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Scattering expansion for localization in one dimension: From disordered wires to quantum walks
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We present a perturbative approach to disordered systems in one spatial dimension that accesses the full range
of phase disorder and clarifies the connection between localization and phase information. We consider a long
chain of identically disordered scatterers and expand in the reflection strength of any individual scatterer. We
apply this expansion to several examples, including the Anderson model, a general class of periodic-on-average-
random potentials, and a two-component discrete-time quantum walk, showing analytically in the latter case that
the localization length can depend nonmonotonically on the strength of phase disorder (whereas expanding in
weak disorder yields monotonic decrease). More generally, we obtain to all orders in the expansion a particular
nonseparable form for the joint probability distribution of the transmission coefficient logarithm and reflection
phase. Furthermore, we show that for weak local reflection strength, a version of the scaling theory of localization
holds: the joint distribution is determined by just three parameters.
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I. INTRODUCTION

The localization of waves by disorder (Anderson localiza-
tion) is a topic of enduring interest due to the wide range
of settings in which it occurs, including electron transport,
classical optics, acoustics, and Bose-Einstein condensates [1].
Progress in the general theory of localization, independent of
model details or of physical realization, can have similarly
broad implications. Another setting for localization, of recent
interest as a potential quantum computing platform [2–4], is
the quantum walk [5–7], which is a quantum version of the
classical random walk. Localization has been demonstrated in
quantum walks both experimentally and theoretically [8–19]
and could impact quantum computing proposals even in the
idealized limit of no decoherence [13,14,20,21].

A distinctive feature of localization in quantum walks is
the prominent role of phase disorder. Modern experimental
platforms allow a high degree of control over a spatially
varying phase which can be disordered [8–11]. Localization
in what is perhaps the simplest quantum walk, a discrete-time
quantum walk (DTQW) in one spatial dimension, has been
experimentally realized both for strong phase disorder [9] and
for a controllable range of phase disorder from weak to strong
[11]. However, existing analytical approaches seem to apply
only in the limiting cases when phase disorder is either weak
or strong [18,19]. Furthermore, there are several phases that
can appear in the quantum “coin” (see below) of a DTQW
[18,26], and a localization calculation that allows them all
to be disordered simultaneously seems to be lacking in the
literature.

A pillar of our general understanding of localization is
the scaling theory initiated by Abrahams et al. in Ref. [27]
in the context of electron transport. While localization may
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be characterized in several ways, including the absence of
diffusion and the exponential decay of eigenstates, the scaling
theory focuses on the suppression of the dimensionless con-
ductance g through a disordered sample (e.g., a cube of side
length L). The conductance has some probability distribution
PL(g) over disorder realizations, and the scaling theory asserts
that for sufficiently large L, all dependence of the function
PL on L and on microscopic details may be absorbed into
a small (i.e., at least not growing with L) number of pa-
rameters X1(L), X2(L), . . . that obey scaling equations of the
form d ( ln Xi(L))/d (ln L) = βi(X1(L), X2(L), . . . ) (see, e.g,
Refs. [28,29]). The study of these scaling equations, and of the
number of parameters needed in various cases, gives insight
into disorder-driven phase transitions and has been a signifi-
cant area of research in disordered systems.

In one spatial dimension, in which case localization is gen-
erally strongest, one can use a scattering setup [30] based on
the Landauer formula for the conductance: g = e2

2π h̄ T , where
T is the transmission coefficient (we consider the case of
a single scattering channel) of the sample [31]. The typical
transmission coefficient T of a long sample of length L decays
exponentially: Ttypical ∼ e−2L/Lloc , which defines the localiza-
tion length Lloc. In the transfer matrix approach, theorems for
random matrices demonstrate that the probability distribution
PL(− ln T ) over disorder realizations [which by the Landauer
formula is simply related to PL(g)] is Gaussian for large L
[33]. All dependence of PL(− ln T ) on L and on disorder thus
reduces to two parameters (the mean and variance). A further
reduction called single-parameter scaling (SPS), in which the
two parameters reduce to one by an equation relating them,
was originally obtained using an assumption of phase unifor-
mity [30], but has since been shown to hold in certain limits
even without this assumption [34–36].

In this paper, we present a perturbative approach to
localization in one spatial dimension. Our scattering-based
approach accesses the full range of phase disorder, clarifies
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the connection between localization and phase information
more broadly, and applies to a general class of systems that
includes DTQWs [37]. A central feature of our approach is the
relation between the localization properties and the reflection
phase of a disordered sample [30,38,39]. (This phase has
been measured in a DTQW experiment [40].) We calculate
the localization length and the probability distribution of the
reflection phase, and we extend the scaling theory to include
correlations between the reflection phase and the transmission
coefficient. For a Letter version of this paper, see Ref. [41].

We now summarize our approach and results in more
detail. We consider a disordered sample consisting of many
single-channel scatterers that are independently and identi-
cally disordered, and we expand in the magnitude of the
reflection amplitude of any individual scatterer [42]. Our first
main result is the expansion of the inverse localization length.
We construct this expansion recursively and show that all or-
ders depend only on local averages (that is, disorder averages
over any single site). We obtain a similar expansion of the
probability distribution of the reflection phase (finding that it
is generally uniform only at the zeroth order), and indeed use
this expansion in calculating the localization length.

We proceed to apply our first result to disordered wires and
DTQWs. In the former case, we consider both the Anderson
model and a broad class of periodic-on-average random sys-
tems (PARS), verifying that our results agree with and extend
results from the literature. (For general background on PARS,
see, e.g., Ref. [47] and references therein.) We then calculate
the localization length analytically as a function of arbitrary
phase disorder in a two-component DTQW in one dimension.
We expect our calculation to apply to scattering setups [37]
and beyond, and indeed we verify that our result interpolates
between known results for weak and strong disorder that were
calculated without reference to scattering [18,19]. We find
that the localization length can depend nonmonotonically on
the strength of phase disorder (similar to behavior seen nu-
merically in Refs. [11,18]) [48]. Our expansion applies when
the quantum “coin” is highly biased (see below), which is a
regime of interest for optimizing quantum search [26]. Even
if the coin is only moderately biased, we find favorable agree-
ment with numerics using the first two nonvanishing orders of
our expansion.

Our second main result concerns the joint probability dis-
tribution PL(− ln T, φ), where φ is the reflection phase of the
disordered region. We use an ansatz to find that for large L and
to all orders in the scattering expansion, PL(− ln T, φ) tends
to a Gaussian function (of − ln T ) with mean, variance, and
overall scale all depending on φ and all calculable order by
order in terms of local averages. We further show that at the
leading order in the local reflection strength, a version of the
scaling theory applies: the joint distribution is determined by
three parameters, which we may take to be the mean of − ln T
and the mean and variance of φ. The latter two reach constant
values for large system size (β2 = β3 = 0 in the notation used
above).

Another contribution of this paper is to extend the pertur-
bative derivation of SPS by Schrader et al. [36], while also
explicitly connecting their result to a scattering setup. As we
review in the main text, Ref. [36] demonstrates SPS in a
general setting at the leading order in a small parameter. We
point out that in a scattering setup, the local reflection strength

FIG. 1. Schematic of our setup.

is a valid choice for this parameter, which confirms (without
assuming phase uniformity) the expectation in the literature
that SPS should hold for weak local scattering [29]. We also
extend the SPS relation to another order in the local reflection
strength. (SPS cannot hold generally at the next order beyond,
as Schrader et al. have shown that the Anderson model is
a counterexample [36].) Note then that both SPS (for the
distribution of − ln T ) and the three-parameter scaling that we
find for the joint distribution are obtained in the same regime
(weak local scattering).

We now make several comments about the scope of this
paper. First, we focus throughout on the strongly localized
regime (L � Lloc). Second, we confine our attention to static
(quenched) disorder that is independently and identically
distributed (i.i.d.). Finally, we assume that there is no deco-
herence. In spite of the above restrictions, our work applies
to a variety of problems that can be put into a scattering
framework, including classical as well as quantum problems,
since Anderson localization is ultimately a phenomenon of
wave interference. Also, our approach might extend to the
quasi-one-dimensional case (which we discuss more in the
Conclusion).

The paper is organized as follows. In Sec. II, we present
the basic setup and review the most relevant prior work. In
Sec. III, we present our results for the localization length and
reflection phase distribution, and we apply them to disordered
wires and discrete-time quantum walks. (We also include our
results on SPS in this section, though they partially depend on
results from the section following it.) In Sec. IV, we present
our results for the joint probability distribution. We summa-
rize and discuss possible future work in Sec. V.

II. SETUP AND REVIEW OF PRIOR WORK

A. Setup

We consider a one-dimensional “sample” consisting of N
sites labeled by n = 1, . . . , N (Fig. 1). The sample is attached
to infinite “leads” and is a scattering region for incoming
and outgoing waves in the leads. Each site in the sample
is associated with an array Dn of disorder variables. For in-
stance, in the Anderson model with diagonal disorder, Dn

would be the onsite potential, i.e., an array of length 1.
The disorder is assumed to be i.i.d. with some normalized
probability distribution ρ(Dn), and we write disorder aver-
ages of any quantity X as 〈X 〉n ≡ ∫

dDnρ(Dn)X (any site n)
and 〈X 〉1...N ≡ ∫

[
∏N

n=1 dDn ρ(Dn)]X (the average over all N
sites).

We assume that each site has a 2 × 2 disordered S matrix
Sn which we parametrize by

Sn =
(

tn r′
n

rn t ′
n

)
(2.1a)

=
(√

Tn exp[iφtn ]
√

Rn exp[iφr′
n
]√

Rn exp[iφrn ]
√

Tn exp[iφt ′
n
]

)
, (2.1b)
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where tn and t ′
n (rn and r′

n) are the local transmission (reflec-
tion) amplitudes, Tn = |tn|2 = |t ′

n|2 (Rn = |rn|2 = |r′
n|2) are

the local transmission (reflection) coefficients, and φtn and
φt ′

n
(φrn and φr′

n
) are the transmission (reflection) phases,

which unitarity constrains by Rn + Tn = 1 and φtn + φt ′
n
−

φrn − φr′
n
= π (modulo 2π ). Here and throughout, the sub-

script n indicates dependence on the disorder variables Dn

of site n. We consider only the single-channel case, i.e., the
amplitudes are complex numbers and not matrices.

We consider the scattering problem of the N-site sample.
The S matrix for the sample, denoted S1...N , relates incoming
and outgoing scattering amplitudes in the leads by(

�+
R

�−
L

)
= S1...N

(
�+

L
�−

R

)
. (2.2)

The S matrix is obtained in the usual way by multiplying the
scattering transfer matrices of the N sites and converting the
resulting scattering transfer matrix back to an S matrix (see
Appendix A). We write

S1...N =
(√

T1...N exp[iφt1...N ]
√

R1...N exp[iφr′
1...N

]√
R1...N exp[iφr1...N ]

√
T1...N exp[iφt ′

1...N
]

)
, (2.3)

in which the parameters are constrained by unitarity to satisfy
the same equations mentioned below Eq. (2.1b). No further
discussion of the leads is necessary at this point; the problem
is to study the sample S matrix (2.3) given the local S matrix
(2.1a), which in any particular problem depends on the prop-
erties of the sample and leads.

The central object of our study is the joint probability
distribution of the minus logarithm of the transmission co-
efficient (denoted s1...N ≡ − ln T1...N ) and of either one of the
reflection phases (we choose the right-to-left phase, φr′

1...N
). We

focus at first on the localization length and the marginal distri-
butions of s and φr′ (which indeed are determined by the joint
distribution). We write the joint and marginal distributions as

PN (s′, φ′
r′ ) ≡ 〈δ(s1...N − s′)δ(φr′

1...N
− φ′

r′ )〉1...N , (2.4a)

PN (s) ≡
∫ π

−π

dφr′PN (s, φr′ ), (2.4b)

pN (φr′ ) ≡
∫ ∞

0
ds PN (s, φr′ ), (2.4c)

where the subscript N on the left-hand side, in departure from
our usual convention, indicates dependence on the number
N rather than on DN [51]. As discussed in the Introduction,
for a large sample (N � 1) the probability distribution of s
is Gaussian with the mean growing linearly with N (although
the Gaussian form may not accurately calculate moments of T
and T −1 [52]). The localization length Lloc is then determined
by

〈s1...N 〉1...N = 2

Lloc
N + O(N0). (2.5)

The variance [denoted σ (N )2] of PN (s) also grows linearly
with N , and SPS holds when the mean and variance are related
by an equation (see below).

B. Review of prior work

In this discussion, we present results from the literature
as they apply to our setup, using our notation throughout.
We focus on prior work most relevant to our work and do
not attempt a comprehensive review. We first review explicit,
model-independent results for the localization length and for
SPS from the literature, and then we discuss the relation of
our work to the literature on the joint distribution.

In Ref. [30], Anderson et al. proposed that there would be a
length scale 	p beyond which complete phase randomization
would occur. According to this uniform phase hypothesis, for
N � 	p the phase of r′

1...N rN+1, which we write as ν1...N ≡
φr′

1...N
+ φrN+1 , is distributed uniformly in (−π, π ) and inde-

pendently of TN+1. [We will use “uniform” to refer to a phase
distribution being uniform over (−π, π ), unless otherwise
noted.] This hypothesis yields an explicit formula for the
localization length in terms of a local average [30]:

2

Lloc
= 〈− ln Tn〉n (any site n). (2.6)

Furthermore, the same hypothesis yields SPS by relating the
mean and variance through [30]

lim
N→∞

σ (N )2

2N
= 2

Lloc
. (2.7)

However, the uniform phase hypothesis was shown to fail in
a number of cases including strong disorder (see [53] and
references therein, as well as [54–57]), multiple scattering
channels [58], and anomalies in the Anderson model [59,60].
In Ref. [38], though, Lambert and Thorpe obtained a more
general formula for the localization length that accounts for
deviations from phase uniformity:

2

Lloc
= 〈− ln Tn〉n

+ 〈ln[1 + RN+1 + 2
√

RN+1 cos(ν1...N )]〉1...N+1, (2.8)

in which N � 1 and n is any site. Equation (2.8) recov-
ers the uniform phase result (2.6) when ν1...N is uniformly
distributed independently of RN+1 [since

∫ π

−π
dν ln(1 + R +

2
√

R cos ν) = 0]. In Refs. [38,39], Lambert and Thorpe fur-
thermore showed that, in a model consisting of randomly
spaced delta-function scatterers of equal strength, the prob-
ability distribution of ν1...N is generically nonuniform even for
an arbitrarily long chain. The second term in (2.8) makes a
substantial correction to the first, particularly for weak disor-
der. In a more general setting, an expression for the probability
distribution of ν1...N at the zeroth order in disorder strength
(with the thermodynamic limit taken before the limit of zero
disorder) was derived by Lambert et al. in Ref. [61]; the
authors then used this probability distribution in Eq. (2.8)
to find that the localization length is finite in band gaps and
infinite outside of band gaps, as expected [61].

The significance of the delta-function model considered by
Refs. [38,39] was challenged by Stone et al. in Ref. [62], in
which the authors showed numerically that in the Anderson
model with weak, diagonal disorder with vanishing mean
onsite energy, the probability distribution of ν1...N is indeed
uniform for large N . Stone et al. obtained a formula analogous
to (2.8) for the variance σ (N )2; using this formula, Eq. (2.8),
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and the uniformity of the distribution of ν1...N , they obtained
both the known weak disorder expansion for the inverse local-
ization length and the SPS relation (2.7). The authors further
argued that the delta-function model considered by Lambert
and Thorpe is a special case and that any model with the po-
tential being positive as often as negative would yield results
similar to those in the Anderson model.

A number of works (including some that we have cited
above) have studied the distribution of the reflection phase
φr′

1...N
rather than of ν1...N . We can understand this as follows.

By construction, ν1...N is distributed uniformly provided that
either or both of φr′

1...N
and φrN+1 are distributed uniformly.

The challenging case, then, is what happens when the local
phase φrN+1 is nonuniformly distributed: Does the distribution
of the sample phase φr′

1...N
become uniform for large N , or not?

From here on, we mean by the “uniform phase hypothesis” the
assertion that either or both of the sample reflection phases,
φr′

1...N
and φr1...N , are distributed uniformly for large N .

Another approach to the SPS relation was provided by
Deych et al. in Refs. [34,35]. Deych et al. argue that the
SPS relation holds in the regime Lloc � 	s, where 	s is a new
length scale that they identify, without appeal to any uniform
phase hypothesis. In a setup encompassing both the Ander-
son model with diagonal disorder and the case of equally
spaced delta functions with random strengths [34,35,62],
Deych et al. provide analytical results in the Lloyd model
(i.e., disorder following a Cauchy distribution). They ob-
tain the SPS relation, albeit with an extra prefactor of 2
that they attribute to the peculiarity of the Cauchy distri-
bution; they also present numerical evidence for the SPS
relation following from the condition Lloc � 	s in a more
generic model (an array of square-well potentials with random
widths) [34,35].

The work with most overlap with ours is that of Schrader
et al. in Ref. [36] (see also Ref. [43]), which presents an ex-
plicit formula for the inverse localization length and variance
and a proof of the SPS relation, all at the leading order in a
small parameter. In particular, Schrader et al. proved 2/Lloc =
Dλ′2 + O(λ′3) and limN→∞ σ (N )2/(2N ) = 2/Lloc + O(λ′3),
where D is given in terms of averages over local quantities
[unlike Eq. (2.8), which includes an average over the whole
sample] and where λ′ is a small parameter that Schrader et al.
identified as “the effective size of the randomness” [36]. The
quantity D consists of a sum of two terms, one that recovers
the uniform phase result (2.6) at leading order in λ′ and a sec-
ond that contributes due to departures from the uniform phase
hypothesis [36]. Schrader et al. point out that although the
second term vanishes in the Anderson model (with diagonal
disorder and vanishing mean onsite energy), it is in general not
a small correction to the first term (for instance, in the random
polymer model [63]). Schrader et al. also calculate 2/Lloc and
limN→∞ σ (N )2/(2N ) to the next nonvanishing order in the
Anderson model (λ′4), showing that both the uniform phase
formula (2.6) and the SPS relation (2.7) break down at this
order [36].

Let us next review prior work on the joint distribution of
s and φr′ . Given a maximum entropy ansatz, Ref. [64] found
that the probability distribution of s satisfies a Fokker-Planck
equation (which in turn yields a Gaussian distribution for s)
[65]. The maximum entropy ansatz yields a factorization of

the joint distribution of s and φr′ into a product of the two
marginal distributions, with the marginal distribution of φr′

being uniform. This calculation applies when either or both
of the sample reflection phase and local reflection phase are
distributed uniformly.

While our work focuses on the case of a single scatter-
ing channel (i.e., 2 × 2 S matrices), it is useful for further
comparison with the literature to consider the case of an
arbitrary number Nc of channels (2Nc × 2Nc S matrices). In
this more general case, the S matrix may be parametrized
by Nc transmission coefficients and 4N2

c − Nc phases [66,67].
The generalization of the uniform phase hypothesis to this
case is known as the isotropy assumption and is believed
to hold when there are many channels (Nc � 1) with suffi-
cient coupling between them (see Ref. [68] and references
therein). Under this assumption, the joint probability distri-
bution of the Nc transmission coefficients satisfies a version of
the Fokker-Planck equation known as the Dorokhov-Mello-
Pereyra-Kumar (DMPK) equation [58,66]. For the case Nc =
2, it has been shown in particular models that the isotropy
assumption breaks down and that the transmission coefficients
are entangled with the phases in the Fokker-Planck equa-
tion [58,68].

For the case Nc = 1, which is our focus, general and an-
alytical results for the joint distribution of (s, φr′ , φt ) were
obtained by Roberts in Ref. [69]; see also Ref. [53]. These
works obtained factorization of the joint distribution of (s, φr′ )
into the product of separate distributions for s and φr′ , ap-
parently in conflict with our result. In Sec. IV, we support
our result with analytical calculations and numerical checks,
and we provide an explanation for the discrepancy with
Refs. [53,69].

III. SCATTERING EXPANSION OF
THE LOCALIZATION LENGTH

A. Overview

Our first general result in this paper is a series expansion
of the inverse localization length with the local reflection
strength |rn| as a small parameter. In the course of this cal-
culation, we also present results on SPS and on the marginal
distribution of the reflection phase.

