points [58,68].
If one chooses the chemical potential (Fermi surface) at the
location of one of these gaps, the system becomes noncritical
(gapped), and the entanglement entropy follows the area law,
which in one dimension means it remains constant [68]. In
this paper, zero chemical potential has been used during the
time evolution.

After a quantum quench (sudden change in h) the dynamics
depends mainly on the after-quench Hamiltonian [31]. If the
after-quench Hamiltonian is in the extended phase, the dy-
namics resemble the dynamics of a homogeneous XX chain,
and the entanglement entropy grows linearly in time, S ∼ t
[31]. At the critical point, the entanglement entropy grows as
a power function of time, S ∼ tσ , and in the localized phase it
remains bounded.

The model has been realized in an optical lattice with cold
atoms [69–72], and a steplike initial condition of the occupa-
tion number has also been realized in cold-atom experiments
[73]; so our zero-temperature particle number protocol might
be possible to realize in these experiments.

III. QUANTITIES OF INTEREST

I divide the system into two halves, A and B, where A
contains the first [L/2] sites (where [·] is the lower integer
part) and B contains the rest of the system. The two halves
are not connected for t < 0 and are prepared in states with
different physical parameters. At t = 0 the two halves of the
system are connected, and a nontrivial time evolution starts.

For the zero-temperature protocol, the particle number is
different at t = 0 in the two halves of the system, the A
subsystem is empty, and the B subsystem is half filled.

In this case the system at t = 0 is in a pure state
|ψ0〉, and the dynamics is given by the Schrödinger equa-
tion i ∂

∂t |ψ (T )〉 = H |ψ (t )〉.
For the finite-temperature protocol, at t = 0 the A sub-

system is at thermal equilibrium at temperature TA, the B
subsystem is at thermal equilibrium at temperature TB �= TA,
and the two halves are not connected. We connect A and
B at t = 0, and the dynamics for t > 0 is governed by the
Hamiltonian equation (1). In our model, the couplings to the
heat reservoirs which have created the initial thermal equilib-
rium (at two different temperatures) of the two halves are not
present, and the dynamics is given by the Schrödinger equa-
tion. This corresponds (in experiments) to short time scales
compared with the thermal equilibration timescale.
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In this second protocol, the left and right subsystems are
prepared in the

ρA = 1

ZA
exp[−βAHA], (6)

ρB = 1

ZB
exp[−βBHB] (7)

states, and the whole system is prepared in the

ρ = ρA ⊗ ρB (8)

state. For t > 0 the dynamics is given by the equa-
tion i ∂

∂t ρ(t ) = [H, ρ]. Technically, I follow the time evolution
of the operators in the Heisenberg picture; so the dynamics
of the two protocols are the same, and only the initial state
differs.

I investigate (for both protocols) the time evolution of the
particle numbers in the two sectors (NA and NB), as well as,
for the zero-temperature protocol, the entanglement entropy
of the two halves and, for the finite-temperature protocol, the
mutual information between the two halves. For the zero-
temperature protocol, I also investigate the finite-size scaling
of the mutual information in the dynamical steady state [34].
This means that the mutual information is calculated between
two intervals (of length l) at the border between the two
subsystems for interval lengths shorter than the half-system
size for a given time t > 0. In this setting, one interval is from
the (L/2 − l )th site to the (L/2)th site, and the other interval
is from the (L/2 + 1)th site to the (L/2 + l )th site.

Let us take a closer look at the aforementioned quantities.
The particle numbers are defined as the expectation values of
the particle number operators

N̂A =
∑
l∈A

c†
l cl , (9)

N̂B =
∑
l∈B

c†
l cl , (10)

and NA = 〈N̂A〉 and NB = 〈N̂B〉.
To define the mutual information and the entanglement

entropy [74], one defines the reduced density matrices of the
A and B subsystems. The density matrix of the whole system
is ρ(t ); this includes the special case of the pure state |ψ (t )〉
as a projector ρpure(t ) = |ψ (t )〉〈ψ (t )|. The reduced density
matrices are

ρA = TrBρ, (11)

ρB = TrAρ. (12)

Now, one defines three entropies: the entropy of the whole
system and the entropies of the reduced density matrices.