Our scattering expansion is defined by rescaling rn → λrn

and r′
n → λr′

n in the local S matrix (2.1a) (with tn and t ′
n

also rescaled to maintain unitarity), and, roughly speaking,
expanding in the real and positive parameter λ. (As we discuss
below, it is necessary in the calculation to consider the order of
limits N → ∞ and λ → 0+ in a particular way to maintain the
system always in the localized regime. However, this subtlety
does not appear in the final results, which may be under-
stood as straightforward expansions in λ.) For convenience,
we let the dependence on λ be implicit in our notation and
refer informally to an expansion in |rn|. Thus, the reflection
amplitudes rn and r′

n are both first order and the reflection
coefficient Rn is second order. While we assume for now that
|rn| is linear in the small parameter λ, we explain below the
simple modifications to our results in the more general case
of |rn| starting at linear order but also having higher-order
corrections.
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Before presenting our calculation, we first note that the
result of Schrader et al. [36] mentioned in the previous sec-
tion has the following corollary: our parameter λ is a valid
choice for their parameter λ′, and their formula for the local-
ization length and variance may be written in terms of local
averages at any site n as (see Appendix B for the calculation)
[70]

2

Lloc
= 〈Rn〉n − 2 Re

[
〈rn〉n〈r′

n〉n

1 + 〈
rnr′

n/Rn
〉
n

]
+ O(|rn|4) (3.1)

and

lim
N→∞

σ (N )2

2N
= 2

Lloc
+ O(|rn|4), (3.2)

where we have also improved their results from O(|rn|3) error
to O(|rn|4) error (see next paragraph). The first term on the
right-hand side of Eq. (3.1) is the small |rn| expansion of the
uniform phase result (2.6), while the second term is the con-
tribution from deviations from the uniform phase hypothesis.
We emphasize again that the second term is not, in general,
a small correction to the first; indeed, both terms are of the
same order in the small parameter. We also note that unlike
the Lambert and Thorpe formula (2.8), Eq. (3.1) involves only
local averages and no averaging over the whole chain.

In writing Eqs. (3.1) and (3.2), we have in fact gone be-
yond the immediate corollary of the result of Schrader et al.,
which would yield the leading-order contributions as given
above but with O(|rn|3) error instead of O(|rn|4) [71]. The
third-order terms, and indeed all odd orders, vanish due to
the following symmetry argument. The localization length and
variance must be invariant under phase redefinitions of the
incoming and outgoing scattering amplitudes; in particular,
we can redefine �±

α → e±iφ/2�±
α (α = R, L), which sends

rn → e−iφrn and r′
n → eiφr′

n. It follows that rn and r′
n must

appear in equal numbers in each term (hence there are no
terms of the order of an odd power of |rn|). This argument
relies on the existence of series expressions for 2/Lloc and
limN→∞ σ (N )2/(2N ) with coefficients involving only local
averages of integer powers of rn, r′

n, vn, and Rn (note that the
latter two are invariant under the phase redefinition). In this
section we show that such a series exists for 2/Lloc, and in
Sec. IV we show it for limN→∞ σ (N )2/(2N ).

We have thus explicitly connected SPS to the weakness of
the local reflection strength, and we have extended the SPS
relation to one more order [Eq. (3.2)]. Our next task is to apply
the scattering expansion to the inverse localization length,
recovering Eq. (3.1) and providing a recursive calculation of
higher orders. We show that all orders of the series depend,
as in Eq. (3.1), only on averages involving the local reflection
amplitudes rn and r′

n. We explicitly verify the vanishing of the
third order and present the next nonvanishing order (|rn|4).

A key ingredient in our calculation is the limiting form as
N → ∞ of the probability distribution of the reflection phase,
which we write as

p∞(φr′ ) ≡ lim
N→∞

pN (φr′ ). (3.3)

(In Appendix D, we show that this limit exists given the
assumption that localization occurs.) Our approach is based on
the following series formula, which we derive below, that ex-

presses the inverse localization length in terms of the Fourier
coefficients p∞,	 ≡ ∫ π

−π

dφr′
2π

e−i	φr′ p∞(φr′ ) and the moments
of rn:

2

Lloc
= 〈− ln Tn〉n − 4π Re

[ ∞∑
	=1

1

	
p∞,−	

〈
r	

n

〉
n

]
. (3.4)

Equation (3.4) is related to the Lambert and Thorpe formula
(2.8), with the essential difference being that we focus on
the distribution of φr′ rather than ν and work in frequency
space. Note that the uniform phase formula (2.6) is recovered
from Eq. (3.4) in two nonexclusive special cases: (i) the local
reflection phase is uniformly distributed independently of the
local reflection coefficient (then 〈r	

n〉n = 0 for 	 > 0), or (ii)
the reflection phase distribution of the sample is uniform. Case
(i) is an example of strong phase disorder. The difficulty of
applying Eq. (3.4), in the case that (i) does not hold, is that
it has been shown in many examples that the reflection phase
distribution p∞(φr′ ) can be nonuniform (see references cited
in Sec. II B) and in general the distribution is only known
numerically (although Schrader et al. [36] calculated p∞,±1
in an equivalent form).

In order to use Eq. (3.4), we calculate the probability
distribution of the reflection phase order by order in the
scattering expansion. We show that the zeroth-order contri-
bution is (generically) the uniform distribution, and that at
any fixed order of the expansion, only finitely many of the
Fourier coefficients p∞,	 are nonvanishing. We further show
that the expansion coefficients are local averages that can be
calculated recursively. Together with Eq. (3.4), this recursive
expansion of the Fourier coefficients p∞,	 yields our scatter-
ing expansion of the inverse localization length.

In the remainder of this section, we derive the above results
(Sec. III B), then apply them to disordered wires (Sec. III C)
and to quantum walks (Sec. III D). We note here that our cal-
culation in this section only concerns the localization length
and not the variance; however, we do obtain Eq. (3.2) by a
different approach in Sec. IV, and it is convenient to apply
this result in this section to comment on SPS in a broad class
of PARS.

B. General calculation

We compare a sample of size N with a sample of size N + 1
using the following exact relations between the transmission
coefficients and reflection phases (for completeness we derive
them in Appendix A):

T1...N+1 = T1...N TN+1

|1 − √
R1...N e

iφr′1...N rN+1|2
, (3.5a)

φr′
1...N+1

= φr′
1...N

+ π + φrN+1 + φr′
N+1

−Arg[1 −
√

R1...N rN+1e
iφr′1...N ]

−Arg[1 − rN+1e
iφr′1...N /

√
R1...N ] (modulo 2π ).

(3.5b)

A basic assumption of our calculation is that localization
occurs: that is, for large N the sample reflection coefficient
R1...N ≈ 1 in all disorder realizations [72]. We can then replace
R1...N → 1 in the logarithm of Eq. (3.5a) and in Eq. (3.5b); in
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other words, we keep ln T1...N and constant terms, but neglect
terms linear or higher in T1...N = 1 − R1...N . We thus obtain

s1...N+1 = s1...N + gN+1
(
φr′

1...N

)
, (3.6a)

φr′
1...N+1

= φr′
1...N

+ hN+1
(
φr′

1...N

)
, (3.6b)

where

gn(φ) = − ln Tn + ln(1 − rneiφ − r∗
n e−iφ + Rn), (3.7a)

hn(φ) = π + φrn + φr′
n
+ i ln

1 − rneiφ

1 − r∗
n e−iφ

. (3.7b)

Let us pause to present an intuitive picture, in which we
temporarily think of the increasing sample size N as repre-
senting time. Then, Eq. (3.6b) indicates that the reflection
phase performs a random walk on the circle; furthermore,
the probability distribution of the step size depends on the
current position that the walk has reached. From this point of
view, it is clear that the long-time distribution of the phase
should generally be nonuniform since the walk will spend
more time in regions where the step size is smaller. From
Eq. (3.6a), we see that the variable s performs a random
walk on the half-line with a step size that depends on the
current position of the phase walk, though not on the current
position of s. While the average position reached by s after
a long time may be obtained by treating the phase as simply
another disorder variable in the step size (i.e., sampling the
phase from its long-time distribution), the variance of s and
the correlations between s and the phase seem to require a
more careful treatment (Sec. IV).

To clarify a technical point about our expansion, we tem-
porarily restore the true small parameter λ. While we are
interested in the regime of small λ, we cannot simply ex-
pand in λ for fixed N since the point λ = 0 corresponds to
a sample transmission coefficient of unity, inconsistent with
our replacing R1...N → 1. Instead, we must suppose that for
any fixed λ > 0, there is some sufficiently large N0(λ) for
which the sample transmission coefficient is negligible for
any N � N0(λ) in every disorder realization [72]. [N0(λ) is
of order of the localization length, so in view of our results
below, it will turn out that N0(λ) ∼ 1/λ2.] All expansions in
powers of λ in our calculations below must be understood as
occurring in the regime of λ > 0 with N � N0(λ) [73]. This
subtlety need not be considered in our final answer for 2/Lloc,
and we have there a simple expansion in λ.

We make a few comments now about our conventions.
Here and throughout we use a superscript to indicate the
order in |rn| (i.e., X ( j) ∼ |rn| j for any quantity X ). Also, since
the disorder is i.i.d., we frequently replace the disorder av-
erage over site N + 1 by an average over any site n. Finally,
all phases are constrained to be in [−π, π ), and any equa-
tions between nonexponentiated phases are to be understood
as holding modulo 2π .

Next, we develop the scattering expansion for the Fourier
coefficients p∞,	. A recursion relation for pN (φr′ ) is deter-
mined by pN+1(φr′ ) = 〈δ(φr′

1...N+1
− φr′ )〉1...N+1, from which

Eq. (3.6b) then yields

pN+1(φr′ )

=
∫ π

−π

dφ′
r′ pN (φ′

r′ )〈δ(φ′
r′ + hn(φ′

r′ ) − φr′ )〉n. (3.8)

We then send N → ∞ and take the Fourier transform of both
sides to obtain [noting Eq. (3.7b)]

p∞,	 = (−1)	
〈
v−	

n

∫ π

−π

dφ

2π
e−i	φ p∞(φ)An,	(φ)

〉
n

, (3.9)

where we have defined

vn = rnr′
n

Rn
, (3.10a)

An,	(φ) =
(

1 − rneiφ

1 − r∗
n e−iφ

)	

. (3.10b)

Equation (3.9) can be solved order by order in the scattering
expansion, as we now show.

We write the expansions of p∞(φ) and An,	(φ) as p∞(φ) =∑∞
j=0 p( j)

∞ (φ) and An,	(φ) = ∑∞
j=0 A( j)

n,	(φ), with correspond-
ing expansions for the Fourier coefficients. Note that by the
normalization condition,

∫ π

−π
dφ p∞(φ) = 1, we have p( j)

∞,0 =
0 for all j � 1.

We now equate terms of the same order on both sides
of Eq. (3.9). Since A(0)

n,	 = 1, the quantity p(q)
∞,	 appears on

both sides of the order-q equation (for any q � 0). This has
two immediate consequences. First, the zeroth-order part of
Eq. (3.9) is

p(0)
∞,	 = (−1)	

〈
v−	

n

〉
n
p(0)

∞,	, (3.11)

and second, for any q � 1, the order-q part of Eq. (3.9) for
	 
= 0 can be rearranged to

p(q)
∞,	 = (−1)	

1 − (−1)	
〈
v−	

n

〉
n

〈
v−	

n

q−1∑
j=0

∞∑
	′=−∞

p( j)
∞,−	′A

(q− j)
n,	;	+	′

〉
n

,

(3.12)

where An,	;	′ = ∫ π

−π

dφ

2π
e−i	′φAn,	(φ) [and where we have

written
∫ π

−π

dφ

2π
e−i	φ p( j)

∞ (φ)A(q− j)
n,	 (φ) as a sum over Fourier

coefficients].
Equation (3.11) implies (see next paragraph) that p(0)

∞,	 =
0 for all 	 
= 0. The 	 = 0 Fourier coefficient is fixed by the
normalization of the probability distribution, so we find that
the zeroth-order distribution is uniform:

p(0)
∞ (φr ) = 1

2π
. (3.13)

Equations (3.12) and (3.13) rely on assumptions of “rea-
sonable” disorder and “generic” model parameters, as we now
explain. For instance, the limit of no disorder at all technically
meets our definitions so far, but must be excluded. Also,
in applying our approach to any particular model, we must
consider the model as part of some family of models (e.g.,
with parameters taking a continuous range of values) since
our results are expected to hold generically but may break
down at some special values of parameters (the anomalous
momenta of the Anderson model are an example). A precise
statement of these assumptions is (a) that localization occurs
(an assumption that we have used already), and (b) that the
following inequality holds for all integers 	 
= 0:

〈ei	(φrn +φr′n +π )〉n 
= 1, (3.14)

where n is any site. We expect that any choice of disorder
distribution and model parameters that violates (3.14) is “non-
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generic” (since a particular alignment of reflection phases
across disorder realizations is required). [In Appendix F, we
consider the case that (3.14) is only assumed for 0 < |	| �
	max with some finite 	max.] Noting that vn = ei(φrn +φr′n ), we
see then that for 	 
= 0, we have (−1)	〈v−	

n 〉n 
= 1, so indeed
Eq. (3.11) implies p(0)

∞,	 = 0 and the denominator in Eq. (3.12)
is nonvanishing.

Equation (3.12) is almost in a form in which we can calcu-
late the reflection phase distribution to many orders. The point
is that the right-hand side involves only the reflection phase

distribution at lower orders than the order q on the left-hand
side; thus, in principle we can start with Eq. (3.13) and iterate
Eq. (3.12) to calculate higher orders. To make this process
more efficient, we show next that only finitely many Fourier
coefficients are nonvanishing at any given order. In particular,
we show that for any q � 0,

p(q)
∞,	 = 0 (for |	| > q), (3.15)

and we show that the sum over 	′ on the right-hand side of
Eq. (3.12) can be truncated to a finite sum:

p(q)
∞,	 = (−1)	

1 − (−1)	
〈
v−	

n

〉
n

〈
v−	

n

q−1∑
j=0

j∑
	′=0

p( j)
∞,−	′A

(q− j)
n,	;	+	′

〉
n

(−q � 	 < 0). (3.16)

The Fourier coefficients An,	;	′ that we need are easily cal-
culated to many orders from the definition (3.10b), and the
positive-frequency coefficients (	 > 0) can be obtained from
p∞,−	 = p∗

∞,	.
To derive Eqs. (3.15) and (3.16), we use some simple

properties of the function A. We start by noting that A( j)
n,	;	′ = 0

for |	′| > j. Suppose now that for some q � 1, p( j)
∞,	′ = 0

when 0 � j � q − 1 and |	′| > j [this holds for q = 1 by
Eq. (3.13)]. Then the only terms on the right-hand side of
Eq. (3.12) that can be nonzero are those with |	′| � j and
|	 + 	′| � q − j, which implies |	| � q for these terms. Thus,
Eq. (3.15) holds by induction. The sum over 	′ in Eq. (3.12)
can therefore be truncated to 	′ = − j to j. Fixing 	 < 0,
we can see that the negative 	′ terms can be dropped since
An,	;	′ = 0 for 	′ < 	; thus we obtain Eq. (3.16). Further im-
provement (dropping terms in the sum that must be zero) is
possible, but Eq. (3.16) suffices for our purposes.

We can now calculate higher orders of the reflection phase
distribution in a completely mechanical, recursive fashion
using Eq. (3.16), starting from p(0)

∞,	 = δ	,0/(2π ). To present
compactly the first few terms of these expansions, we use the
following notation:

α j = 1

1 − (−1) j
〈
v

j
n
〉
n

, (3.17a)

γ (1) = α1〈r′
n〉n, (3.17b)

γ (2) = α2〈r′
n(r′

n − 2γ (1)vn)〉n, (3.17c)

γ
(3)

1 = α1〈rn(γ (1)r′
n − γ (2)vn)〉n, (3.17d)

γ
(3)

3 = α3
〈
r′

n

(
r′

n
2 − 3γ (1)r′

nvn + 3γ (2)v2
n

)〉
n. (3.17e)

Then we obtain, transforming back from frequency space
(see Appendix F for further detail),

2π p∞(φr′ ) = 1 + 2 Re
[ (

γ (1) + γ
(3)

1

)
e−iφr′

+ γ (2)e−2iφr′ + γ
(3)

3 e−3iφr′
] + O(|rn|4), (3.18)

which shows explicitly the corrections to the uniform dis-
tribution that is obtained at zeroth order. Let us also note
that interchanging rn ↔ r′

n in Eqs. (3.17b)–(3.17e) yields the
corresponding expression for the limiting distribution of the
left-to-right reflection phase (φr1...N ).

We proceed to use the reflection phase distribution to calcu-
late the inverse localization length in the scattering expansion.
We start by deriving the relation (3.4) between the localization
length and the Fourier coefficients p∞,	. From the recursion
relation (3.6a) for s, it follows that for sufficiently large N ,
〈s1...N 〉1...N increases by the same constant amount (which by
definition is 2/Lloc) each time N is increased by one:

〈s1...N+1〉1...N+1 − 〈s1...N 〉1...N

=
∫ π

−π

dφr′ p∞(φr′ )〈gN+1(φr′ )〉N+1. (3.19)

The site N + 1 on the right-hand side can be replaced by
any site n since the disorder is by assumption distributed
identically across the sites. We thus obtain an expression for
the inverse localization length in terms of the reflection phase
distribution:

2

Lloc
=
〈 ∫ π

−π

dφ p∞(φr′ )gn(φr′ )

〉
n

(3.20a)

= 〈− ln Tn〉n +
∫ π

−π

dφr′ p∞(φr′ )

×〈ln(1 − rneiφr′ − r∗
n e−iφr′ + Rn)〉n. (3.20b)

Equation (3.20b) can also be obtained directly from the
Lambert and Thorpe expression [Eq. (2.8)], or (using the
correspondence discussed in Appendix B) from the Fursten-
berg formula quoted in Ref. [36]. Expressing the second term
in frequency space is straightforward [74] (see Appendix E)
and yields Eq. (3.4).

Since the odd orders vanish due to the symmetry argument
presented below Eq. (3.2), we may write

2

Lloc
=

∞∑
j=1

(
2

Lloc

)(2 j)

, (3.21)

where the superscript indicates the order in the expansion.
Furthermore, for any j � 1, Eq. (3.4) yields

(
2

Lloc

)(2 j)

= 1

j

〈
R j

n

〉
n − 4π Re

⎡
⎣ j∑

	=1

1

	
p(2 j−	)

∞,−	

〈
r	

n

〉
n

⎤
⎦ , (3.22)
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where we noted that Eq. (3.15) allows us to drop the terms 	 =
j + 1 to 2 j in the sum. Reading off the Fourier coefficients
from Eq. (3.18), we then calculate the first two nonvanishing

orders of the scattering expansion for the inverse localization
length (the main result of this section):

2

Lloc
= 〈Rn〉n − 2 Re

[
〈rn〉n〈r′

n〉n

1 + 〈
rnr′

n/Rn
〉
n

]
+ 1

2

〈
R2

n

〉
n

− Re
[
α2
(〈

r2
n

〉
n − 2α1〈rn〉n〈rnvn〉n

)(〈
r′2

n

〉
n − 2α1〈r′

n〉n〈r′
nvn〉n

) + 2α2
1〈rn〉n〈r′

n〉n〈rnr′
n〉n

] + O(|rn|6). (3.23)

On the right-hand side, the first two terms are second order
and recover Eq. (3.1). The remaining terms are fourth order.
We have explicitly checked [using Eq. (3.4)] that the third-
and fifth-order contributions vanish, consistent with the gen-
eral symmetry argument. Our recursive formula (3.16) can
straightforwardly generate still higher orders of Fourier co-
efficients p∞,	, and thus of 2/Lloc.

A final technical point is that we have so far assumed that
|rn| is strictly linear in the small parameter λ. However, it
may be the case in a particular problem that |rn| starts at
linear order in some parameter λ but also has higher-order
corrections in λ (for instance, this occurs in the Anderson
model, where λ is essentially the disorder strength). There are
two straightforward steps to adapt the results of this section to
this more general case. First, the condition (3.14) is required
to hold at the zeroth order in λ as λ → 0. Second, the series
for 2/Lloc is to be truncated to a fixed order in λ, which
implies in particular that each term at a given order j in the
|rn| expansion contributes generally at all orders j′ � j in λ.

C. Application to disordered wires

In this section, we apply our general results to the Ander-
son model and to a broad class of PARS. In the Anderson
model, we consider the case of diagonal disorder (i.e., dis-
order in the onsite energies but not the tunneling) and show
that our next-to-leading order result (3.23) agrees with and
extends a known formula for the weak disorder expansion
of the inverse localization length. We also verify our result
for the probability distribution of the reflection phase with
the literature, and we discuss the “anomalous” values of the
momentum. In the PARS case, we use the Born series to show
that Eqs. (3.1) and (3.2) demonstrate the SPS relation to the
first two orders in the potential strength. As a special case, we
obtain the SPS relation in the same square-well array model
considered by Deych et al. (see Sec. II). We also verify our
higher-order formula (3.23) for the inverse localization length
by comparing to another special case in the literature.