S = −Trρ ln ρ, (13)

SA = −TrAρA ln ρA, (14)

SB = −TrBρB ln ρB (15)

for pure states S = 0 and SA = SB. In this case the last two
quantities are the entanglement entropy:

Sentangle = SA = SB. (16)

FIG. 1. (a) Typical behavior of the particle numbers of the two
subsystems in the zero-temperature protocol. The colors denote the
different quench parameters (h and L). The particle numbers NA and
NB from the same process are denoted by curves of the same color;
one grows initially, and its pair decreases initially. (b) The logarithm
of first crossing times of the particle numbers, as a function of ln(1 −
h), for L = 144.

For nonpure states, the entropies of the two reduced density
matrices are different (SA �= SB). In this case, one can quantify
the total correlations between the two subsystems using the
mutual information, which is defined as follows [75]:

I = SA + SB − S. (17)

IV. RESULTS

In this section, numerical results are presented. The typical
behavior of the particle number after this quench is shown in
Fig. 1(a); in this figure there are data about quenches in the
extended phase (at h = 0.5) with three different system sizes
(L = 144, 377, 987), and there is one quench to the localized
phase (h = 2.0). One can see that in the localized phase the
dynamics “froze” and the expectation value of NA and NB

remains close to the initial values. In the extended phase, the
particle numbers change. For short times the particle number
of the initially empty subsystem grows linearly, and the par-
ticle number of the initially half-filled subsystem decreases
linearly with the same slope. At an intermediate time, the
particle numbers of the two halves are equal, the curves cross
each other, oscillating behavior starts, with decreasing oscilla-
tion amplitude, and for a very long time the particle numbers
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FIG. 2. Particle numbers of the two halves at different after-
quench h fields, for the same system size L = 144, zero-temperature
protocol. For oscillating parts, the curves are not shown, just the first
crossing points.

will be equal. The slope of the initial decrease or increase is
independent of the system size, and for t � L the increasing
curves are identical.

In Fig. 2 the particle numbers are presented after different
values of h and for a given system size (L = 144). All of
these quenches are in the extended phase, most of them close
to the critical point. As the quench gets closer and closer to
the critical point, the dynamics (slope of the curves) become
slower and slower. The first crossing of the growing and
decreasing particle numbers occurs later and later. I call the
time of the first crossing the “crossing time.” One can obtain
these crossing times using Fig. 2, and one can define a time
scale using the crossing time.

The crossing times are presented in Fig. 1(b) as a function
of the h parameter. The crossing time diverges approaching
the critical point. The numerical fit shows 0.98 ± 0.03 as the
critical exponent; therefore the scaling of the first crossing
time is likely to be

tcross ∼ 1

|1 − h| . (18)

In Fig. 3 the (log of the) growing particle number of the
initially empty subsystem is shown as a function of ln t . The
particle number approximately grows as

NB ∼ t0.57. (19)

There are strong oscillations in the overall trend, which makes
measurement of the exponent difficult. The exponent obtained
here for the particle number is bigger than the exponents of the
entanglement entropy and magnetization obtained in Ref. [31]
for the case of global quenches.

In the context of front dynamics, it is usual to investigate
the shape of the front. Here the local filling nl = 〈c†

l (t )cl (t )〉
is investigated. However, the local value of this filling strongly
depends on the on-site potential, and if one simply calculates
it, no trend can be seen, only rapid oscillations. To define
a meaningful front shape, one introduces a ϕ phase to the

0
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3 6 9

ln
(N

B
)

ln(t)

L=987
L=610
L=377

fit y=0.57x-2

FIG. 3. Variation of the particle number (in the initially empty
half) at a critical quench (h = 1) for various system sizes, for the
zero-temperature protocol. The straight line is a fit.