1. Anderson model with diagonal disorder

As a first application and check of our general re-
sults, we consider the Anderson model: a one-dimensional
tight-binding chain with disordered onsite energies. The well-
known scattering setup for this problem is the following:

H = −V
∑

n

(|n + 1〉〈n| + H.c.) +
∑

n

εn|n〉〈n|, (3.24)

where the onsite potentials εn are i.i.d. for n inside the
“sample” region (defined as the sites n = 1, . . . , N) and

zero otherwise (−∞ < n � 0 and N + 1 � n < ∞). We take
V > 0. The Schrödinger equation for an eigenstate |�〉 =∑

n �(n)|n〉 with energy E can be written in transfer matrix
form: (

�(n + 1)

�(n)

)
= Mn

(
�(n)

�(n − 1)

)
, (3.25)

where

Mn =
(

εn−E
V −1

1 0

)
. (3.26)

The clean Hamiltonian has spectrum E = −2V cos k, and
given a fixed k ∈ (0, π ) we can write a scattering state with
energy E as

�(n) =
{

�+
L eikn + �−

L e−ikn n � 1,

�+
R eik(n−N ) + �−

R e−ik(n−N ) n � N.
(3.27)

The phase convention for the amplitudes on the right (i.e., the
factors of e±ikN [75]) is chosen so that the local reflection
phase takes the same form at every site (i.e., it depends on
εn but not on the integer value of the site index n), which in
turn results in the existence of a limiting distribution of the
reflection phase as N → ∞. Were we to omit the factors of
e±ikN , the distribution would instead tend to a fixed function
evaluated with an N-dependent shift of its argument and hence
would not strictly have any N → ∞ limit.

To convert position-space amplitudes to scattering ampli-
tudes, define a matrix � as

� =
(

eik e−ik

1 1

)
. (3.28)

Then,(
�(1)

�(0)

)
= �

(
�+

L

�−
L

)
,

(
�(N + 1)

�(N )

)
= �

(
�+

R

�−
R

)
. (3.29)

Chaining transfer matrices then yields the desired product
form of the scattering transfer matrix of the sample:

T1...N = TN . . . T1, (3.30)

where

Tn = �−1Mn� (3.31a)

=
(

(1 − ien) eik −iene−ik

ieneik (1 + ien) e−ik

)
, (3.31b)
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where we have defined a dimensionless onsite energy:

en = εn

2V sin k
= εn√

4V 2 − E2
. (3.32)

The corresponding S matrix at site n is

Sn = eik

1 + ien

(
1 −iene−ik

−ieneik 1

)
, (3.33)

from which we read off the reflection amplitudes

r′
n = e−2ikrn = −ien

1 + ien
. (3.34)

Thus, our scattering expansion applies in the regime of
weak onsite energies. We assume that almost all disorder
realizations have |εn| < εmax, where εmax is a fixed constant
independent of the realization. Note in particular that we are
not considering any long-range probability distribution (such
as the Cauchy distribution considered by Deych et al. in
Refs. [34,35]). The parameter λ that controls the reflection
strength |rn| can be taken to be λ = εmax/V , and we refer
informally to an expansion in en.

Our main result for the Anderson model is obtained by
substituting the reflection amplitudes (3.34) into Eq. (3.23).
With no loss of generality (see below), we take the mean
onsite energy to be zero (〈εn〉n = 0), yielding

2

Lloc
= 〈

e2
n

〉
n + 3

2

〈
e2

n

〉2
n − 1

2

〈
e4

n

〉
n

+ 4
E2 − V 2

E
√

4V 2 − E2

〈
e2

n

〉
n

〈
e3

n

〉
n + O

(
e6

n

)
. (3.35)

The terms in the first line of (3.35) recover the known ex-
pansion to fourth order [76]. The fifth-order term in the
second line is the leading dependence on the asymmetry of
the probability distribution of the onsite energy, in particular
its skewness (i.e., third moment). We are able to calculate the
fifth-order term here because there is no term of fifth order in
the reflection strength in Eq. (3.23).

We note that Eq. (3.35) is consistent with the work of
Ref. [77], which considers an asymmetric distribution with
(in our notation) 〈en〉n = 0, 〈e2

n〉n 
= 0, and a small 〈e3
n〉n 
= 0.

Reference [77] finds that the nonvanishing skewness has no
effect at leading order on the inverse localization length.

The result (3.35) might be expected to hold more gener-
ally, in particular with periodic or open boundary conditions
instead of the scattering setup that we used. As a consistency
check of this expectation, we consider the localization length
as a function of the eigenstate energy E and the average
onsite energy: Lloc(E , εavg), where εavg = 〈εn〉n. With periodic
or open boundary conditions, the average onsite energy is
just an additive constant in the Hamiltonian, so we must have
the symmetry property 1/Lloc(E + εavg, εavg) = 1/Lloc(E , 0).
We have verified that our scattering calculation also has this
symmetry property [by evaluating Eq. (3.23) with general εavg

and comparing to Eq. (3.35)] up to error O(λ6). Note that
εavg = O(λ) here.

We emphasize that the equivalence of Lloc across different
boundary conditions must break down if we allow εn to be
sufficiently large in sufficiently many disorder realizations
(e.g., by taking εavg to be large or by having large variations

about εavg), for then the scattering setup has an attenuation
effect (see next paragraph) that is not present in the problems
with periodic or open boundary conditions. This regime
is outside the scope of our calculation since the reflection
strength approaches unity. We do not know if the difference
between boundary conditions can be detected at sufficiently
high order in the scattering expansion, but due to the
symmetry property mentioned in the previous paragraph,
we expect that Eq. (3.35) holds also for periodic or open
boundary conditions.

To explain this point in more detail, we consider first the
clean limit with strong onsite energy (all εn ≡ εavg � V, |E |).
In the case of periodic or open boundary conditions, εavg is of
no significance and the localization length is infinite. How-
ever, with scattering boundary conditions, the transmission
coefficient T1...N decays exponentially in N purely because of
attenuation. More generally, in the course of a strong disorder
calculation, Ref. [78] shows that the transmission coefficient
(with any disorder such that all εn are large) is simply pro-
portional to the product of 1/εn over all sites n, from which
it follows that 2/Lloc = 〈ln(εn/V )〉n in the scattering setup;
however, this cannot be the answer in the periodic or open
setups because setting all εn to be equal yields a nonzero Lloc.

Next, we calculate the probability distribution of the
reflection phase up to errors of third order in en, verifying our
answer with the literature in the special case of εavg = 0. Here
we do not see any obvious symmetry relation between the
problem with εavg = 0 and the problem with small, nonzero
εavg.

For convenience, we define

�en = en − 〈en〉n. (3.36)

We then obtain

γ (1) = e−ik

2 sin k
[−i〈(�en)2〉n + (1 + 〈en〉n cot k) 〈en〉n]

+ O
(
e3

n

)
, (3.37a)

γ (2) = − ie−2ik

2 sin(2k)
〈(�en)2〉n + e−2ik

4 sin2 k
〈en〉2

n

+ O
(
e3

n

)
, (3.37b)

which we substitute into Eq. (3.18) to obtain the probability
distribution of the reflection phase up to second order (the
third-order term may be obtained similarly). In particular, the
leading correction to phase uniformity is

2π p∞(φr′ ) = 1 + cos(k + φr′ )

sin k
〈en〉n + O

(
e2

n

)
. (3.38)

For εavg = 0, the first-order term vanishes, and the leading
correction is second order:

2π p∞(φr′ ) = 1 −
[

sin(k + φr′ )

sin k
+ sin (2(k + φr′ ))

sin 2k

] 〈
e2

n

〉
n

+ O
(
e4

n

)
, (3.39)

in agreement with Ref. [79], where a symmetric exponen-
tial distribution for εn is considered. Equation (3.39) also
agrees with Ref. [69], which considers an arbitrary disorder
distribution symmetric about zero, except for the sign of the
sin (2(k + φr′ )) term (and our sign agrees with Refs. [79] and
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FIG. 2. Schematic of the PARS setup defined by the Hamiltonian
(3.41). The scattering amplitudes �±

α (α = L, R) refer to Eq. (3.42).
(a) The general case, in which the spacings an, the widths bn, and the
parameters of the potential all vary independently. (b) A special case:
square wells of equal strength. The width wn of the nth well is equal
to the width bn.

with numerical checks) [80]. Since Eq. (3.38) contains a term
linear in εavg, it cannot be recovered from Eq. (3.39) by a
simple shift of energy.

We conclude this section by discussing the special case
of anomalous momenta. So far, we have assumed that the
momentum k takes a “generic” value within (0, π ) (recall that
the lattice spacing is the unit of distance). In particular, the
condition (3.14) at the zeroth order in λ [see the discussion
below (3.14)] is

e2ik	 
= 1 (all integers 	 
= 0), (3.40)

which excludes k = (p/q)π for some integers p, q. These
special points are known in the literature as anomalous (see
Ref. [60] and references therein).

Let us consider k = (p/q)π with p/q reduced to simplest
form and with p 
= 0. Then (3.40) holds for |	| � q − 1, but
not for 	 = q. The calculation in Appendix F then shows
that Eq. (3.35) holds provided that q � 6. More generally,
our approach can be used to calculate the inverse localization
length up to and including order q − 1 in λ. (The increase,
with q, in the expansion order affected by the anomaly has
already been discussed in Refs. [81–83].) As a check, we
note that at the band center anomaly [84] (k = π/2 and hence
q = 2), the scattering expansion does not yield even the lead-

ing order (λ2); this is consistent with the known result that
the leading-order formula 2/Lloc = 〈(�en)2〉n is modified at
the band center [84]. Furthermore, Ref. [60] finds that the
leading-order formula holds at all of the anomalies except the
band center and band edge, which is consistent with what we
find above (since q � 3 except at the band center and edge).

The reflection phase distribution is also affected at anoma-
lous momenta (see Appendix F). The higher-order Fourier
components that appear may be related to the higher-order
terms found in the invariant measure in the real-space ap-
proaches of Refs. [60,83].

2. Periodic-on-average random potential

a. Setup. We consider the problem of a free-particle
scattering off N identically and independently disordered po-
tentials with disorder also in the separations between the
potentials. Since the separations are not necessarily constant
(though we may choose them to be as a special case), the
scattering region is in general periodic-on-average rather than
periodic.

To define the problem, we consider a family of potentials
VD̂(x), where D̂ is an array of parameters characterizing the
potential, and where all potentials in the family have a fixed
range xmax independent of D̂ [that is, VD̂(x) = 0 for |x| > xmax]
[85]. We form a chain of N such potentials, with D̂ “pro-
moted” to a site-dependent array D̂n and with the nth potential
centered at some position xn:

H = P2

2m
+

N∑
n=1

Vn(x − xn), (3.41)

where Vn(x) ≡ VD̂n
(x). We set the centers to be at xn =∑n

j=1(a j + b j ) − 1
2 bn, where an and bn may be disordered

arbitrarily as long as the potentials never overlap (an+1 +
1
2 bn+1 + 1

2 bn > 2xmax). Thus, we have a sequence of regions
of varying widths bn which are separated by spacings an (see
Fig. 2). We collect the parameters of site n into a single
array Dn ≡ (D̂n, an, bn) and assume that D1, . . . , DN are i.i.d.
(allowing correlations between the individual elements of Dn).

In any particular disorder realization, we consider a scat-
tering eigenstate with energy E , writing the wavefunction
outside the sample as

�(x) =
{

�+
L eikx + �−

L e−ikx x < x1 − xmax,

�+
R eik(x−xN − 1

2 bN ) + �−
R e−ik(x−xN − 1

2 bN ) xN + xmax < x,
(3.42)

where E = k2/(2m). With this choice of phase convention,
we may bring the scattering problem into the required form
for applying our general results. Indeed, we show in Ap-
pendix G 1 that if the single-site scattering problem of the
potential VD̂(x) [i.e., Eqs. (3.41) and (3.42) with N = 1, a1 =
b1 = 0, and D̂1 ≡ D̂] has reflection amplitudes r̂D̂ and r̂′

D̂
, then

the scattering transfer matrix of the chain may be written as

T1...N = TN . . . T1, (3.43)

where the local scattering transfer matrix Tn is equivalent to an
S matrix Sn which has reflection amplitudes rn and r′

n given by

rn = eik(2an+bn )r̂D̂n
, (3.44a)

r′
n = eikbn r̂′

D̂n
. (3.44b)

Thus, given the reflection amplitudes of the single-site prob-
lem, we can apply our general results to the general PARS
problem defined above. We note here that throughout this
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section, the localization length is expressed in units of the
average lattice spacing (and thus should be multiplied by
〈an + bn〉n to restore physical dimensions).

From Eqs. (3.44a) and (3.44b), we see that an and bn may
be understood as phase disorder, at least in the case when they
are distributed independently of the parameters characterizing
the potential. If an or bn is strongly disordered, the uniform
phase result (2.6) is obtained; for an we can see this from
Eq. (3.4), while for bn we can use Eq. (3.4) with the roles
of rn and r′

n interchanged.
b. A comparison with the literature. We verify our fourth-

order result for the inverse localization length with the
literature in the following special case. Consider the case of
identical potentials with disorder only in the separations an

between the centers of the potentials; that is, set all bn = 0
and Vn(x) ≡ V (x), so that all Rn ≡ R, all r′

n ≡ r′ = √
Reiφ̂r′ ,

and all rn = √
Reiφ̂r e2ikan (where we recall that the hat indi-

cates the variable for the single-site scattering problem). For
notational convenience, define (for j = 1, 2)

ã j = e ji(φ̂r+φ̂r′ )〈e2 jikan )〉n. (3.45)

Then Eq. (3.23) yields

2

Lloc
=

(
1 − 2 Re

[
ã1

1 + ã1

])
R

+
(

1

2
+Re

[
ã2(1−ã2

1)+2ã1(ã1−ã2)

(1 + ã1)2(ã2 − 1)

])
R2+O(R3),

(3.46)

in agreement with a result by Lambert and Thorpe [39] (see
Appendix G 2 for details).

A notable feature of Eq. (3.46), pointed out in Ref. [39]
for the case of a delta-function model, is that the inverse
localization length can be nonmonotonic in the strength of
phase disorder (i.e., the disorder in an).

c. SPS relation. Returning to the general case, we use
the usual Born series to obtain the single-site scattering am-
plitudes in terms of the Fourier transform of the potential
[eV n(q) = ∫

dx e−iqxVn(x)]:

rn = − im

k
eV n(2k)∗eik(2an+bn ) + O(V 2), (3.47a)

r′
n = − im

k
eV n(2k)eikbn + O(V 2). (3.47b)

Here and in the following we are really expanding in some
site-independent potential strength V that all Vn are pro-
portional to. The dimensionless small parameter is of order
mkV/xmax, but for short we continue to refer to an expansion
in V.

Note that the reflection strength |rn| starts at linear order in
V but also has quadratic and higher corrections from higher
terms in the Born series. Equations (3.1) and (3.2) then show
that the inverse localization length and variance each start at
second order (V 2) and have third-order (V 3) corrections that
must be equal, due to the absence of |rn|3 terms in (3.1) and
(3.2). Thus, even without calculating the V 3 term explicitly,
we have obtained

lim
N→∞

σ (N )2

2N
= 2

Lloc
+ O(V 4). (3.48)

Equation (3.48) thus demonstrates the SPS relation (2.7) for
a broad class of periodic-on-average random systems up to
the first two (generally nonvanishing) orders of the potential
strength, V 2 and V 3. Let us note that Eq. (3.48) at the leading
order [i.e., with the error term as O(V 3)] follows straightfor-
wardly from the result of Schrader et al. [36]; our work rules
out O(|rn|3) terms in Eqs. (3.1) and (3.2), which in turn rules
out any V 3 term in Eq. (3.48).

As a special case, we may apply Eq. (3.48) to a model
used by Deych et al. in Refs. [34,35] to provide numerical
support for their approach to the SPS relation. The model,
which is defined in more detail in Ref. [47], has classical light
passing through alternating regions with dielectric constants
εA and εB; the A regions have fixed widths and the B regions
have i.i.d. disordered widths. This problem maps exactly to
a quantum problem with square-well potentials, as we now
explain. While Refs. [34,35,47] used a position-space transfer
matrix setup, we instead use a scattering setup in which the
“leads” to the left and right of the sample are A regions. We
recall that the indices of refraction in the two regions are
nα = √

εα/ε0 (α = A, B), and we set εA = ε0 without loss
of generality. Then this classical problem is equivalent to
a quantum scattering problem of the form (3.41) with all
an ≡ a, Vn(x) = V �( 1

2 bn − |x|) [86], and V = − k2

2m (n2
B − 1)

(the mass m is arbitrary). Thus, Eq. (3.48) yields the SPS
relation in the regime of the two dielectric constants εA and
εB being close to each other, with arbitrary disorder strength
in the widths bn.

d. Inverse localization length at leading order. At the lead-
ing order in the potential strength, Eq. (3.1) yields

2

Lloc
=
(m

k

)2
(

〈|eV n(2k)|2〉n

+ 2Re

[〈eV n(2k)eikbn〉n〈eV n(2k)∗eik(2an+bn )〉n

1 − 〈e2ik(an+bn )〉n

])
+O(V 3).

(3.49)

In the case of equal spacings between the centers of the po-
tentials, Eq. (3.49) simplifies to yield the variance of m

k
eV n(2k).

[A similar result is known for continuous random potentials;
see, e.g., Eq. (2.84) of Ref. [87].] Indeed, setting all an = a
and bn = 0 yields

2

Lloc
=
(

m

k

)2

(〈|eV n(2k)|2〉n − |〈eV n(2k)〉n|2). (3.50)

The first term is the only one present when the uniform
phase hypothesis holds. Thus, we disagree with the expecta-
tion in Ref. [62] that the uniform phase hypothesis [and thus
Eq. (2.6)] should hold for any potential that is positive as often
as it is negative [88].

The next three orders in V in the inverse localization length
may be obtained from Eq. (3.23) and from the next order in
the Born series for the single-site reflection amplitudes, but
we have not done this calculation.

e. Transparent mirror effect. As a particular application of
our results, we consider an array of square-well potentials
with equal strengths and with spacings and widths that are
disordered independently [Fig. 2(b)]. This model is equivalent
to a classical optics problem in which light scatters on a
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disordered Bragg grating (i.e., a chain of dielectric slabs);
the strong reflection that occurs due to localization, even if
the individual dielectrics have weak reflection coefficients, is
known in that context as the transparent mirror effect [89].
This Kronig-Penney–type model has been studied by a num-
ber of approaches (e.g., Refs. [47,49,90–92]), and the model
used by Deych et al. is a particular case. The transparent mir-
ror effect has recently been studied in twist-angle-disordered
bilayer graphene in Ref. [93], although it seems that our re-
sults do not apply to the model considered there because the
disorder couples neighboring S matrices.

We thus consider the scattering problem for the quantum
Hamiltonian (3.41) with Vn(x) = V �( 1

2 bn − |x|). Let us recall
the correspondence to the classical optics problem. A free
quantum particle with momentum k has its momentum change
to k′ = √

k2 − 2mV in a region of constant potential V , while
for light passing through a region with constant index of
refraction ñ (we use a tilde to avoid confusion with the site
index n) we instead have the free momentum k changing to
k′ = ñk. We thus read off the correspondence − 2mV

k2 = ñ2 − 1.
We cover both cases by defining

δ = mV

k2
= − ñ2 − 1

2
, (3.51a)

k′ = k
√

1 − 2δ, (3.51b)

and we assume δ < 1
2 throughout (which corresponds to real

momentum k′).
Our results apply to the more general case in which δ (in

addition to an and bn) is also disordered; the only requirement
is that the disorder parameters Dn ≡ (δn, an, bn) are i.i.d. For
simplicity, we are focusing on the case of δn ≡ δ and indepen-
dent disorder in an and bn.

To use our general results, we first recall the reflection am-
plitudes for scattering on a square-well potential of strength V
(or, equivalently, an index of refraction ñ) from x = − 1

2 bn to
1
2 bn. The reflection amplitudes and reflection coefficient are

r̂D̂n
= r̂′

D̂n
(3.52a)

= −i k2−k′2
2kk′ sin(k′bn)e−ikbn

cos(k′bn) − i k2+k′2
2kk′ sin(k′bn)

(3.52b)

and

R̂D̂n
=

(
k2−k′2

2kk′
)2

sin2(k′bn)

1 + (
k2−k′2

2kk′
)2

sin2(k′bn)
. (3.53)

When we expand these terms in small δ using Eq. (3.51b),
we do not expand the term k′bn that appears in cos and sin
for two reasons: (a) this makes a symmetry property (that we
discuss below) more manifest, and (b) this expansion can fail
to commute with the strong disorder limit in some cases (e.g.,
a flat disorder distribution for bn).

Equations (3.1), (3.44a), and (3.44b) then yield our main
result for the transparent mirror problem:

2

Lloc
= Re

[
(1 − 〈e2ikan〉n)(1 − 〈e2ik′bn〉n)

1 − 〈e2ikan〉n〈e2ik′bn〉n

](
1

2
δ2 + δ3

)

+ O(δ4). (3.54)

The distinctive feature of this result compared to prior work is
that the spacings an and widths bn can be disordered arbitrar-
ily. While the δ3 term has the same dependence on disorder as
the δ2 term, the δ4 and δ5 terms [which may be obtained from
the higher-order result (3.23)] have different dependence on
disorder; we omit these lengthy expressions.

Equation (3.54) satisfies a consistency check based on
symmetry, as we now summarize (see Appendix G 3 a for
details). By considering an alternate scattering problem in
which the leads are b regions and the scatterers are a regions,
we show that each order in δ of 2/Lloc must be symmetric
under the exchange

k ↔ k′, an ↔ bn, (3.55)

which indeed is true for Eq. (3.54). We have verified that
the δ4 and δ5 corrections also satisfy this symmetry. Another
consistency check is that we obtain 2/Lloc = O(δ6) in the case
of no disorder.

We have also compared with some analytical results from
the literature, as we now summarize (see Appendix G 3 b for
details). Reference [89] obtains the uniform phase result (2.6)
in the case of strong disorder in an [cf. Eq. (3.44a) and the
discussion below there for how we obtain the same result].
Reference [91] treats δ exactly, with weak disorder in an

and no disorder bn, and we find that their result agrees with
Eq. (3.54) in the regime of overlap. Finally, in Ref. [90],
an and bn are considered to follow exponential distributions,
with arbitrary disorder strength, and δ is treated at the leading
order. The result is of the same form as what we obtain from
Eq. (3.54), but seems to have different numerical factors.

Using Eq. (3.54), we can show analytically that the inverse
localization length can have nonmonotonic dependence on
disorder strength for some choices of disorder, e.g., both an

and bn uniformly distributed in an interval [0,W ] with vary-
ing disorder strength W . The special case of all bn ≡ b can
alternatively be treated using Eq. (3.46) (note that one must re-
place an → an − b there to account for the finite width of the
scatterers). Then, a uniform distribution in an (for example)
exhibits nonmonotonicity, as is also clear from the numerical
results of Ref. [49].

D. Application to discrete-time quantum walks

We consider a general two-component, single-step quan-
tum walk in one dimension. We explore the effect of phase
disorder on the localization length using Eq. (3.23), showing
in particular that the dependence on disorder strength can be
nonmonotonic. We verify our results with the literature in
the limits of weak and strong phase disorder and also with
numerics.

The setup is an infinite chain with site index n and an inter-
nal “spin” degree of freedom (↑ or ↓). The “shift” operator Ŝ
moves the two spins one step in opposite directions:

Ŝ =
∑

n

(|n + 1,↑〉〈n,↑| + |n − 1,↓〉〈n,↓|) . (3.56)

The unitary operator Û that implements a single time step is
Û = ŜÛcoin, where the “coin” operator Ûcoin acts as a unitary
matrix on the spin degrees of freedom at each site. We focus
on the case of a coin operator that acts on each site indepen-
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dently:

Ûcoin =
∑

n

|n〉〈n| ⊗ Ucoin,n, (3.57)

where Ucoin,n is a 2 × 2 unitary matrix. Following Vakulchyk
et al. [18], we parametrize the general coin matrix as

Ucoin,n = eiϕn

(
eiϕ1,n cos θn eiϕ2,n sin θn

−e−iϕ2,n sin θn e−iϕ1,n cos θn

)
, (3.58)

where the site-dependent (and possibly disordered) phases
Dn ≡ (ϕn, ϕ1,n, ϕ2,n, θn) may be interpreted as potential en-
ergy, external and internal synthetic fluxes, and kinetic energy,
respectively [18].

The stationary state equation Û |�〉 = e−iω|�〉 may be
brought to a 2 × 2 transfer matrix form even though a 4 × 4
transfer matrix would be expected (for a bipartite lattice with
nearest-neighbor coupling) [18]. Indeed, writing a general
state as |�〉 = ∑

n[�↑(n)|n,↑〉 + �↓(n)|n,↓〉] and defining
a two-component wavefunction �(n) = (�↑(n), �↓(n − 1))
(note that the ↓ component is offset by 1 unit), one finds that
the stationary state equation is equivalent to

�(n + 1) = Mn�(n), (3.59)

where

Mn = eiϕ1,n

(
ei(ω+ϕn ) sec θn eiϕ2,n tan θn

e−iϕ2,n tan θn e−i(ω+ϕn ) sec θn

)
(3.60)

is the transfer matrix [18].
To bring the problem into a scattering framework, we

define a disordered “sample” occupying sites n = 1, . . . , N
of the chain by taking D1, . . . , DN to have i.i.d. disorder,
possibly including correlations between the phases ϕn, ϕ1,n,
ϕ2,n, and θn at a given site n. We will see below that in
order to be in the weak reflection regime captured by our
general calculation, we must take sin θn to be small, which
corresponds to a highly biased coin. The remaining phases ϕn,
ϕ1,n, and ϕ2,n are arbitrary, and in particular we can explore the
crossover between weak and strong disorder in these phases.

Given the disordered sample as we have defined it above,
there are many possible scattering problems corresponding
to different choices for a site-independent array Dleads to be
assigned to Dn in the “leads” (i.e., Dn = Dleads for n � 0 and
for n � N + 1). We find it convenient to set Dleads = 0, and we
refer to this setup as “Tarasinski leads” since the same is done
by Tarasinski et al. in Ref. [37]. We show in Appendix H that
for samples long enough to be in the localized regime, other
choices of leads result in the same probability distribution of
− ln T (in particular the localization length is independent of
the choice of leads).

We proceed to set up the scattering problem with Tarasinski
leads, which have a linear quasienergy spectrum. A scattering
solution to the stationary state equation may be written outside
the sample as (see Appendix H for details)

�(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
�+

L eik(n−1)

�−
L e−ik(n−1)

)
n � 1,

(
�+

R eik(n−1−N )

�−
R e−ik(n−1−N )

)
n � N + 1,

(3.61)

where k = ω. With this choice of phase convention, we have

(
�+

L

�−
L

)
= �(1),

(
�+

R

�−
R

)
= �(N + 1), (3.62)

and so

(
�+

R

�−
R

)
= MN . . .M1

(
�+

L

�−
L

)
. (3.63)

We thus obtain the scattering transfer matrix of the sample
as T1...N = TN . . . T1 with Tn = Mn. It may be verified that
Mn satisfies the psuedounitarity condition M†

nσ
zMn = σ z

(which confirms that Mn is a valid scattering transfer matrix).
The corresponding S matrix is Sn = eiωUcoin,n, i.e.,

Sn = ei(ω+ϕn )

(
eiϕ1,n cos θn eiϕ2,n sin θn

−e−iϕ2,n sin θn e−iϕ1,n cos θn

)
. (3.64)

We can thus apply our results to the problem of N scatter-
ers with the single-site S matrix given by (3.64). [Indeed,
since any 2 × 2 unitary S matrix can be parametrized as in
Eq. (3.64), the DTQW we are considering in fact represents
the most general problem that our results apply to.]

From Eq. (3.64), we read off the single-site reflection am-
plitudes and reflection coefficient. The expansion parameter
in our formalism is thus |rn| = sin θn. The generic condition
(3.14) reads as

〈e2i	(ω+ϕn )〉n 
= 1, (3.65)

which indeed holds for all nonzero integers 	 except in the
special case that ϕn is nondisordered and ω is a rational mul-
tiple of π . Although we ignore this special case from now
on, our explicit results below are still valid there unless the
rational multiple is of a particular form (see Appendix F).

Up to second order, Eqs. (3.1) and (3.2) yield the inverse
localization length and variance:

2

Lloc
= 〈sin2 θn〉n

+ 2 Re

[
e2iω 〈ei(ϕn+ϕ2,n ) sin θn〉n〈ei(ϕn−ϕ2,n ) sin θn〉n

1 − e2iω〈e2iϕn〉n

]

+ O(sin4 θn) (3.66a)

= lim
N→∞

σ (N )2

2N
+ O(sin4 θn). (3.66b)

To present the inverse localization length to fourth order in
a compact form, we use the notation

B( j)
a,b = 〈ei(aϕn+bϕ2,n ) sin j θn〉neiaω, (3.67)
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and we note that αm = (1 − B(0)
2m,0)−1. Then Eq. (3.23) yields our main result for the DTQW:

2

Lloc
= 〈sin2 θn〉n + 2 Re

[
α1B(1)

1,−1B(1)
1,1

] + 1

2
〈sin4 θn〉n

− Re

{
α2

(
B(2)

2,−2 + 2α1B(1)
1,−1B(1)

3,−1

) (
B(2)

2,2 + 2α1B(1)
1,1B(1)

3,1

) + 2α2
1B(1)

1,−1B(1)
1,1B(2)

2,0

}
+ O(sin6 θn), (3.68)

in which the first two terms recapitulate Eq. (3.66a). Note that
the external synthetic flux ϕ1,n does not appear (as noted by
Ref. [18]).

Next, we specialize Eq. (3.68) to various choices of dis-
order, checking our results with the literature and pointing
out cases in which the localization length depends nonmono-
tonically on disorder strength. For each choice of disorder,
we only need to calculate the coefficients B( j)

a,b defined in
Eq. (3.67). Throughout, we present only the localization
length, bearing in mind that the variance may be obtained at
the leading order from Eq. (3.66b).

1. Disorder in individual phases

Here, we follow Ref. [18], introducing disorder in one
phase variable at a time. Consider first the case of disorder
in ϕn only, with θn ≡ θ and ϕ1,n = ϕ2,n = 0. We obtain

B( j)
a,b = 〈eiaϕn〉neiaω sin j θ (3.69a)

= sinc(aW )eiaω sin j θ, (3.69b)

where the second line specializes to a flat disorder distribution
of width W (i.e., ϕn uniform in [−W,W ]), and where sinc x =
(sin x)/x.

We now check our result (3.68) with the literature in
the limits of weak and strong disorder. For weak disorder
with 〈ϕn〉n = 0, we obtain 2/Lloc = [cot2 ω sin2 θ + (csc4 ω −
1) sin4 θ ]〈ϕ2

n〉n + O(sin6 θ ), which agrees with the small sin θ

expansion of a result from Ref. [18] [see their Eq. (26),
recall the dispersion relation cos ω = cos θ cos k, and note
that 〈ϕ2

n〉n = W 2/3 for the flat disorder distribution] except
for an overall constant factor of 2 [94]. In the strong dis-
order limit (i.e., the flat distribution with W = π ), we get

2/Lloc = sin2 θ + 1
2 sin4 θ + O(sin6 θ ), in agreement with the

small sin θ expansion of another result from Ref. [18], namely
[their Eq. (48)]

Lloc = 1/| ln cos θ |. (3.70)

Equation (3.70) (for any θ ) may also be obtained from our
Eqs. (3.4) and (3.64); in our setup, this is a case in which the
uniform phase result (2.6) holds because the local reflection
phase is uniformly distributed independently of the local re-
flection coefficient. In passing, we note that if there is disorder
in θn as well (independent of the strong disorder in ϕn), then
Eq. (3.70) generalizes to Lloc = 1/〈| ln cos θn|〉n (and indeed
the same result is obtained if the strong disorder is in ϕ2,n

instead of ϕn).
At the band center (ω = π/2) anomaly noted by Ref. [18],

we obtain 2/Lloc = ( 1
45 )[sin2 θ + 2 sin4 θ + O(sin6 θ )]W 4,

whereas the expansion of the result of Ref. [18] for small sin θ

yields the same answer with prefactor 1
40 [or 1

20 if the factor
of 2 [94] is corrected]. Unlike the Anderson model anomalies
mentioned above, in this case we expect our result to apply
since our assumptions are met [i.e., localization occurs and
the inequality (3.65) holds].

Equation (3.68) thus interpolates, in the regime of strong
coin bias, between the known limits of weak and strong
disorder [see Fig. 3(a)]. In certain ranges of quasienergy ω,
the dependence on the disorder strength W is nonmonotonic.
Although strictly speaking we have assumed sin θ to be a
small parameter, we find favorable agreement with numerics
even for only a moderate amount of coin bias (e.g., θ = π/8)
[see Fig. 3(b)].

For definiteness, we present the inverse localization length
at second order [Eq. (3.66a)] with the flat distribution:

2

Lloc
=
(

1 + 2 sinc2W [cos(2w) − sinc(2W )]

1 − 2 cos(2w)sinc(2W ) + sinc2(2W )

)
sin2 θ + O(sin4 θ ), (3.71)

which seems to qualitatively capture the nonmonotonicity in W [although including the sin4 θ terms in Eq. (3.68) improves the
agreement with numerics].

In the case of disorder in ϕ2,n only, with θn ≡ θ and ϕn =
ϕ1,n = 0, we obtain

B( j)
a,b = 〈eibϕ2,n〉n sin j θ (3.72a)

= sinc(bW ) sin j θ, (3.72b)

where the second line specializes to ϕ2,n uniform in [−W,W ].
In this case, the inverse localization length (3.68) depends
on disorder monotonically, with a simple leading-order ex-
pression 2/Lloc = (1 − sinc2W ) sin2 θ + O(sin4 θ ). We again

agree with Ref. [18] in the limits of weak and strong disorder
once their results are expanded in sin θ . Indeed, for weak
disorder with 〈ϕ2,n〉n = 0, we find 2/Lloc = 〈ϕ2

n〉n[sin2 θ +
sin4 θ + O(sin6 θ )], in agreement with their Eq. (29) [94]. For
strong disorder, Ref. [18] again obtains Eq. (3.70), which we
recover in the same sense as mentioned above.

Finally, we consider disorder in the coin parameter θn,
with ϕn = ϕ1,n = ϕ2,n = 0. In this case we can only access
the weak disorder regime since our expansion is in small
sin θn. We write θn = θ0 + �θn, where �θn is, e.g., uniformly
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FIG. 3. The inverse localization length (2/Lloc) vs the strength of disorder (W ) in the phase variable ϕn in the DTQW. All θn ≡ θ , ϕ1,n = 0,
and ϕ2,n = 0. Numerical points were obtained from the slope of a linear fit of − ln T1...N vs N with Nmax/10 < N � Nmax in one disorder
realization, where Nmax = 107 in (a) and 106 in (b). (a) A highly biased coin. Solid line: theoretical leading-order result (3.71) [the higher-order
result (3.68) would be indistinguishable on the plot]. For comparison, we show the weak disorder expansion ( cos2 ω tan2 θ

3(cos2 θ−cos2 ω)
W 2, dashed line)

from Ref. [18] and the prediction of the uniform phase hypothesis (2| ln cos θ |, dotted-dashed line), which holds at strong disorder (W = π )
but not otherwise. (b) Moderately biased coin parameter (θ = π/8). The next-to-leading-order theoretical result (3.68) (lines) matches fairly
well with numerics (points) except for small disorder near the band edge (w ≈ θ ). Inset to (b): A Hadamard coin (θ = π/4).

distributed in [−W,W ]. We obtain B( j)
a,b = 〈sin j θn〉n and

2/Lloc = 〈(�θn)2〉n(1 + csc2 ω sin2 θ0) + O(sin6 θn), in agree-
ment with Ref. [18] [see their Eq. (31) [94]].

2. Alternate form of phase disorder

We now specialize to a case studied experimentally in
Ref. [9] and theoretically in Ref. [19]. Again we verify our
results with the literature in the limits of weak and strong
phase disorder, and then we explore the full range of dis-
order and find that the localization length in certain ranges
of quasienergy is nonmonotonic as a function of disorder
strength.

The coin matrix in Ref. [19] is, in our notation,

Ucoin,n =
(

eiφ↑(n) 0

0 eiφ↓(n)

)(
cos θ eiϕ′

sin θ

−e−iϕ′
sin θ cos θ

)
,

(3.73)

where θ , ϕ′ are constant phases and φ↑(n), φ↓(n) are dis-
ordered phases. The coin matrix of Ref. [9] is obtained by
shifting φ↓(n) → φ↓(n) + π and θ → 2θ .

We specialize to the case (3.73) by setting θn ≡ θ ,
ϕn = 1

2 [φ↑(n) + φ↓(n)], ϕ1,n = 1
2 [φ↑(n) − φ↓(n)], and ϕ2,n =

1
2 [φ↑(n) − φ↓(n)] + ϕ′. Then the inverse localization length
up to error of sixth order in sin θ is given by Eqs. (3.67) and
(3.68) with the above substitutions.

Our result agrees with Ref. [19] in the regimes of
overlap, as we now explain. In the case of weak dis-
order with vanishing mean and no up-down correlation
[〈φ↑(n)〉n = 〈φ↓(n)〉n = 〈φ↑(n)φ↓(n)〉n = 0 and 〈φ↑(n)2〉n =
〈φ↓(n)2〉n ≡ 〈φ2〉], we obtain 2

Lloc
= 1

2 〈φ2〉 csc2 ω sin2 θ (1 +
csc2 ω sin2 θ ) + O(sin6 θ ), in agreement with the small sin θ

expansion of a result [95] from Ref. [19]. In the case of

strong disorder, i.e., φ↑(n) and φ↓(n) independently and uni-
formly distributed in (−π, π ), we obtain 2/Lloc = sin2 θ +
1
2 sin4 θ + O(sin6 θ ), in agreement with the small sin θ ex-
pansion of another result from Ref. [19], namely, Eq. (3.70)
[Eq. (10) there]. Equation (3.70) may also be obtained directly
just as in the cases mentioned above of strong disorder in
ϕn or ϕ2,n (and has the same generalization to the case of
independent disorder in θ ).

We thus interpolate, in the regime of small coin param-
eter, between the known limits of weak and strong phase
disorder. For definiteness, we present now the leading-order
result, first for general phase disorder and then for the case of
φ↑(n), φ↓(n) being independently and uniformly distributed
in [−W,W ]. Equation (3.66a) yields

2

Lloc
=
(

1 + 2 Re

[ 〈eiφ↑(n)〉n〈eiφ↓(n)〉n

e−2iω − 〈ei[φ↑(n)+φ↓(n)]〉n

])
sin2 θ

+ O(sin4 θ ) (3.74a)

= 1 − sinc4W

1 − 2 cos(2ω)sinc2W + sinc4W
sin2 θ

+ O(sin4 θ ). (3.74b)

Note that in the regime of 0 < ω < π/4 or 3π/4 < ω < π ,
there is a value of phase disorder strength W = W0 beyond
which any further increase in disorder strength (up to the
maximum W = π ) increases the localization length.

IV. JOINT PROBABILITY DISTRIBUTION

We proceed to apply the same scattering expansion ap-
proach to the joint probability distribution PN (s, φr′ ). We
present and discuss the results first, then the analytical cal-
culation and numerical checks.
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A. Overview of results

Our main result is the following general form for suffi-
ciently large sample length N : there is a constant c and two
functions ŝ(φr′ ), η(φr′ ) for which we have

PN (s, φr′ ) = exp
{− 1

2

[
s − 2

Lloc
N − ŝ(φr′ )

]2
/σ (N, φr′ )2

}
√

2πσ (N, φr′ )2

× p∞(φr′ ), (4.1)

where the phase-dependent variance σ (N, φr′ )2 grows linearly
with N and has a subleading, phase-dependent correction:

σ (N, φr′ )2 = 2Nc + η(φr′ ). (4.2)

For large N , the marginal distribution PN (s) determined by
Eq. (4.1) takes the known Gaussian form

PN (s) = exp
{− 1

2

[
s − 2

Lloc
N + O(N0)

]2
/σ (N )2

}
√

2πσ (N )2
, (4.3)

where the slope of the variance is determined by the same
constant c:

σ (N )2 = 2cN + O(N0). (4.4)

Equation (4.1) may be understood as the statement that the
conditional distribution of s given φr′ is Gaussian for large N .
Furthermore, the leading behavior of the mean and variance is
linear in N with slope independent of the phase.

We obtain Eq. (4.1) to all orders in the scattering expansion
by a calculation described in the following section. This cal-
culation, which relies on some assumptions (that we discuss
below), provides a procedure for calculating all parameters
and functions that appear in Eq. (4.1) order by order in the
scattering expansion (with coefficients only involving local
averages), except that the functions ŝ(φr′ ) and η(φr′ ) each have
a φr′-independent additive constant that is not determined.
[These constants appear in the O(N0) error terms in Eqs. (4.3)
and (4.4).] The expansions for 2/Lloc and p∞(φr′ ) have al-
ready been presented in Sec. III; here we develop similar
recursive expansions for c, ŝ(φr′ ), and η(φr′ ).