Hamiltonian

H = −1

2

L−1∑
l=1

c†
l cl+1 + c†

l+1cl + h
L∑

l=1

cos (2πκl + ϕ)c†
l cl

(20)

and averages over the ϕ phase. Different ϕ phases mean dif-
ferent relative positions of the lattice and the potential. So
averaging over the phase is equivalent to averaging over the
position where the boundary of the two initially distinct sub-
systems is located. In numerical calculations, 104 randomly
chosen values of ϕ have been used (from the uniform distri-
bution on [0, 2π ]).

The scaled front shapes are shown in Fig. 4. The front
shapes can be scaled together, and the scaling exponent α is
different in the extended phase, at the critical point, and in
the localized phase. The scaling function �(x) (which is also
different in the aforementioned three cases) can be defined as
follows:

�

(
j − L/2

tα

)
= n j . (21)

In the localized phase, the scaling is trivial; after a short initial
evolution the front reaches a constant shape, i.e., it is “frozen
in,” and this corresponds to αlocalized = 0. In the extended
phase, the scaling exponent is found to be αextended = 1.0,
which is identical to the scaling of the homogeneous XX chain
front [4]. At the critical point, the best fit has been found at
αcritical = 0.55.

I investigated the mutual information in the zero-
temperature quench between neighboring intervals around the
initial connection point (one interval is from L/2 − l to L/2,
and the other one is from L/2 + 1 to L/2 + l). The numerical
results are shown in Figs. 4 and 5. In Fig. 5 the mutual
information is shown as a function of the subsystem size ln l
at a given time t = 20. There is an initial growing region,
and then a constant plateau starts. For the extended phase
the mutual information for very small systems changes very
slowly; for intermediate sizes there is a logarithmic growth,
and then the plateau starts. Interestingly, at the critical point,
there is no very slow initial region, and the mutual information
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FIG. 4. Shape of the particle number front. The expectation value
of the particle number nj at position j in the extended phase (a), at
the critical point (b), and in the localized phase (c), as a function of
( j − L/2)/tα for various times and for L = 50, 70, 1110.

is proportional to the logarithm of the subsystem size from
very small sizes. The numerical data are compatible with

IT =0,extended ∼ 1.1 ln l, (22)

IT =0,critical ∼ 0.51 ln l. (23)

Results regarding the time dependence of the mutual in-
formation for fixed system sizes are shown in Fig. 6. Here
one finds that the mutual information is proportional to the
logarithm of time, and the prefactors differ at the critical point
and in the extended phase. In the localized phase the mutual
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FIG. 5. Mutual information after the zero-temperature quench as
a function of the logarithm of the subsystem size, at a given time t =
20. The straight lines show fits. Here, mut. inf., mutual information.

information converges to a constant value, independent of the
subsystem and system sizes. The numerical data suggest

IT =0,extended ∼ 1.15 ln t, (24)

IT =0,critical ∼ 0.55 ln t . (25)

My results for the mutual information are in agreement with
the results of Ref. [76], in which the entanglement entropy,
not the mutual information, was calculated; however, for short
times when the width of the front is smaller than the subsys-
tem size l the time dependence of these two quantities has to
be the same, and the numerical results are indeed very similar.

I calculated the mutual information in the finite-
temperature quench. The temperatures were TA = 0.5 and
TB = 2.0.