A notable feature that we demonstrate for the function
ŝ(φr′ ) is that it coincides, at leading order and up to a factor of
2π , with the first-order correction to uniformity in the phase
distribution p∞(φ′

r ). In particular, we recall from (3.18) that
the phase distribution is given at first order by p∞(φr′ ) =
1/(2π ) + p(1)

∞ (φr′ ), where

2π p(1)
∞ (φr′ ) = 2 Re

[ 〈r′
n〉ne−iφr′

1 + 〈rnr′
n/Rn〉n

]
. (4.5)

This same function describes the leading-order correlations
between the transmission coefficient and reflection phase, that
is,

ŝ(1)(φr′ ) = 2π p(1)
∞ (φr′ ) + const, (4.6)

where the constant is independent of φr′ .
In the framework of the scaling theory mentioned in the

Introduction, our result for the joint distribution may be re-
garded as demonstrating three-parameter scaling in the limit
of weak local scattering. To see this, consider Eq. (4.1) with

2/Lloc, c, ŝ(φr′ ), and p∞(φr′ ) each expanded to the first non-
vanishing order and with the contribution from the function
η(φr′ ) dropped. [Note that η(φr′ ) is a 1/N correction relative
to σ (N )2, which itself is already a 1/N correction relative to
the mean. We find below that we must take the function η(φr′ )
into account in the derivation of Eq. (4.1), but it seems to
be highly suppressed for large N in the final answer.] The
joint probability distribution is then entirely determined by
three real parameters: the mean (2/Lloc)N [which determines
σ (N )2 = 2cN since the SPS relation holds at leading order]
and the real and imaginary parts of the complex parameter z ≡
〈r′

n〉n/(1 + 〈rnr′
n/Rn〉n) that determines the function p(1)

∞ (φr′ ).
These last two parameters may alternatively be taken to be
the mean and variance of φr′ since they are given at leading

order by φr′ = 2 Im(z) and φ2
r′ − φr′

2 = π2/3 − 4 Re(z), and
thus they determine z.

The correlation between s and φr′ in (4.1) is a finite-size
effect, as we now explain. We write the average of s as
〈s〉 = 2N/Lloc + O(N0), and we consider how accurate 〈s〉 is
as an estimate of the conditional average of s with fixed φr′ in
(4.1). The phase-dependent variation of the mean introduces a
relative error of order ŝ(φr′ )/〈s〉 ∼ 1/N , while the finite stan-
dard deviation introduces a relative error of σ (N, φr′ )/〈s〉 =
cLloc/

√
N + O(N−3/2), where the N−3/2 term contains the

contribution of the function η(φr′ ). Prior work has found the
joint probability distribution to factorize into a transmission
coefficient part times a phase part [53,69], in apparent contra-
diction to our Eq. (4.1); this suggests that the prior work only
accounted for the 1/

√
N term in the above discussion and ne-

glected the 1/N and N−3/2 terms that contain the correlations
between s and φr′ .

B. Analytical calculation

1. Setup

We arrive at our result (4.1) by verifying that it satisfies the
recursion relation for the joint probability distribution (taking
N large and neglecting a small error term). We do not address
the question of the uniqueness of the solution. Although our
approach is partially heuristic, we note that (a) the results can
be checked numerically (see Fig. 4), (b) the result we get for
the constant c yields Eq. (3.2), and (c) we obtain the correct
probability distribution when we apply the same approach to
a soluble toy model (Appendix I).

Our task is to determine the joint probability distribution as
defined by Eq. (2.4a). From this definition (with N and with
N + 1) and the recursion relations (3.6a) and (3.6b), we obtain
the following recursion in the localized regime:

PN+1(s, φr′ ) = F[s, φr′ ; {PN }], (4.7)

where F is a linear functional in its last argument and is
defined by (here we replace the disorder average over site
N + 1 by any site n)

F[s, φr′ ; {PN }] =
∫

ds′
∫ π

−π

dφ PN (s′, φ)

× 〈δ(s′ + gn(s′) − s)δ(φ + hn(φ) − φr′ )〉n.

(4.8)
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FIG. 4. Numerical checks of our result (4.1) for the joint probability distribution of s1...N and φr′
1...N

. In the DTQW with Tarasinski leads
(see Sec. III D), 1.1 × 108 disorder realizations were generated with the following parameters: N = 850 sites, ω = 0.25, all θn ≡ θ = 0.14, all
ϕ1,n ≡ ϕ2,n = 0, and ϕn uniformly distributed in [W,W ] with W = 0.6. (a) The marginal distribution of the reflection phase. The theoretical
result is calculated up to an error of O(sin4 θ ) [see Eqs. (3.17b)–(3.17e), (3.18), and (3.64)]. For (b), (c), and (d), the data were binned with
φwidth = 0.2 (see main text). (b) The conditional distribution of s1...N given the value φr′

1...N
= −2.042 (which is the center of the bin for the

numerics). The fit is to a Gaussian, and the resulting mean and variance yield the sixth data point from the right in (c) and (d). (c) The mean of
s1...N conditional on the value of φr′

1...N
. The theory curve is given by Eq. (4.38) with the phase-independent, additive constant as a fit parameter.

The similarity between the plots (a) and (c) is due to Eq. (4.6). (d) The variance of s1...N conditional on the value of φr′ . The theory curve is
2η(φ), where η(φ) is given by Eq. (4.42) with the phase-independent constant as a fit parameter.

Before going into further details, we first give an overview
of what our calculation will show and what assumptions we
make. We start by emphasizing that Eq. (4.7) holds in the
localized regime, i.e., it holds for N � N0(λ), where N0(λ)
is of the order of Lloc [recall the discussion below Eq. (3.7b)].
There is also an exact recursion relation that holds for all N
and that coincides with Eq. (4.7) for N � N0(λ). This exact
relation can be obtained in a similar way from the exact
recursion relations (3.5a) and (3.5b).

The given onsite disorder distribution (of the matrix el-
ements of Sn) determines both the initial condition (the
function PN=1) and the exact recursion relation. Iterating the
exact recursion relation, one obtains PN0(λ), which can then be
regarded as the initial condition for (4.7). However, due to the
complexity of the exact recursion relation, we do not have any
precise characterization of PN0(λ). Conceptually, we regard the

problem as consisting of the recursion relation (4.7) with some
unknown initial condition PN0(λ).

Let us call any family of functions {PN }, parametrized
by N = 1, 2, . . . , a “trajectory.” Our approach is to define a
family of trajectories that satisfy Eq. (4.7) when N is large (up
to an error term that we expect to be negligible), in the hope
that a “generic” initial condition PN0(λ) will “flow” to being
arbitrarily close to one of these trajectories after sufficiently
many iterations of (4.7).

Below, we make an ansatz for this family of trajectories.
In particular, we define a function P(ansatz)

N (s, φr′ ) which is
proportional to 1/

√
N and normalized to 1. The ansatz is

parametrized by two undetermined constants. [These con-
stants are the φr′-independent additive constants referred to
below Eq. (4.4), and they have no effect on the large-N behav-
ior.] The main content of our calculation is the demonstration
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that, for large N and to all orders in the scattering expansion,

P(ansatz)
N+1 (s, φr′ ) = F

[
s, φr′ ;

{
P(ansatz)

N

}] + O(1/N2). (4.9)

We then make two assumptions: (1) that Eq. (4.9) implies
that P(ansatz)

N gets arbitrarily close, as N → ∞, to a trajectory
that satisfies the recursion relation exactly; and (2) that all
trajectories that satisfy the recursion relation exactly (or at
least, all such trajectories that start from a “generic” initial
condition) can be approximated in this way. We then conclude
that there are some values for the two undetermined constants
for which P(ansatz)

N is a good approximation of the true solution
when N is large.

Although we do not have direct evidence for these
assumptions, we can clarify (1) as follows. The ba-
sic point is that the O(1/N2) error terms in Eq. (4.9)
must not accumulate to any significant amount over
many iterations. Let us write Eq. (4.9) to one more
order in 1/

√
N : P(ansatz)

N+1 (s, φr′ ) = F[s, φr′ ; {P(ansatz)
N }] +

f1(s, φr′ )/N2 + O(N−5/2) for some function f1(s, φr′ ). To
cancel f1 up to O(N−5/2) error, we take the joint distri-
bution to be PN (s, φr′ ) = P(ansatz)

N (s, φr′ ) + P(ansatz),1
N (s, φr′ ),

where P(ansatz),1
N (s, φr′ ) satisfies

P(ansatz),1
N+1 (s, φr′ ) =F

[
s, φr′ ;

{
P(ansatz),1

N

}] − f1(s, φr′ )/N2,

(4.10)

which we regard as an “inhomogeneous” version of the “ho-
mogeneous” equation (4.7). Our assumption is that Eq. (4.10)
has a particular solution that is of order of the integral in
N of the forcing term (i.e., of order 1/N) or smaller. We
set P(ansatz),1

N+1 to be this particular solution. Higher orders
proceed similarly, so that, granting the assumption just men-
tioned, Eq. (4.9) does indeed show that P(ansatz)

N (s, φr′ ) is the
leading term in 1/

√
N of the solution to the homogeneous

equation (4.7). We do not study the inhomogeneous equa-
tion (4.10) further.

We turn next to the demonstration of Eq. (4.9).

2. Ansatz

It is convenient to work in a set of variables in which the
joint probability distribution turns out to be separable. Thus,
we change variables from (s, φr′ ) to (s̃, φr′ ), where s̃ is defined
below. The tilde will be used throughout to indicate quantities
defined with reference to s̃ rather than s.

We define a shifted and rescaled variable s̃ as

s̃1...N = s1...N − 2
Lloc

N − ŝ
(
φr′

1...N

)
1 + η(φr′1...N

)

2cN

, (4.11)

where ŝ(φ) and η(φ) are functions to be determined later.
To reduce clutter in our calculation below, we temporarily
redefine η(φ)/(2c) → η(φ), restoring the factor of 2c at the
end. From Eqs. (3.6a) and (3.6b), we read off the recursion
relation for s̃ in the localized regime:

s̃1...N+1 =
[
1 + η

(
φr′

1...N

)/
N
]
s̃1...N + g̃N+1

(
φr′

1...N

)
1 + η

(
φr′

1...N
+ hN+1

(
φr′

1...N

))/
(N + 1)

, (4.12)

where we have defined

g̃n(φ) = gn(φ) − 2/Lloc + ŝ(φ) − ŝ(φ + hn(φ)). (4.13)

Naively, it would seem that for large N we could drop the η(φ)
terms in Eq. (4.12); however, we will see that they sometimes
contribute in the recursion relation for the probability distri-
bution due to being multiplied by a factor of N .

It is convenient for calculations below that the variable s̃
should have, on average and for large N , no change as N is
increased. (In Appendix I, we provide a simple example to
show that using a variable without this property can lead to
an incorrect answer for the variance unless the approximation
of the discrete variable N as a continuous variable is treated
with particular care.) To verify this property, we first note that
by taking N → ∞ in the recursion relation (3.8) for the phase
distribution and integrating, we obtain the identity∫ π

−π

dφ p∞(φ)[ f (φ) − 〈 f (φ + hn(φ))〉n] = 0 (4.14)

for any function f (φ). Then from Eqs. (4.12) and (4.13) and
the normalization of the phase distribution, we find that the
average increase of s̃ in one step is (for large N)

〈s̃1···+1〉1...N+1 − 〈s̃1...N 〉1...N

=
∫ π

−π

dφ p∞(φ)〈g̃n(φ)〉n + · · · (4.15a)

=
∫ π

−π

dφ p∞(φ)〈gn(φ)〉n − 2/Lloc + · · · , (4.15b)

where the η(φ) function only contributes a negligible O(1/N )
error term. Thus, the requirement that s̃ does not increase
on average with N becomes 2/Lloc = ∫ π

−π
dφ p∞(φ)〈gn(φ)〉n,

which is indeed the same equation as found earlier for the
localization length [Eq. (3.20a)].

The joint probability distribution of s̃ and φr′ is, by defini-
tion,

P̃N (s̃, φr′ ) = 〈
δ(s̃1...N − s̃)δ

(
φr′

1...N
− φr′

)〉
1...N , (4.16)

and is related to PN by a change of variables. The recursion
relation in the localized regime is readily found to be

P̃N+1(s̃, φr′ ) = F̃[N, s̃, φr′ ; {P̃N }], (4.17)

where F̃ is a linear functional in its last argument and is given
by

F̃[s, φr′ ; {PN }] =
∫

ds̃′
∫ π

−π

dφ P̃1...N (s̃′, φ)

× 〈δ
(

[1 + η(φ)/N] s̃′ + g̃n(φ)

1 + η(φ + hn(φ))/(N + 1)
− s̃

)

× δ(φ + hn(φ) − φr′ )〉n. (4.18)

These relations are just Eqs. (4.7) and (4.8) in the new vari-
ables. Our goal is to make an ansatz P̃(ansatz)

N that satisfies
Eq. (4.9) in the new variables, i.e.,

P̃(ansatz)
N+1 (s̃, φr′ ) = F̃

[
N, s̃, φr′ ;

{
P̃(ansatz)

N }] + O(1/N2). (4.19)

Our ansatz is

P̃(ansatz)
N (s̃, φr′ ) = F̃N (s̃)p∞(φr′ ), (4.20)

where the phase distribution p∞(φr′ ) is as calculated in
Sec. III (alternatively, we may leave it as an undetermined
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function for now and recover the same series by our calcula-
tion below) and where F̃N (s̃) is a Gaussian with variance 2cN
(with a constant c to be determined later):

F̃N (s̃) = 1√
4πcN

e−s̃2/(4cN ). (4.21)

Changing variables from (s̃, φr′ ) back to (s, φr′ ) yields

P(ansatz)
N (s, φr′ ) =

[
1 + η(φr′ )

2cN

]−1

× P̃(ansatz)
N

(
s − 2

Lloc
N − ŝ(φr′ )

1 + η(φr′ )
2cN

, φr′

)
,

(4.22)

where we have taken N large enough that the Jacobian deter-
minant is positive. This indeed produces the claimed general
form of Eq. (4.1).

We show below that the constant c and the functions ŝ(φr′ )
and η(φr′ ) are uniquely determined (up to φr′-independent
additive constants in the two functions), order by order in the
scattering expansion, by the requirement that the ansatz must
satisfy Eq. (4.19). Thus, each choice of the two additive con-
stants determines a trajectory {P(ansatz)

N } that satisfies Eq. (4.9).

Let us note that Eq. (4.19) can also be obtained starting
from a more general ansatz. In particular, one can replace
s̃ → (1 + β2/N )(s̃ − β1) in Eq. (4.21) (for some constants
β1, β2). However, one finds that for large N , the constants β1

and β2 only affect P(ansatz)
N by additive shifts of ŝ(φ) and η(φ),

respectively, and these have already been accounted for. Thus,
this particular modification does not introduce any additional
generality (although we cannot rule out the possibility of
other, non-Gaussian solutions).

We proceed to show that Eq. (4.9) reduces to certain inte-
gral equations constraining ŝ(φr′ ) and η(φr′ ). Then, we show
that these integral equations can be solved order by order in
the scattering expansion, which in turn provides a scattering
expansion also of the constant c.

3. Reduction to integral equations

It is convenient to Fourier transform in s̃; we write the
transformed function with the same symbol [e.g., F̃N (q) =∫

ds̃ e−iqs̃F̃N (s̃)]. Note in particular that

F̃N (q) = e−cNq2
. (4.23)

We proceed to evaluate F[N, q, φr′ ; {P̃(ansatz)
N }] ≡∫

ds̃ e−iqs̃F[N, s̃, φr′ ; {P̃(ansatz)
N }] with the goal of imposing

Eq. (4.9) in q space. From Eq. (4.18), we obtain the functional
F̃ in Fourier space:

F̃[N, q, φr′ ; {P̃N }] =
∫ π

−π

dφ

〈
exp

[
−iq

g̃n(φ)

1 + η(φ + hn(φ))/(N + 1)

]

× P̃N

(
1 + η(φ)/N

1 + η(φ + hn(φ))/(N + 1)
q, φ

)
δ(φ + hn(φ) − φr′ )

〉
n

. (4.24)

Evaluating this functional on an ansatz of the form (4.20), we find

F̃[N, q, φr′ ; {P̃(ansatz)
N }] =

∫ π

−π

dφ p∞(φ)

〈
F̃N

(
1 + η(φ)/N

1 + η(φ + hn(φ))/(N + 1)
q

)

× exp

[
−iq

g̃n(φ)

1 + η(φ + hn(φ))/(N + 1)

]
δ(φ + hn(φ) − φr′ )

〉
n

. (4.25)

Next, we expand in small q, using the specific form (4.23) to
write Eq. (4.25) as

F̃
[
N, q, φr′ ;

{
P̃(ansatz)

N

}] = C(N, q, φr′ )F̃N (q), (4.26)

where C(N, q, φr′ ) is a power series in q:

C(N, q, φr′ ) ≡
∞∑
j=0

Cj (N, φr′ )q j, (4.27)

with some coefficients Cj (N, φr′ ).
The essential point that simplifies the calculation is that the

order in 1/
√

N of a given term differs between s̃ space and q
space. We have∫

dq

2π
eiqs̃q j F̃N (q) = O(N−( j+1)/2) ( j � 0). (4.28)

In particular, for the purpose of imposing the condition (4.9),
any term q jF̃N (q) with j � 3 is negligible because its contri-

bution in s̃ space is O(1/N2). Thus, provided that we establish
that each Cj (N, φr′ ) is finite as N → ∞, it follows that we can
drop all but the terms j = 0, 1, 2 in Eq. (4.27).

To show that each Cj (N, φr′ ) is finite as N → ∞, we in-
spect the two terms in the integrand in (4.25) that need to be
expanded in q: the F̃N term and the exponential. The latter
clearly only produces terms that are finite as N → ∞. The F̃N

term is of the form F̃N {[1 + O(1/N )]q}, so it suffices to note
that [F̃N (q)]−1∂ j F̃N (q)/∂q j = O(N j ).

Next, we need the specific form of the j = 0 term. From
Eq. (4.25), we read off

C0(N, φr′ ) =
∫ π

−π

dφ p∞(φ)〈δ(φ + hn(φ) − φr′ )〉n (4.29a)

= p∞(φr′ ), (4.29b)

where we have noted that the first line is just the right-hand
side of the recursion relation (3.8) (with N → ∞) for the
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probability distribution of the reflection phase. We also note

F̃N+1(q) = [1 − cq2 + O(q4)]F̃N (q), (4.30)

which may be obtained by treating the discrete variable N in
Eq. (4.23) as continuous. From Eqs. (4.20), (4.26), and (4.27),
we then obtain

P̃(ansatz)
N+1 (q, φr′ ) − F

[
N, q, φr′ ;

{
P̃(ansatz)

N

]
= −C1(N, φr′ )qF̃N (q) − [C2(N, φr′ ) + cp∞(φr′ )] q2F̃N (q)

+ · · · , (4.31)

where the omitted terms are O(1/N2) in s̃ space due to (4.28).
Again using (4.28), we then see that imposing (4.9) yields

the following two requirements:

C1(N, φr′ ) = O(1/N ), (4.32a)

C2(N, φr′ ) + cp∞(φr′ ) = O(1/
√

N ). (4.32b)

To put these requirements into a more explicit form, we
calculate C1(N, φr′ ) and C2(N, φr′ ) for large N as fol-
lows: first, if we temporarily set the function η(φ) to
be identically zero, then we may read off C(N, q, φr′ ) =∫ π

−π
dφ p∞(φ)〈e−iqg̃n (φ)δ(φ + hn(φ) − φr′ )〉n. To then include

the function η(φ), we expand F̃N in Eq. (4.25) about the point
q and use Eq. (4.23) to write ∂ j

∂q j F̃N (q) in terms of F̃N (q).
The only contribution from the function η(φ) that survives for
large N comes from the following expansion:

F̃N

(
1 + η(φ)/N

1 + η(φ + hn(φ))/(N + 1)
q

)

= F̃N (q) +
(

η(φ)

N
− η(φ + hn(φ))

N + 1

)
q

∂

∂q
F̃N (q) + · · ·

(4.33a)

= {1 − 2c[η(φ) − η(φ + hn(φ)) + O(1/N )]q2

+ O(q4)}F̃N (q), (4.33b)

where we have used ∂
∂q F̃N (q) = −2cNqF̃N (q). We thus obtain

C1(N, φr′ ) = −i
∫ π

−π

dφ p∞(φ)〈g̃n(φ)δ(φ + hn(φ) − φr′ )〉n

+ O(1/N ), (4.34a)

C2(N, φr′ ) = −
∫ π

−π

dφ p∞(φ)

〈{
1

2
g̃n(φ)2 + 2c[η(φ)

− η(φ + hn(φ))]
}
δ(φ + hn(φ) − φr′ )

〉
n

+ O(1/N ). (4.34b)

Thus, the two requirements (4.32a) and (4.32b) yield two
integral equations involving the constant c and the functions
ŝ(φ) and η(φ). We show in the next section that these integral
equations uniquely determine c, ŝ(φ), and η(φ) (except for the
addition of φ-independent constants to the functions) order by
order in the scattering expansion.

4. Series solution of integral equations

It is convenient to take the Fourier transform in φr′ . We
write Cj,	 ≡ limN→∞

∫ π

−π

dφ

2π
e−i	φCj (N, φ), where j = 1, 2.

Taking the Fourier transform of Eq. (4.34a) yields

C1,	 =−i(−1)	
∫ π

−π

dφ

2π
e−i	φ p∞(φ)

× 〈
v−	

n An,	(φ)g̃n(φ)
〉
n, (4.35)

where we have recalled Eqs. (3.7b) and (3.10b). Thus, re-
calling Eq. (4.13), we see that the requirement (4.32a) is
equivalent to the following equation holding for all integers
	: ∫ π

−π

dφ

2π
e−i	φ p∞(φ)

〈
v−	

n An,	(φ)

× [gn(φ) − 2/Lloc + ŝ(φ) − ŝ(φ + hn(φ))]
〉
n = 0.

(4.36)

We now show that Eq. (4.36) determines, to all orders
in the scattering expansion, all Fourier coefficients ŝ	 ≡∫ π

−π

dφ

2π
e−i	φ ŝ(φ) except for ŝ	=0 (which is one of the unde-

termined constants we have discussed above). The fact that
ŝ	=0 is unconstrained follows immediately from the invariance
of the equation under shifting ŝ(φ) by an additive constant.
To determine the 	 
= 0 coefficients, we start by noting that
since gn(φ) and 2/Lloc start at first and second order (re-
spectively) in the scattering expansion, ŝ(φ) must in general
start at first order. Noting that

∫ π

−π

dφ

2π
e−i	φ ŝ(φ + hn(φ)) =∫ π

−π

dφ

2π
e−i	(φ−h(0)

n )ŝ(1)(φ) + O(λ2) = (−vn)	ŝ(1)
	 + O(λ2), we

rearrange the first-order part of Eq. (4.36) to yield

ŝ(1)
	 =

〈
v−	

n g(1)
n,	

〉
n

(−1)	 − 〈
v−	

n

〉
n

= γ (1)δ	,−1 + γ (1)∗δ	,1, (4.37)

which demonstrates Eq. (4.6).
Consider next the order j part of Eq. (4.36) for some j � 2.

By a similar calculation as above, the quantity ŝ( j)
	 only ap-

pears in the combination [〈v−	
n 〉n − (−1)	]s( j)

	 , which means

that we can solve for ŝ( j)
	 in terms of ŝ( j′ )

	′ with 1 � j′ < j.
This completes the demonstration that Eq. (4.36) determines
the function ŝ(φ) to all orders in the scattering expansion.

Although we do not present the explicit expressions in this
case, it may be shown that ŝ( j)

	 is nonvanishing for only finitely
many 	 and may be expressed as a finite sum over Fourier
coefficients of the other quantities appearing in Eq. (4.36). We
have calculated the second-order correction as well, with the
result (in φ space)

ŝ(φ) = 2 Re
{
γ (1)e−iφ + [

3
2γ (2) − (γ (1) )2

]
e−2iφ

}
+ O(λ3) + const. (4.38)

Thus, we see that the correspondence with the nonuniform
part of the marginal distribution of the reflection phase
[Eq. (4.6)] does not generally extend beyond the first order.

We proceed to the second constraint, (4.32b). Equa-
tion (4.34b) yields [rescaling 2cη(φ) → η(φ) to return to our
original definition of η(φ)]

C2,	 = −(−1)	
∫ π

−π

dφ p∞(φ)e−i	φ

〈
v−	

n An,	(φ)

×
[

1

2
g̃n(φ)2 + η(φ) − η(φ + hn(φ))

] 〉
n

, (4.39)
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so that (4.32b) is equivalent to the following equation holding
for all integers 	:

cp∞,	 = (−1)	
∫ π

−π

dφ p∞(φ)e−i	φ

〈
v−	

n An,	(φ)

×
[

1

2
g̃n(φ)2 + η(φ) − η(φ + hn(φ))

] 〉
n

. (4.40)

We now show that the 	 = 0 component of Eq. (4.40) deter-
mines the constant c to all orders, while the 	 
= 0 coefficients
determine the function η(φ) to all orders aside from a φ-
independent additive constant. Using Eqs. (3.20a) and (4.14),
we simplify the 	 = 0 component of Eq. (4.40) to

c = 1

2

∫ π

−π

dφ p∞(φ)

〈
1

2
gn(φ)2 + 2ŝ(φ)gn(φ)

+ 2ŝ(φ + hn(φ)) [ŝ(φ + hn(φ)) − ŝ(φ) − gn(φ)]

〉
n

− 1

2

(
2

Lloc

)2

, (4.41)

which thus yields a series expansion c = c(2) + c(3) + · · ·
since we have already established series expansions of p∞(φ),
ŝ(φ), and 2/Lloc. We readily obtain c(2) = γ (1)〈rn〉n and c(3) =
0 [all odd orders indeed vanish by the symmetry argument
presented below Eq. (3.2)], which thus yields the SPS relation
up to errors of the fourth order [Eq. (3.2)]. We have not
calculated the next coefficient (c(4)) explicitly, but it could be
done in our formalism. As commented earlier, Schrader et al.
have already shown in a specific model [36] that c(4) need
not coincide with the fourth-order part of 2/Lloc, as would be
expected if the SPS relation were exactly true.

Note that Eq. (4.40) is invariant under an additive shift
of the function η(φ) by any φ-independent constant, i.e., the
component η	=0 is unconstrained. However, all 	 
= 0 coef-
ficients are fixed by Eq. (4.40), and we can then calculate
η(φ) order by order in the scattering expansion [since all other
quantities in Eq. (4.40) can be calculated order by order].
A straightforward calculation shows that the series starts at
second order with

η(φ) = Re{[γ (2) − (γ (1) )2]e−2iφ} + O(λ3) + const. (4.42)

In our discussion above of three-parameter scaling, we ig-
nored the function η(φ) for reasons discussed there. If η(φ)
is included at the leading order, then an additional two real
parameters (the real and imaginary parts of γ (2)) must be
taken into account for a total of five parameters to determine
the joint probability distribution in the regime of weak local
reflection.

We check Eqs. (4.38) and (4.42) numerically in the fol-
lowing way. For a fixed and large system size N (in a given
model), we calculate the tuple (s1...N , φr′

1...N
) in many disorder

realizations. We then bin the tuples based on the value of φr′
1...N

into bins of some width φwidth � 2π . Within each bin we do
a Gaussian fit to the PDF of the values of s1...N in the bin.
We thus obtain an estimate of the mean and variance of s1...N

conditional on a certain value of φr′
1...N

. According to our result
(4.1), the conditional mean and variance should be given by
2N/Lloc + ŝ(φr′

1...N
) and 2cN + 2η(φr′

1...N
), respectively, up to

the addition of constants that are independent of N and of
φr′

1...N
.

Figure 4 shows the results for the DTQW considered in
Sec. III D, and also illustrates the leading-order correspon-
dence (4.6) between the marginal distribution of the reflection
phase and the phase-dependent mean. Equation (4.38) for the
phase-dependent mean agrees well with numerics [Fig. 4(c)].
Equation (4.42) for the phase-dependent variance is in rough
agreement [Fig. 4(d)]; we believe that the discrepancies could
be due to a combination of (a) Eq. (4.42) being a leading-order
expression only (with the expansion parameter being sin θ ≈
0.14), and (b) statistical error due to having insufficiently
many data points. We note that the explicit expression (4.42)
for the phase-dependent variance is not a central part of our
work, and that the numerical check of the phase-dependent
mean suffices to confirm that the joint probability distribution
is in general nonseparable.

V. CONCLUSION

In this paper, we developed a scattering expansion for
the general problem of single-channel scattering through a
disordered region with i.i.d. disorder. We found a systematic
expansion of the inverse localization length and reflection
phase distribution in terms of averages over the local reflection
amplitudes, with the local reflection strength being the small
parameter. The leading order of this expansion was shown to
be equivalent to an earlier result by Schrader et al. [36], and
the next order was checked in special cases from the literature.
Using these first two orders, we explored the effect of phase
disorder on DTQWs, interpolating between known results in
the limits of weak and strong disorder and showing analyti-
cally that the localization length can vary nonmonotonically
in between.

In the scattering framework, we further developed the
general understanding of SPS without the uniform phase hy-
pothesis, as demonstrated by Schrader et al. [36]. In particular,
we showed that their small parameter can be interpreted as the
local reflection strength, and we showed that the SPS relation
holds to another order beyond what they showed. We also ex-
plicitly showed that the SPS relation holds for weak potential
strength in a broad class of PARS. The picture of SPS that
emerges, primarily from Ref. [36] but extended by our work,
is that instead of there being a length scale for complete phase
randomization, there is instead a phase convergence length
at which the probability distribution of the reflection phase
reaches its limiting form (which in general is nonuniform).
When the local reflection strength is weak and the scattering
region is larger than both the localization length and the phase
convergence length, SPS holds.

We proceeded to apply the scattering expansion to the joint
probability distribution of the minus logarithm of the trans-
mission coefficient (− ln T ) and the reflection phase (φr′). In
the limit of large system size, we obtained a general form for
this distribution to all orders in the scattering expansion. This
calculation relied on an ansatz and some plausible, though
unproven, assumptions (and we checked our final result nu-
merically). We showed that all quantities that appear in this
general form may be expressed order by order in terms of local
averages, and we explicitly evaluated some of the leading-
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order terms. We found that at the leading order in the local
reflection strength, the same function describes both the de-
viations from uniformity in the marginal distribution of φr′

and the correlations between − ln T and φr′ . This showed that
the joint distribution satisfies, at the leading order, a three-
parameter scaling theory, with one parameter being the usual
one for the SPS description of the marginal distribution of
− ln T and the remaining two parameters describing both the
marginal distribution of the reflection phase and the phase-
transmission correlations.

It would be interesting to explore implications that our
scattering-based approach might have for the more usual
DTQW setup, in which a walker starts in a spatially con-
fined initial state and evolves in time. Ballistic spread (i.e.,
variance increasing quadratically with time) is an impor-
tant property of DTQWs and is known to be suppressed
by localization. However, if the localization length is suf-
ficiently large, then this suppression would be unimportant
since the walker can be expected to travel ballistically until
reaching a distance of order Lloc. (It has indeed been found
in a particular model that the maximum distance reached
by the walker has the same scaling with disorder strength
as the localization length [13].) Our scattering-based results
for Lloc might yield a lower bound (after appropriate min-
imization over quasienergy) on the Lloc that appears in the
time-dependent problem. Also, our technique for calculating
the reflection phase distribution might extend to the distri-
bution of the Wigner delay time (dφr′/dω), which would
characterize the time that a walker spends in being reflected
from a disordered region in an otherwise nondisordered
environment.

Another direction to explore would be applications of our
approach to other problems involving products of random
matrices, even outside the setting of scattering theory. For
instance, in the study of randomly driven conformal field
theories, Ref. [96] encounters a problem that seems to fit our
framework [a product of random SU(1, 1) matrices]; each
matrix represents a time step, and the Lyapunov exponent
(inverse localization length) is shown to be the rate of en-
tanglement entropy growth (and to be a lower bound on the
heating rate).

Finally, this work could be a step towards an analytical
treatment of the quasi-one-dimensional case (i.e., many scat-
tering channels rather than one). This would be significant
because the quasi-one-dimensional case can be used to study
delocalization transitions in dimensions higher than one; in
particular, one studies (usually numerically) the scaling, as
the number of transverse modes goes to infinity, of the largest
localization length [97]. If we can carry out the approach
with multiple scattering channels, then the possibility could
arise of taking this limit analytically. We note that Ref. [98]
takes a similar approach in a particular model and finds
that departure from the isotropy assumption (cf. Sec. II) is
necessary in order to obtain a metal-insulator transition. Ul-
timately, we would like to use the scattering expansion as an
analytical handle on critical exponents in higher-dimensional
localization-delocalization transitions, such as the plateau
transition in the integer quantum Hall effect [99].
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APPENDIX A: S MATRICES AND SCATTERING
TRANSFER MATRICES

We recall some basic facts about single-channel scattering
in one dimension. A generic 2 × 2 S matrix S relates incom-
ing to outgoing scattering amplitudes by(

�+
R

�−
L

)
= S

(
�+

L

�−
R

)
, (A1)

and may be parametrized as

S =
(

t r′
r t ′

)
, (A2)

where t and t ′ (r and r′) are the transmission (reflection)
amplitudes. It is straightforward to show that the unitarity
condition (S†S = 1) yields |t |2 = |t ′|2 ≡ T , |r|2 = |r′|2 ≡ R,
R + T = 1, and r′t∗ + r∗t ′ = rt∗ + r′∗t ′ = 0. We can thus
write

S =
( √

T eiφt
√

1 − T eiφr′

√
1 − T eiφr

√
T eiφt ′

)
, (A3)

with t = √
T eiφt , t ′ = √

T eiφt ′ , r = √
Reiφr , r′ = √

Reiφr′ , and
(unless T = 0 or 1) φt + φt ′ − φr − φr′ = π (modulo 2π ).

Provided that the transmission coefficient T is nonzero, one
can relate left to right amplitudes using a scattering transfer
matrix T as follows:(

�+
R

�−
R

)
= T

(
�+

L

�−
L

)
, (A4)

where

T =
(

1/t∗ r′/t ′

−r/t ′ 1/t ′

)
. (A5)

Two scatterers in sequence (S1 to the left of S2) are described
by an S matrix denoted S12. Let us parametrize S1, S2, S12

as in Eq. (A2). S12 may be obtained from its correspond-
ing scattering transfer matrix T12 = T2T1. Using unitarity, it
is straightforward to obtain from this matrix equation the
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following exact relations:

t12 = t1t2
1 − r′

1r2
, (A6a)

t ′
12 = t ′

1t ′
2

1 − r′
1r2

, (A6b)

r12 = r1
1 − r2/r′∗

1

1 − r′
1r2

, (A6c)

r′
12 = r′

2
1 − r′

1/r∗
2

1 − r′
1r2

. (A6d)

We can now derive the recursion relations for the transmis-
sion coefficient and reflection phase. Identifying S1...N ≡ S1,
SN+1 ≡ S2, and S1...N+1 ≡ S12, we obtain Eq. (3.5a) from the
main text by taking the modulus squared of either Eq. (A6a)
or (A6b). Also, we can write Eq. (A6d) as

r′
12 = − r′

1r′
2

r∗
2

1 − r∗
2/r′

1

1 − r′
1r2

, (A7)

and taking the argument of both sides yields Eq. (3.5b) from
the main text.

APPENDIX B: THE SCHRADER ET AL. FORMULA

First we state the main results of Schrader et al. (Ref. [36])
with some adjustments of notation to match our conventions.
Then we show that Eqs. (3.1) and (3.2) in the main text follow
straightforwardly from their result.

1. Statement of their result

Schrader et al. consider a product of 2 × 2 matrices
K1...N = KN . . . K1, where, as in the main text, we are using
the convention that the subscript n stands for dependence on
some disorder variables that are i.i.d. Each Kn also depends
on a global (i.e., site-independent and disorder-independent)
real parameter λ. By assumption, each Kn satisfies three con-
ditions. The first is a pseudounitarity condition:

K†
n σ yKn = σ y. (B1)

The second condition is that all Kn commute at λ = 0:

[Kn, Kn′ ]|λ=0 = 0, (B2)

and the third is a trace inequality at λ = 0:

|Tr Kn|λ=0| < 2. (B3)

Note that the pseudounitarity condition (B1) with σ z instead
of σ y is the defining condition for a scattering transfer matrix
Tn (as it is equivalent to the unitarity of the corresponding S
matrix). Schrader et al. point out that the two types of matrices
are isomorphic, being related by a unitary transformation:

C ≡ 1√
2

(
i i
1 −1

)
, Kn ≡ CTnC

−1. (B4)

They write the matrix that rotates by an angle η as

Rη =
(

cos η − sin η

sin η cos η

)
. (B5)

They show that any Kn may be written as

MKnM−1 = eiξn Rηn exp[λPn + λ2Qn + O(λ3)], (B6)

where M ∈ SL(2,R), Pn and Qn are real, traceless 2 × 2 ma-
trices, and M, ηn, Pn, and Qn are all independent of λ (while ξn

may depend on λ). The phases ξn and ηn are explicitly found
as follows. From det K†

n Kn = 1 [which follows from Eq. (B1)]
we have det Kn = e2iξn for some ξn ∈ [0, π ). The phase ηn is
defined by cos ηn = 1

2 (e−iξn Tr Kn)|λ=0.
They further define a λ-independent constant βn in terms

of the matrix elements of Pn:

βn = (Pn)1,1 − 1
2 i [(Pn)1,2 + (Pn)2,1] . (B7)

Their results for the localization length and variance [see their
Eqs. (6), (7), and (22)] are given in our conventions by

2

Lloc
=
{
〈|βn|2〉n + 2 Re

[ 〈βn〉n〈β∗
n ei2ηn〉n

1 − 〈e2iηn〉n

]}
λ2 + O(λ3)

(B8)
and

lim
N→∞

σ (N )2

2N
= 2

Lloc
+ O(λ3). (B9)

2. Corollary to the Schrader et al. result

We now use the isomorphism (B4) to apply Eqs. (B8) and
(B9) to a scattering transfer matrix Tn, which in general may
be parametrized as

Tn =
(

1/t∗
n r′

n/t ′
n

−rn/t ′
n 1/t ′

n

)
. (B10)

Note that by unitarity (or, equivalently, the pseudounitarity
condition T †

n σ zTn = σ z), we have |rn| = |r′
n| ≡ √

Rn, |tn| =
|t ′

n| ≡ √
Tn, and Rn + Tn = 1. We write tn = √

Tneiφtn and t ′
n =√

Tneiφt ′n . We assume that the S matrix elements depend on the
global parameter λ, and in particular that rn and rn′ are each
proportional to λ. Then by unitarity, Tn = 1 + O(λ2), and so

tn = eiφtn + O(λ), t ′
n = eiφt ′n + O(λ). (B11)

We expand the transmission phases as φtn = φ
(0)
tn + φ

(1)
tn +

O(λ2) and φt ′
n
= φ

(0)
t ′
n

+ φ
(1)
t ′
n

+ O(λ2), where the superscript
indicates the order in λ. The scattering transfer matrix at λ = 0
simplifies to

Tn|λ=0 =
(

eiφ(0)
tn 0

0 e
−iφ(0)

t ′n

)
. (B12)

It is then clear that all Tn commute at λ = 0. Furthermore,

Tr Tn|λ=0 = eiφ(0)
tn + e

−iφ(0)
t ′n , which has absolute value that we

can assume to be less than 2 in almost all disorder realizations.
In this last step we are appealing to “typical” disorder since
even if φ

(0)
tn = φ

(0)
t ′
n

is enforced by symmetry, the point φ
(0)
tn =

0 is a set of measure zero. The isomorphism (B4) then shows
that Eq. (B2) and inequality (B3) hold, while Eq. (B1) also
follows from the isomorphism. Thus, the conditions for the
Schrader et al. formula are met.
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We proceed to identify the various terms in the decompo-
sition (B6). From Eq. (B4), we readily obtain

Det Kn = ei(φtn −φt ′n ), (B13)

and thus

ξn = 1
2

(
φtn − φt ′

n

)
. (B14)

We then obtain ηn = 1
2 (φ(0)

tn + φ
(0)
t ′
n

).
We then define a real, traceless, λ-independent matrix Pn

by

λPn = 1

2

(
−(rn + r∗

n ) −i(rn − r∗
n ) − φ

(1)
tn − φ

(1)
t ′
n

−i(rn − r∗
n ) + φ

(1)
tn + φ

(1)
t ′
n

rn + r∗
n

)
. (B15)

Then it is straightforward to verify

Kn = eiξn Rηn (1 + λPn) + O(λ)2, (B16)

which confirms the decomposition (B6) with M = 1 (and Q
will not be needed).

From Eq. (B7), we then read off the constant βn:

λβn = −rn. (B17)

Also note
e2iηn = t ′

n/t∗
n + O(λ) (B18a)

= − rnr′
n

Rn
+ O(λ), (B18b)

where we used the unitarity constraint r′
nt∗

n + r∗
nt ′

n = 0. Sub-
stituting into their results (B8) and (B9) then yields Eqs. (3.1)
and (3.2) from the main text with error terms O(λ3) instead
of O(λ4). The vanishing of the third-order contributions is
discussed in the main text.

3. Correspondence of the phase variables

As we have mentioned in the main text, Schrader et al. [36]
emphasize the importance of a nonuniform phase distribution
in obtaining the correct answer for the inverse localization
length and variance at leading order. To further clarify the
connection between their work and ours, we show in this
section that the phase variable they consider (in a calculation
that does not explicitly refer to scattering) is, in the localized
regime, related by a factor of 1

2 to the reflection phase in our
setup. We then confirm that our calculation yields the same
result for the first Fourier coefficient of the phase distribution
(p∞,	=−1) as their calculation.