In Figs. 7 and 8 the mutual information is shown after a
finite-temperature quench averaged over 100 randomly cho-
sen phases. There is an initial region (while the front size
does not reach the system size) where the mutual information
grows with the logarithm of time. This initial growth is found
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FIG. 6. Mutual information after the zero-temperature quench
for a few fixed subsystem sizes, as a function of time.
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FIG. 7. Mutual information after finite-temperature quench for
a few system and subsystem sizes, as a function of time, in the
extended phase h = 0.5. The data are averaged over 102 randomly
chosen phases.

to be

IT >0,extended = 0.2 ln(t ) − 0.25. (26)

At the critical point (see Fig. 8) the initial growth of the mutual
information is

IT >0,critical = 0.12 ln(t ) − 0.07. (27)

In Fig. 9 the mutual information is shown as a function of the
subsystem size. There is an initial slow region, a middle region
where the variation of the mutual information is proportional
to the logarithm of the subsystem size, and, for big subsys-
tem sizes, a constant value at which the mutual information
converges. The middle logarithmic part is found to be

IT >0,extended = 0.48 ln l − 1.2, (28)

IT >0,critical = 0.21 ln l − 0.14. (29)
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FIG. 8. Mutual information after finite-temperature quench for a
few system and subsystem sizes, as a function of time, at the critical
point h = 1.00. The data are averaged over 102 randomly chosen
phases.

 0.25

 0.5

 0.75

 2  4

I (
m

ut
ua

l i
nf

or
m

at
io

n)

ln(l)

L=128 h=1.0
L=256 h=1.0
L=128 h=0.5
L=256 h=0.5
0.21ln(l)-0.14
0.48ln(l)-1.22

FIG. 9. Mutual information after a finite-temperature quench at
a fixed time t = 60, as a function of the subsystem sizes.

V. CONCLUSIONS

Here the front dynamics of a noninteracting model with a
localization transition have been investigated. In the extended
phase the dynamics are qualitatively similar to the homoge-
neous XX front dynamics [7]. However, when approaching
the critical point, the time scale of the dynamics (defined by
the crossing time in this paper) diverges with an exponent of
1, and at the critical point, slower, diffusive dynamics occur.
In the case of the zero-temperature quench, where the initial
difference is the particle number, the front shapes can be
scaled together. For the localized phase the scaling is trivial,
and for the extended phase, the scaling is equivalent to the
scaling of the homogeneous system. At the critical point, the
scaling includes a power law t0.5. This exponent is close to the
literature value of the wave packet spreading exponent of the
Harper model [64,67], which is known to be 0.477. There is a
simple reason behind this phenomenon: If half of a system is
filled and the other half is empty, one can perform a particle-
hole transformation on the filled half of the system, and in
the resulting effective system, the problem is equivalent to a
local quench. However, the initial state used here is not fully
empty or fully filled; rather, one half is initially empty, and the
other half is initially half filled: This may cause the difference
between the wave packet scaling exponent known from the
literature and the front shape scaling exponent measured here.
A similar simple connection between the finite-temperature
initial state and the local quenches does not exist. The scaling
of the mutual information with the subsystem size and time
is found to be logarithmic both in the extended phase and at
the critical point. The prefactors of the time and subsystem
size dependence agree up to the precision of this work in the
zero-temperature quench; however, in the finite-temperature
quench they are significantly different.

This is a major difference compared with the homogeneous
XX chain, where the prefactor of the logarithmic scaling of
the mutual information is the same for the time and space
dependence.

The prefactors of the mutual information at the critical
point are generally smaller than those in the extended phase;
this phenomenon is similar to the entanglement scaling found
in Ref. [67].
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Further generalizations of the present work may include
numerical studies of the dependence of the dynamics on the
irrational potential or numerical studies in a generalization
of the present model where the quasiperiodic potential is
cos(2πκlα ), in which the details of the transition depend on
the α exponent [77].
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APPENDIX: TIME EVOLUTION

I use the Heisenberg picture. It is possible to treat the two
protocols in a unified way. The only difference is the calcula-
tion of the initial correlations. The initial state is characterized
by its two-point correlation function,

gl,m = 〈c†
l cm〉. (A1)

In the case of the first protocol (particle number quench), to
calculate this correlation function, I used a modified initial
Hamiltonian. I added a big (100) local potential to one part
(the A part) of the Hamiltonian and diagonalized this modified
Hamiltonian. With this high potential, the A part is practically
empty.