Their phase variable is θn (not to be confused with the
coin parameter in the DTQW in our main text). Note from the
paragraph above their Sec. 3 that they set ξσ (λ) = 0 (ξn = 0
in our notation). The recursion relation they obtain is [their
Eqs. (12) and (13)]

e2iθn+1 = 〈v|Kn|eθ 〉
〈v̄|Kn|eθ 〉 , (B19)

where [see their Eqs. (9) and (10)]

|v〉 = 1√
2

(
1
−i

)
, (B20a)

eθ =
(

cos θ

sin θ

)
. (B20b)

From Eq. (B14) and ξn = 0 we see that φtn = φ′
tn , i.e., tn = t ′

n.
Using Eq. (B4) and unitarity, we then find that their recursion

relation (B19) becomes

e2iθn+1 = ei(φrn +φr′n +π ) 1 − r∗
n e−2iθn

1 − rne2iθn
. (B21)

Identifying 2θn = φr′
1...n

and taking the logarithm of both sides
yields exactly the recursion relation (3.6b) for the reflection
phase in the localized regime (which we recall consists of n
large enough that R1...n ≈ 1). This suffices to show that the
probability distribution p∞(φr′ ) coincides with the probability
distribution of 2θn for large n; while 2θn and φr′

1...n
need not

coincide for small n, this has no effect in the limit of many
sites. Note in particular that the “invariant measure” discussed
by Schrader et al. (and also in the prior mathematics literature
[33,63,100]) is the same, up to trivial rescaling, as p∞(φr′ ).

Taking N → ∞ in their Lemma 1 should thus yield, in
our notation, the first Fourier component p∞,	=−1 explicitly
up to error O(|rn|2) and also the error estimate p∞,	=−2 =
O(|rn|) for the second Fourier component. Recall that
we obtained 2π p∞,	=−1 = γ (1) + O(|rn|3) and 2π p∞,	=−2 =
γ (2) + O(|rn|4) [see Eq. (3.18)], where the constants γ (1)

and γ (2) are given by Eqs. (3.17b) and (3.17c). Recalling
Eqs. (B17) and (B18b), we see that limN→∞ I1(N ) in the
unnumbered equation above their Eq. (20) agrees with what
we found for the first Fourier component (though we find a
stronger error estimate). Furthermore, our explicit result for
the second Fourier component is consistent with (and stronger
than) their error estimate because γ (2) = O(|rn|2).

APPENDIX C: COMPARISON WITH THE WEAK
SCATTERING APPROXIMATION

Here we expand on our comments in [42,70], providing a
detailed comparison of our approach with the WSA developed
in Refs. [44,45] and reviewed in Ref. [46].

We note first that Refs. [44–46] use the convention that
new scatterers are added to the left edge of the sample, rather
than our convention of adding them to the right edge. The two
conventions are related by exchanging Sn ↔ S†

n and S1...N ↔
S†

1...N , i.e.,

tn ↔ t∗
n , t ′

n ↔ t ′∗
n , rn ↔ r′∗

n ,

t1...N ↔ t∗
1...N , t ′

1...N ↔ t ′∗
1...N , r1...N ↔ r′∗

1...N . (C1)

We also note that Ref. [46] considers the special case tn = t ′
n

and rn = r′
n (see below). [Note that in this case, Eqs. (A6a)–

(A6d) show that t ′
1...N = t1...N , but r′

1...N may differ from r1...N .]
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With S1...N ≡ S1, SN+1 ≡ S2, and S1...N+1 ≡ S12, the exact
recursion relations (A6a) and (A6d) become

t1...N+1 = t1...NtN+1

1 − r′
1...N rN+1

, (C2a)

r′
1...N+1 = r′

N+1 + r′
1...NtN+1t ′

N+1

1 − r′
1...N rN+1

, (C2b)

where we have used a relation that follows from the unitarity
constraints r′

nt ′∗
n + r∗

ntn = 0 and Rn + Tn = 1:

r′
n/r∗

n = −tnt ′
n + rnr′

n. (C3)

Setting tn = t ′
n and rn = r′

n and making the change of conven-
tions given by (C1), we see that Eqs. (C2a) and (C2b) recover
the complex conjugates of the exact recursion relations as
presented in Ref. [46] [Eqs. (2.16) and (2.17) there], in a
slightly different notation.

We proceed next to review the WSA calculation of the
inverse localization length [45]. We generalize the calculation
slightly by not assuming tn = t ′

n or rn = r′
n. We confirm that

the WSA result agrees with Eq. (3.23) at the leading order
(|rn|2) but disagrees at the next nonvanishing order (|rn|4).
Throughout, we follow the same convention as used in our
main text of adding new sites to the right.

The WSA makes the following expansions of Eqs. (C2a)
and (C2b) [46]:

ln t1...N+1 = ln t1...N + ln tN+1 + r′
1...N rN+1 + · · · , (C4a)

r′
1...N+1 = rN+1 + r′

1...NtN+1t ′
N+1 + · · · . (C4b)

[Recalling (C1), we see that Eqs. (C4a) and (C4b) are equiva-
lent to Eqs. (2.16) and (2.17) of Ref. [46] once we specialize
to tn = t ′

n and rn = r′
n.]. Equation (C4a) is the expansion of

Eq. (C2a) to first order (in |rN+1|). As noted below Eq. (2.19)
in Ref. [46], Eq. (C4b) is an uncontrolled approximation to
Eq. (C2b) because the first-order term r′2

1...NtN+1t ′
N+1rN+1 is

omitted (while rN+1 is kept).
In the WSA approach, the inverse localization length is

calculated by taking Eqs. (C4a) and (C4b) to be the exact
recursion relations. In this way it is straightforward to obtain,
by induction,

r′
1...N =

N∑
j=1

r′
j

N∑
m= j+1

tmt ′
m (C5)

and

ln t1...N =
N∑

j=1

ln t j +
N∑

m=2

N∑
j=m

r′
j−m+1r j

j−1∏
p= j−m+2

tpt ′
p, (C6)

the latter of which recovers Eq. (13) of Ref. [45] if we set
tn = t ′

n and rn = r′
n [also recall (C1)]. Then, relabeling some

summation variables and using the assumption that the disor-
der is i.i.d., we obtain

〈ln t1...N 〉1...N = N〈ln tn〉n + 〈rn〉n〈r′
n〉n

N−2∑
j=0

j∑
m=0

〈tnt ′
n〉m

n . (C7)

The geometric sums may be carried out explicitly. Recalling
that

2/Lloc = lim
N→∞

〈− ln T1...N 〉1...N/N (C8)

and ln T1...N = 2 Re[ln t1...N ], we thus obtain(
2

Lloc

)
WSA

= 〈− ln Tn〉n − 2 Re

[ 〈rn〉n〈r′
n〉n

1 − 〈tnt ′
n〉n

]
, (C9)

which indeed recovers Eq. (43) of Ref. [45] in the case tn = t ′
n

and rn = r′
n [note that the change of conventions (C1) has

no effect here]. Noting that r′
n/r∗

n = rnr′
n/Rn and recalling

Eq. (C3), we then expand Eq. (C9) to obtain(
2

Lloc

)
WSA

= 〈Rn〉n − 2 Re[α1〈rn〉n〈r′
n〉n] + 1

2

〈
R2

n

〉
n

− 2 Re
[
α2

1〈rn〉n〈r′
n〉n〈rnr′

n〉n
] + O(|rn|6).

(C10)

Comparing to Eq. (3.23) from the main text, we see that the
WSA calculation yields the correct answer for 2/Lloc at the
leading order, but misses several terms that appear at the next
nonvanishing order.

To compare the WSA with our work in further detail, we
examine the WSA recursion relations (C4a) and (C4b) in the
localized regime. We show that if these relations are treated
consistently as first-order approximations (rather than follow-
ing the WSA approach of treating them as exact), then a factor
of 2 is missing from one of the terms in the leading-order
expression for the inverse localization length.

In the localized regime, r1...N becomes a pure phase
(r1...N → eiφr1...N ), and Eqs. (C4a) and (C4b) yield the fol-
lowing recursion relations. For the minus logarithm of the
transmission coefficient, the WSA yields

s1...N+1 = s1...N + sN+1 − 2 Re[rN+1e
iφr′1...N ] + · · · , (C11)

which is indeed the leading-order expansion of Eq. (3.6a)
from the main text. For the reflection phase, the WSA yields

φr′
1...N+1

= φr′
1...N

+ π + φrN+1 + φr′
N+1

+ β Im[rN+1e
iφr′1...N ]

+ · · · , (C12)

with β = 1; this agrees with Eq. (3.6b) at the zeroth order
but disagrees at the first order by a constant factor (β = 2 is
obtained if all first-order terms are accounted for).

It is straightforward to repeat the calculation of Sec. III B
to obtain the limiting distribution of the reflection phase at
first order under the assumption of the recursion relation (C12)
(with β as a free parameter). The result is

2π p∞(φr′ ) = 1 + β Re[α1〈r′
n〉ne−iφr′ ] + O(|rn|2). (C13)

From Eq. (3.4), we then read off the inverse localization length
at leading order:

2

Lloc
= 〈Rn〉n − β Re[α1〈rn〉n〈r′

n〉n] + O(|rn|4), (C14)

which indeed agrees with Eq. (3.1) for β = 2 (but not for
β = 1).

APPENDIX D: EXISTENCE OF THE LIMITING
DISTRIBUTION OF THE REFLECTION PHASE

Given the assumption that localization occurs, we show
that the probability distribution of the reflection phase, pN (φ),
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has a limit as N → ∞. The calculation here is a slight gen-
eralization of that of Lambert and Thorpe [38] with some
further comments on its implications. In view of the phase
correspondence discussed in Appendix B, the existence of
p∞(φ) may also be viewed as a consequence of theorems for
the invariant measure [33,100].

In the main text, we subdivided an (N + 1)-site sample
into an N-site sample plus an additional site to the right. This
yielded a relation between pN+1(φ) and pN (φ) for large N
[Eq. (3.8)]. We now show that subdividing the (N + 1)-site
sample in another way (an N-site sample plus an additional
site to the left) yields another relation between pN+1(φ) and
pN (φ) for large N , namely, the simple relation that the proba-
bility distribution stops changing as N increases:

pN+1(φ) = pN (φ). (D1)

Equation (D1) shows that p∞(φ) exists, which in turn allows
us to solve Eq. (3.8) (for large N) order by order in the
scattering expansion, as we have done in the main text.

To obtain Eq. (D1) we start by noting that, since the
disorder is i.i.d., we are free to label the N sites as n =
−N, . . . ,−1; in particular, we have [101]

pN (φ) = 〈
δ
(
φ − φr′

−N ···−1

)〉
−N ···−1. (D2)

With S−(N+1) ≡ S1, S−N ···−1 ≡ S2, and S−(N+1)···−1 ≡ S12,
Eq. (A6d) becomes

r′
−(N+1)···−1 = r′

−N ···−1

1 − r′
−(N+1)/r∗

−N ···−1

1 − r′
−(N+1)r−N ···−1

. (D3)

Assuming localization occurs, r1...N and r′
1...N become pure

phases for large N : r−N ···−1 → eiφr−N ···−1 , r′
−N ···−1 → e

iφr′−N ···−1 .
Then Eq. (D3) simplifies to

e
i(φr−(N+1)···−1 −φr′−1···−N

) = 1, (D4)

which implies that the recursion relation for the reflection
phase simplifies to φr′

−(N+1)···−1
= φr′

−N ···−1
for large N . From

Eq. (D2) we then read off Eq. (D1).
Next, we show the connection between the calculation

above and that of Lambert and Thorpe [38]. To make the
precise comparison, we repeat the calculation considering
the left-to-right reflection phase (φr) instead of right-to-left
reflection phase (φr′). We write the probability distribution
of φr as p[φr ]

N (φ), where the superscript is only a label, and
we subdivide an (N + 1)-site sample in the same way as in
the main text (i.e., the “additional” site is on the right). From
Eq. (A6c) with S1...N ≡ S1, SN+1 ≡ S2, and S1...N+1 ≡ S12,
we then obtain the analogs of Eqs. (D3) and (D4):

r1...N+1 = r1...N
1 − rN+1/r′∗

1...N

1 − r′
1...N rN+1

, (D5a)

ei(φr1...N+1 −φr1...N ) = 1, (D5b)

where the second equation takes N to be large and uses the
assumption of localization (r1...N → eiφr1...N , r′

1...N → e
iφr′1...N ).

From here we can demonstrate p[φr ]
N+1(φ) = p[φr ]

N (φ) in the
same way as before [and then Eq. (D1) follows by symmetry].

In a slightly more restricted setting, Eqs. (D5a) and (D5b)
have been obtained previously in an equivalent form by Lam-
bert and Thorpe [38], as we now explain. The restriction is

the assumption that the transmission amplitudes of the lo-
cal S matrix are equal: tn = t ′

n. [Note that Eqs. (A6a) and
(A6b) then imply that the sample S matrix has the same
property, i.e., t1...N = t ′

1...N .] Equation (D5a) is then equivalent
to Eq. (5c) of Ref. [38]. (To see this, we note the follow-
ing correspondence between their notation and ours: θn =
−φtn , φn = φrn − φtn + π , αn = −φt1...n , βn = φr1...n − φt1...n +
π , ρn = Rn/Tn, sn = √

Rn, zn = R1...n/T1...n, rn = √
R1...n, and

εn = φr1...n−1 − 2φt1...n−1 − φrn = π − φr′
1...n−1

− φrn , where their
quantities appear on the left-hand side and ours on the right.)
Also, Eq. (D5b) is stated in an equivalent form (regarding the
quantity αn − βn) in the paragraph below Eq. (6) of Ref. [38].

The above calculation has a consequence for numerics,
and possibly experiment, which we now explain. Sampling
the reflection phase distribution could be done by finding the
reflection phase in a number of different disorder realizations
of a chain of fixed length; however, it may be advantageous
to instead find the reflection phase for chains over a range
of lengths, with no change in the disorder realization of the
existing sites as new sites are added. According to the above
calculation, the latter procedure will not work for sampling φr

if the chain is increased to the right since only a constant value
of φr will be obtained (although our numerics indicate that φr′

can be sampled this way). Similarly, φr′ cannot be sampled by
increasing the chain to the left (but we expect that φr can).

APPENDIX E: EVALUATION OF A FOURIER INTEGRAL

Our series for the inverse localization length is based
on Eq. (3.4), which we arrive at by writing the integral
in Eq. (3.20b) as a sum over Fourier coefficients. Here we
present this calculation explicitly.

Define Gn(φ) = ln(1 − rneiφ − r∗
n e−iφ + Rn). Since Gn(φ)

and p∞(φ) are both real, Eq. (3.20b) may be written in terms
of Fourier coefficients [Gn,	 ≡ ∫ π

−π

dφ

2π
e−i	φGn(φ)] as

2

Lloc
= 〈− ln Tn〉n + 2π p∞,0〈Gn,0〉n

+ 4π Re

[ ∞∑
	=1

p∞,−	〈Gn,	〉n

]
. (E1)

Thus, Eq. (3.4) follows from Gn,	 = 0 for 	 = 0 and −r	
n/	

for 	 > 0, which we now show. The same Fourier integral has
been done in Ref. [74] [Eq. (52) there)].

Writing rn = √
Rneiφrn , we shift φ + φrn → φ to obtain

Gn,	 = ei	φrn

∫ π

−π

dφ

2π
e−i	φ ln[1 − √

Rneiφ − √
Rne−iφ + Rn].

(E2)
To show Gn,	=0 = 0, we note that the integrand may be written
as ln |1 − √

Rneiφ |2, so the integral vanishes. For 	 > 0, we
define z = eiφ and α = √

Rn/(1 + Rn) (the disorder parame-
ters represented by the site index n are spectators); then we
get

Gn,	 = ei	φrn

∫ π

−π

dφ

2π
e−i	φ ln [1 − α(z + 1/z)] . (E3)

Next, we expand the logarithm to all orders in α to calculate
the coefficient of z	, which is what is the integral over φ yields.
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We get

ln [1 − α(z + 1/z)] = −
∞∑
j=1

α j

j

j∑
m=0

(
j

m

)
z2m− j, (E4)

from which we calculate the coefficient of z	 to be

(coeff of z	) = −
∞∑
j=1

α j

j

j∑
m=0

(
j

m

)
δ2m− j,	 (E5a)

= −
∞∑

m=0

∑
j=max{1,m}

α j

j

(
j

m

)
δ2m− j,	 (E5b)

= −
∞∑

m=	

α2m−	

2m − 	

(
2m − 	

m

)
. (E5c)

This sum evaluates to −( 1−√
1−4α2

2α
)	/	 = −(

√
Rn)	/	, which

completes the calculation.

APPENDIX F: PARTIAL EXTENSION
OF OUR RESULTS TO ANOMALIES

We consider the case that the inequality (3.14) is only
assumed for 0 < |	| � 	max with some finite value 	max � 1,
thus generalizing the calculation of the main text (in which
	max → ∞). The main conclusion of this calculation is that
if 	max is finite, then the scattering expansion that we find
for 2/Lloc in the main text is valid up to an error term
O(|rn|	max+1). (We do not know if the odd powers are guaran-
teed to vanish in the case that 	max is finite.) For instance, the
leading-order expression (3.1) is valid provided that 	max �
3, and the next-to-leading order expression (3.23) is valid
provided that 	max � 5. We also discuss how our results for
the reflection phase distribution are modified, and we present
more detail for the calculation of the first few Fourier coeffi-
cients.

One motivation for doing this calculation is simply to
confirm that having 	max be large but finite, as opposed to
infinite, makes no practical difference to our final results (as
only very high orders are affected). A second motivation is
that the case of finite 	max arises naturally in the Anderson
model for anomalous values of the momenta, as we discuss in
Sec. III C 1. (More generally, we refer to any cases in which
	max is finite [102] as “anomalies.”)

For any q � 0, we write the order-q part of Eq. (3.9) in
Fourier space:[

1 − (−1)	
〈
v−	

n

〉
n

]
p(q)

∞,	

= (−1)	
〈
v−	

n

q−1∑
j=0

∞∑
	′=−∞

p( j)
∞,−	′A

(q− j)
n,	;	+	′

〉
n

. (F1)

Note that Eq. (3.11) is just Eq. (F1) for q = 0. If 0 <

|	| � 	max then 1 − (−1)	〈v−	
n 〉n 
= 0 by assumption, so we

can divide this quantity on both sides of Eq. (F1) [yielding
Eq. (3.12)].

We first prove the following statement: For any q � 0 and
any 	max � q, the Fourier coefficients p(q)

∞,	 for |	| � 	max − q
are exactly the same as they are in the 	max → ∞ case (which
is treated in the main text). Roughly speaking, this means

that for large but finite 	max, corrections to the calculation of
the main text can only occur either in large frequencies or in
large orders of the expansion. For example, if 	max = 6, then
Eq. (3.18) is valid up to the addition of jth-order terms of the
form e±i|	− j|φ (where 	 � 7 and j = 0, 1, 2, 3).

The proof by induction is as follows. For q = 0, Eq. (F1)
shows that p(0)

∞,	 = 0 for 0 < |	| � 	max, and also we still have

p(0)
∞,0 = 1/(2π ) by normalization; thus, p(0)

∞,	 agrees with the

	max → ∞ calculation for |	| � 	max [both yielding p(0)
∞,	 =

δ	,0/(2π )]. We then assume that for some q � 1, the Fourier
coefficients p( j)

∞,	 are the same as in the 	max → ∞ case when
0 � j � q − 1, j � 	max, and |	| � 	max − j.

We consider q � 	max. By normalization, p(q)
∞,0 = 0. Thus,

it is enough to consider 	 with 0 < |	| � 	max − q. For these
	, we can divide the quantity 1 − (−1)	〈v−	

n 〉n on both sides
of Eq. (F1). Taking 	 < 0 without loss of generality, we then
use the properties of the function A that are mentioned below
Eq. (3.16) to truncate the 	′ sum, yielding

p(q)
∞,	 = (−1)	

1 − (−1)	〈v−	
n 〉n

〈v−	
n

q−1∑
j=0

|	|+q− j∑
	′=0

p( j)
∞,−	′A

(q− j)
n,	;	+	′ 〉n.

(F2)

In the sum on the right-hand side, we have 0 � j � q − 1,
j � 	max, and 	′ � |	| + q − j � 	max − j, so each p( j)

∞,−	′ is
as in the 	max → ∞ case. We can then use Eq. (3.15) to
replace the upper limit of the 	′ sum by min{|	| + q − j, j}.
We have thus arrived at an equation equivalent to Eq. (3.16)
(since the 	′ sum there can be truncated to the same form
using a property of the function A). Thus, we have shown
that p(q)

∞,	 is as in the 	max → ∞ case, which completes the
proof.

We proceed to consider the order-q part (for some q � 1)
of the formula (3.4) for the inverse localization length. We
have(

2

Lloc

)(q)

= 〈−(ln Tn)(q)〉n − 4π Re

[
q∑

	=1

1

	
p(q−	)

∞,−	

〈
r	

n

〉
n

]
.