H = −1

2

L−1∑
l=1

c†
l cl+1 + c†

l+1cl + h
L∑

l=1

cos (2πκl )c†
l cl

+ 100
L/2∑
l=1

c†
l cl . (A2)

One diagonalizes the modified Hamiltonian with a canonical
transformation

ηk =
L∑

l=1

u(0)
k,l cl , (A3)

H =
L∑

k=1

ε
(0)
k η

†
kηk, (A4)

and the initial correlations are given by

gl,m =
∑

k,εk<0

uk,l uk,m. (A5)

For the second protocol (temperature quench), one diago-
nalizes HA and HB separately, the correlations in A (B) are
determined by HA (HB), and the correlations between the two
subsystems are zero.

HA = −1

2

L/2−1∑
l=1

c†
l cl+1 + c†

l+1cl + h
L/2∑
l=1

cos (2πκl )c†
l cl ,

(A6)

HB = −1

2

L−1∑
l=L/2

c†
l cl+1 + c†

l+1cl + h
L∑

l=L/2

cos (2πκl )c†
l cl ,

(A7)

ηA
k =

L/2∑
l=1

uA,(0)
k,l cl , (A8)

H =
L/2∑
k=1

ε
A,(0)
k η

†
kηk, (A9)

ηB
k =

L∑
l=L/2

uB,(0)
k,l cl , (A10)

H =
L∑

k=L/2

ε
B,(0)
k η

†
kηk. (A11)

The correlation function is given by

gl,m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k uA,(0)

k,l uA,(0)
k,m n(εk, TA) if l, m ∈ A∑

k uB,(0)
k,l uB,(0)

k,m n(εk, TB) if l, m ∈ B
0 if l ∈ A and m ∈ B
0 if l ∈ B and m ∈ A,

(A12)

where n(ε, T ) = 1/(exp[ε/T ] + 1) is the Fermi function.
For t > 0, one diagonalizes the after-quench Hamiltonian

νk =
L∑

l=1

uk,l cl , (A13)

H =
L∑

k=1

εkν
†
k νk . (A14)

The time evolution of the ν operators in the Heisenberg picture
is ν(t ) = e−iεktν(0), ν†(t ) = e−iεktν†(0).

The time evolution of the cl operators is

cl (t ) =
L∑

k=1

uk,l e
−iεktν(0) (A15)

=
L∑

l=1

L∑
m=1

L∑
k=1

uk,l e
−iεkt uk,mcm(0) (A16)

=
L∑

l=1

L∑
m=1

f (m, l, t )cm(0), (A17)

f (m, l, t ) =
L∑

k=1

uk,l e
−iεkt uk,m. (A18)

The time evolution of the particle number operators N̂A, N̂B

and the local Hamiltonians HA, HB can be written as bilinear
expressions using Eq. (A18). The expectation values are

〈N̂A〉 =
L/2∑
l=1

L∑
n=1

L∑
m=1

f ∗(n, l, t ) f (m, l, t )gn,m, (A19)

〈N̂B〉 =
L∑

l=L/2

L∑
n=1

L∑
m=1

f ∗(n, l, t ) f (m, l, t )gn,m, (A20)

064204-7
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〈HA〉 =
L/2∑
l=1

L∑
n=1

L/2∑
m=1

f ∗(n, l, t ) f (m, l, t )gn,mh cos (2πκl )

+
L∑

n=1

L∑
m=1

1

2
( f ∗(n, l + 1, t ) f (m, l, t )

+ f (n, l + 1, t ) f ∗(m, l, t ))gn,m, (A21)

〈HB〉 =
L∑

l=L/2

L∑
n=1

L∑
m=1

f ∗(n, l, t ) f (m, l, t )gn,mh cos (2πκl )

+
L∑

n=1

L∑
m=1

1

2
( f ∗(n, l + 1, t ) f (m, l, t )

+ f (n, l + 1, t ) f ∗(m, l, t ))gn,m. (A22)
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