(F3)

We assume q � 	max. Then 	 � 	max − (q − 	) in the sum on
the right-hand side, which implies that each p(q−	)

∞,−	 is as in the
	max → ∞ case. Thus, the inverse localization length is given
by the calculation of the main text up to and including order
q.

We conclude this Appendix by providing some further de-
tail on the calculation of the first few Fourier coefficients p(q)

∞,	

[resulting in Eqs. (3.17a)–(3.17e) and (3.18)]. Throughout, we
use the general property An,	;−	′ = A∗

n,−	;	′ (which in particular
holds at any given order) and the entries in Table I.

Setting q = 1 in Eq. (3.16) yields p(1)
∞,−1 =

−α1〈vn p(0)
∞,0A(1)

n,−1;−1〉n = γ (1)/(2π ). Then, setting q = 2

yields p(2)
∞,	 = (−1)	α	〈v−	

n (p(0)
∞,0A(2)

n,	;	 + p(1)
∞,−1A(1)

n,	;	+1)〉n,

hence, p(2)
∞,−1 = 0 and p(2)

∞,−2 = γ (2)/(2π ). Finally,

setting q = 3 yields p(3)
∞,	 = (−1)	α	〈v−	

n (p(0)
∞,0A(3)

n,	;	 +
p(1)

∞,−1A(2)
n,	;	+1 + p(2)

∞,−2A(1)
n,	;	+2)〉n, hence, p(3)

∞,−1 = γ
(3)

1 /(2π ),

p(3)
∞,−2 = 0, and p(3)

∞,−3 = γ
(3)

3 /(2π ).
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TABLE I. Table of Fourier coefficients A( j)
n,	;	′ .

�
��j
	′

0 1 2 3

0 1 0 0 0
1 0 −	rn 0 0

2 −	2Rn 0 1
2 	(	 − 1)r2

n 0

3 0 1
2 	2(	 − 1)Rnrn 0 − 1

6 	(	 − 1)(	 − 2)r3
n

APPENDIX G: FURTHER DETAILS FOR PARS

1. Relation of PARS reflection amplitudes
to single-site reflection amplitudes

Here we demonstrate that the scattering transfer matrix for
the PARS potential (3.41) can be written as T1...N = TN . . . T1,
where Tn is simply related to the scattering transfer matrix for
a single potential at the origin [with the reflection amplitudes
in particular satisfying Eqs. (3.44a) and (3.44b)].

We start by considering the scattering problem of a single
potential at the origin. A scattering eigenstate wavefunction

�̂(x) for the Hamiltonian Ĥ = P2

2m + VD̂(x) may be written as

�̂(x) =
{

�̂+
L eikx + �̂−

L e−ikx x < −xmax,

�̂+
R eikx + �̂−

R e−ikx x > xmax,
(G1)

where the energy is E = k2/(2m) and where the four scatter-
ing amplitudes are related by

(
�̂+

R

�̂−
R

)
= T̂D̂

(
�̂+

L

�̂−
L

)
, (G2)

with some scattering transfer matrix T̂D̂ that is assumed to be
known.

Consider next the scattering problem for the chain defined
by Eq. (3.41). In regions where the potential vanishes, the
wavefunction is a linear combination of e±ikx. We choose
the following phase convention for these regions: for n =
1, . . . , N , we write

�(x) =
{

�+
L,neik(x−xn ) + �−

L,ne−ik(x−xn ) xn−1 + xmax < x < xn − xmax,

�+
R,neik(x−xn ) + �−

R,ne−ik(x−xn ) xn + xmax < x < xn+1 − xmax,
(G3)

where x0 = −∞ and xN+1 = ∞. By shifting x − xn → x, we can then refer to the single-site problem to obtain(
�+

R,n

�−
R,n

)
= T̂D̂n

(
�+

L,n

�−
L,n

)
. (G4)

Equation (G3) also implies, for n = 1, . . . , N − 1,(
�+

L,n+1

�−
L,n+1

)
=
(

eik(xn+1−xn ) 0
0 e−ik(xn+1−xn )

)(
�+

R,n

�−
R,n

)
(G5a)

=
(

eik(an+1+ 1
2 bn+1+ 1

2 bn ) 0
0 e−ik(an+1+ 1

2 bn+1+ 1
2 bn )

)

×
(

�+
R,n

�−
R,n

)
. (G5b)

Comparing Eq. (G3) for n = 1 and N to Eq. (3.42), we also
obtain(

�+
L,1

�−
L,1

)
=
(

eikx1 0
0 e−ikx1

)(
�+

L

�−
L

)

=
(

eik(a1+ 1
2 b1 ) 0

0 e−ik(a1+ 1
2 b1 )

)(
�+

L

�−
L

)
(G6)

and (
�+

R

�−
R

)
=
(

e
1
2 ikbN 0
0 e− 1

2 ikbN

)(
�+

R,N

�−
R,N

)
. (G7)

We define

Tn =
(

e
1
2 ikbn 0
0 e− 1

2 ikbn

)
T̂D̂n

(
eik(an+ 1

2 bn ) 0
0 e−ik(an+ 1

2 bn )

)
.

(G8)

Then, using the last few equations, we obtain

(
�+

R

�−
R

)
= TN

(
e

1
2 ikbN−1 0

0 e− 1
2 ikbN−1

)(
�+

R,N−1

�−
R,N−1

)

= TN . . . T2

(
e

1
2 ikb1 0

0 e− 1
2 ikb1

)(
�+

R,1

�−
R,1

)
(G9a)

= TN . . . T1

(
�+

L

�−
L

)
, (G9b)

which confirms that the scattering transfer matrix for the sam-
ple is T1...N = TN . . . T1.

The scattering transfer matrix for the single-site problem
may be parametrized as

T̂D̂n
=
(

1/t̂∗
D̂n

r̂′
D̂n

/t̂ ′
D̂n

−r̂D̂n
/t̂ ′

D̂n
1/t̂ ′

D̂n

)
, (G10)

and Tn may be parametrized similarly. (In fact, t̂ ′
D̂n

= t̂D̂n

by time-reversal symmetry. However, r̂′
D̂n

and r̂D̂n
are gener-

ally unequal unless the potential is parity symmetric.) From
Eq. (G8) we then read off tn = eik(an+bn )t̂D̂n

, t ′
n = eik(an+bn )t̂ ′

D̂n
,

and Eqs. (3.44a) and (3.44b) from the main text.
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2. Comparison with Lambert and Thorpe

In Ref. [39], Lambert and Thorpe derive a formula for
the inverse localization length to the first two nonvanish-
ing orders in the reflection coefficient R in the case of a
random chain which satisfies the following properties: each
scatterer has the same reflection coefficient R and the phase
δn ≡ −(φrn − φrn−1 ) − 2φtn−1 is i.i.d. They present the case of
randomly spaced delta-function potentials [in our notation,
all Vn(x) = cδ(x) and all bn = 0] as an example which has
these properties. However, as they comment and as we now
show explicitly, their result applies more generally. Here, we
show that their setup applies whenever all sites have the same
potential Vn(x) ≡ V (x) with strictly finite range xmax and with
all bn = 0 and all an < 2xmax. We verify that Eq. (3.46) from
the main text agrees with their formula.

To use their result, we set up the scattering problem with
different phase conventions than we used in the main text. We
write the wavefunction outside the sample as

�(x) =
{

�+
L eikx + �−

L e−ikx x < x1 − xmax,

�+
R eikx + �−

R e−ikx xN + xmax < x,
(G11)

while for n = 1, . . . , N , we write

�(x) =
{

�+
L,neikx + �−

L,ne−ikx xn−1 + xmax < x < xn − xmax,

�+
R,neikx + �−

R,ne−ikx xn + xmax < x < xn+1 − xmax,

(G12)

where x0 = −∞ and xN+1 = ∞. By shifting x − xn → x, we
can then refer to the single-site problem [Eqs. (G1) and (G2)]
to obtain (

�+
R,neikxn

�−
R,ne−ikxn

)
= T̂D̂n

(
�+

L,neikxn

�−
L,ne−ikxn

)
. (G13)

Equation (G12) also implies, for n = 1, . . . , N − 1,(
�+

L,n+1

�−
L,n+1

)
=
(

�+
R,n

�−
R,n

)
. (G14)

Equation (G11) also implies(
�+

L,1

�−
L,1

)
=
(

�+
L

�−
L

)
(G15)

and (
�+

R

�−
R

)
=
(

�+
R,N

�−
R,N

)
. (G16)

Collecting the past several equations, we obtain the scattering
transfer matrix T1...N of the sample as a product of local
scattering transfer matrices:(

�+
R

�−
R

)
= T1...N

(
�+

L

�−
L

)
, (G17)

where T1...N = TN . . . T1 and

Tn =
(

e−ikxn 0
0 eikxn

)
T̂D̂n

(
eikxn 0

0 e−ikxn

)
. (G18)

From Eq. (G10) we then read off tn = t̂D̂n
, t ′

n = t̂ ′
D̂n

, rn =
e2ikxn r̂D̂n

, and r′
n = e−2ikxn r̂′

D̂n
.

The phase convention used above is not suitable for the
setup we use in the main text because the disorder does
not separate; the parameter xn that rn and r′

n depend on is
not i.i.d. However, the phase convention is suitable for the
setup of Lambert and Thorpe since if we set all bn = 0 and
take the potentials to be constant [all Vn(x) ≡ V (x), hence all
r̂D̂n

≡ √
Reiφ̂r , all r̂′

D̂n
≡ √

Reiφ̂′
r , and all t̂D̂n

= t̂ ′
D̂n

≡ √
T eiφ̂t ],

then δn = −2k(xn − xn−1) − 2φ̂t = −2kan − φ̂r − φ̂r′ − π is
indeed i.i.d. (here we have noted 2φ̂t = φ̂r + φ̂r′ + π by uni-
tarity). Equations (14)–(16), (46), and (49)–(51) of Ref. [39]
then yield Eq. (3.46) from the main text [103]; note that our
ã j is related to their a j by ã j = (−1) ja∗

j [and see below
Eq. (D5b) for further details of the correspondence between
our notation and theirs].

3. Further details for transparent mirror effect

a. Symmetry property

The scattering transfer matrix Tn that we have used de-
scribes the scattering of a wave with momentum k though a
single barrier (bn region). This scattering event can be decom-
posed into two events in sequence (as done in, e.g., Ref. [89]):
first the wave passes from the an region to the bn region with a
scattering transfer matrix T (A)

n , then from the bn region to the
an+1 region with scattering transfer matrix T (B)

n . Indeed, one
obtains

Tn = T (B)
n T (A)

n , (G19)

where

T (A)
n = 1

2
√

kk′

(
(k + k′)eikan (k′ − k)e−ikan

(k′ − k)eikan (k + k′)e−ikan

)
, (G20a)

T (B)
n = 1

2
√

kk′

(
(k + k′)eik′bn (k − k′)e−ik′bn

(k − k′)eik′bn (k + k′)e−ik′bn

)
. (G20b)

For the purpose of calculating the localization length, we can
just as well treat the b regions at the ends (b1 and bN ) as the
leads (with incoming and outgoing momentum k′) and the
a2, . . . , aN regions as scatterers. Indeed, the scattering transfer
matrix for this alternate problem may be written as

eT 1...N−1 = eT N−1 . . . eT 1, (G21)

where

eT n = T (A)
n+1T (B)

n . (G22)

We assume that the disorder distributions of an and bn are
uncorrelated. Then, this alternate problem also fits into the
framework of the scattering expansion: we can relabel an+1 →
an (for n = 1, . . . , N − 1) to show explicitly that eT n depends
only on the disorder variables of site n. Comparing the last
several equations, we see that the scattering transfer matrix
eT n for the alternate scattering problem may be obtained by
exchanging k ↔ k′ and an ↔ bn in Tn.

Let us now show that the alternate problem has the same
localization length as the original problem. The key point is
that the scattering transfer matrices for the two samples differ
only by boundary terms that do not matter for large N . In
particular, we have

eT 1...N−1 = T (A)
N T2...N−1T (B)

1 . (G23)
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Note from Eq. (G19) that T2...N−1 does not depend on the
disorder variables that appear in the boundary terms (i.e., aN

and b1). Thus, by a calculation similar to that in Appendix H
below, we may take N → ∞ to show that the sample defined
by a product of many eT n has the same localization length as
the sample defined by a product of many Tn.

Finally, let us see what consequences this symmetry has
on the explicit formula for 2/Lloc as an expansion in δ. From
the above considerations, we must get the same expansion
for 2/Lloc if we exchange k ↔ k′ and an ↔ bn (note that this
includes exchanging the disorder distributions of the a and b
variables) in Eqs. (3.52b) and (3.53). As discussed in the main
text, we leave momenta k and k′ as they are [i.e., not expand-
ing in δ using Eq. (3.51b)] when they appear in trigonometric
functions. This leaves the terms k2−k′2

2kk′ and k2+k′2
2kk′ as the only

ones that will be expanded in δ. The latter of these is invariant
under k ↔ k′. The former is odd, but this change of sign
always cancels because rn and r′

n must appear in the same
number of powers in each term of the expansion of 2/Lloc (as
we recall from the symmetry argument in Sec. III A). Thus,
the expansion of 2/Lloc in powers of δ must be symmetric
under the exchange of k ↔ k′ and an ↔ bn at each order (with
the understanding that δ is unaffected by the exchange).

b. Comparison with the literature

We compare our results with Refs. [89–91], starting with
Ref. [89]. Although this reference focuses on the case that
disorder is strong in both an and bn, an intermediate result
is presented there that is valid for strong disorder in an and
arbitrary disorder in bn. In our notation, the unnumbered equa-
tion above their Eq. (32) is equivalent to

2

Lloc
=
〈
− ln

16ñ2

|(ñ + 1)2 − (ñ − 1)2e2iñkbn |2
〉

n

(G24a)

=
〈
− ln

(
1

1 + δ2

1−2δ
sin2(k′bn)

)〉
n

, (G24b)

where ñ is the index of refraction and where we have used
Eqs. (3.51a) and (3.51b). From (3.53), we see that the above
equation is another way of writing the uniform phase result,
i.e., 2/Lloc = 〈− ln(1 − R̂D̂n

)〉n.
Next, we verify that Eq. (3.54) from the main text agrees

with Eq. (5.14) from Ref. [91] in the regime in which the
two calculations overlap. Reference [91] considers the case
of weak disorder in an and no disorder in bn, with δ treated
without approximation. To convert their notation to ours and
expand their result in δ, we set ka = k, kb = k′, d = 〈an〉n +
b, α+ = 1 + O(δ2), α− = δ + δ2 + O(δ3), and sin2(κd ) =
sin2(k〈a〉n + k′b) + O(δ2), where their quantities appear on
the left and ours on the right. Thus, their Eq. (5.14) has the
following expansion in δ:

2

Lloc
= (kσ )2 sin2(k′b)

(〈an〉n + b) sin2(k〈an〉n + k′b)
(δ2 + 2δ3)

+ O(δ4), (G25)

where σ 2 is the variance of an about its average. We indeed
recover this answer from Eq. (3.54) by expanding in weak

disorder in an [cf. also the comment below Eq. (3.49) about
restoring dimensions].

Finally, we compare Eq. (3.54) to a result from [90], ap-
parently finding some differences in numerical factors. This
reference considers an and bn to follow exponential distribu-
tions:

P(an) = 1

A
e−an/A, P(bn) = 1

B
e−bn/B, (G26)

where A and B here are site-independent constants. With these
disorder distributions, Eq. (3.54) yields

2

Lloc
= 2A2B2k2

(A + B)[(A + B)2 + 4A2B2k2]
δ2 + O(δ3), (G27)

in which we have expanded k′ in δ and restored physical di-
mensions. To compare with the last unnumbered equation on
page 400 of Ref. [90], we use the following conversion from
their notation to ours. They present the logarithm of the
average of the transmission, rather than the average of the
logarithm; thus, their result is γT [defined in their Eq. (29.19)].
By their Eqs. (30.34)–(30.36), our 2/Lloc is the same quan-
tity as their 2γ = γ = 4γT . We have a0 = A, a1 = B, κ2 =
k2/(2m), and U0 = k2δ/m [cf. their page 76 and Eqs. (29.1)
and (29.21); note in particular that they set the mass m = 1

2 ],
where their quantities appear on the left and ours on the right.
All together, their result seems to yield Eq. (G27) with the
factors of 2 and 4 on the right-hand side both absent.

We note that Eq. (G27) (regardless of whether or not the
2 and 4 are included) is monotonic in disorder strength (i.e.,
either A or B is varied) if the localization length is expressed
in units of the average lattice spacing, that is, if the factor
1/(A + B) is removed. If instead this factor is included, then
nonmonotonicity is obtained.

APPENDIX H: TARASINSKI LEADS AND THEIR
EQUIVALENCE TO OTHER LEADS

Let us first fill in the details for the calculation of
the transfer matrix [18]. Writing a general state as |�〉 =∑

n(�↑(n)|n,↑〉 + �↓(n)|n,↓〉) one finds that the stationary
state equation Û |�〉 = e−iω|�〉 is equivalent to the following
pair of equations:

eiϕn [eiϕ1,n cos θn�↑(n) + eiϕ2,n sin θn�↓(n)]

= e−iω�↑(n + 1), (H1a)

eiϕn [−e−iϕ2,n sin θn�↑(n) + e−iϕ1,n cos θn�↓(n)]

= e−iω�↓(n − 1), (H1b)

which are Eqs. (11) and (12) of Ref. [18] with n → n ± 1
[104]. Rearranging these yields the transfer matrix [Eq. (3.60)
from the main text].

We proceed to set up the scattering problem with Tarasinski
leads, which we recall are defined by setting ϕn = ϕ1,n =
ϕ2,n = θn = 0 for n � 0 and for n � N + 1. Note that for
these n, the transfer matrix simplifies to

Mn =
(

eiω 0
0 e−iω

)
. (H2)
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The solutions in the leads are therefore linear combinations of
(eikn, 0) and (0, e−ikn), with quasienergy ω = k. A scattering
solution may then be parametrized outside the sample as

�(n)=

⎧⎪⎨
⎪⎩
�+

L eik(n−1)
(

1
0

)
+ �−

L e−ik(n−1)
(

0
1

)
n � 1,

�+
R eik(n−N−1)

(
1
0

)
+ �−

R e−ik(n−N−1)
(

0
1

)
n � N + 1,

(H3)
which is Eq. (3.61) from the main text (written in a form that
we generalize below).

To set up the scattering problem with other choices of
leads, we next recall the solution in the clean case, i.e., ϕn ≡
ϕ, ϕ1,n ≡ ϕ1, ϕ2,n ≡ ϕ2, and θn ≡ θ . Here we follow Ref. [18],
correcting some sign errors there. Writing a Bloch wave
solution as �(n) = eiknuk for some two-component Bloch
“spinor” uk ≡ (uk,↑, uk,↓), we find that Eqs. (H1a) and (H1b)
become

(
ei(ϕ1−k) cos θ eiϕ2 sin θ

−e−iϕ2 sin θ e−i(ϕ1−k) cos θ

)
uk = e−i(ω+ϕ)uk . (H4)

Thus, the clean quasienergy spectrum is determined by [105]

cos(ω + ϕ) = cos θ cos(k − ϕ1), (H5)

and the Bloch spinors are determined up to overall phase and
normalization by [106]

uk,↑ = ei(ϕ2−ϕ1+k) cos θ − ei(ϕ1−ω−k−ϕ)

sin θ
uk,↓. (H6)

See Fig. 2 of Ref. [18] for the quasienergy spectrum at various
values of θ .

We can now consider a scattering state with
quasienergy ω in the problem with (ϕn, ϕ1,n, ϕ2,n, θn) =
(ϕleads, ϕ1,leads, ϕ2,leads, θleads) for n � 0 and for n � N + 1.
At any ω (aside from exceptional points) there are two
corresponding momenta k in the first Brillouin zone [cf.
Eq. (H5)]. One momentum is right moving and the other left
moving; we label them as k+ and k−, respectively. (Explicitly,
the group velocity dw/dk is positive at k = k+ and negative
at k = k−.) A scattering solution may be written outside the

sample as

�(n)=
⎧⎨
⎩
�+

L eik+(n−1)uk+ + �−
L e−ik−(n−1)uk− n � 1,

�+
R eik+(n−N−1)uk+ + �−

R e−ik−(n−N−1)uk− n � N+1.

(H7)
Note that Eq. (H3) is a special case with (assuming k > 0)
k± = ±k, uk = (1, 0), and u−k = (0, 1).

To bring this scattering problem to the form to which our
setup applies, we define (as in Sec. III C 1) a matrix � that
converts position-space amplitudes to scattering amplitudes:

� =
(

uk+,↑ uk−,↑
uk+,↓ uk−,↓

)
. (H8)

Then

�(1) = �

(
�+

L

�−
L

)
, �(N + 1) = �

(
�+

R

�−
R

)
. (H9)

Multiplying transfer matrices then yields(
�+

R

�−
R

)
= T̃1...N

(
�+

L

�−
L

)
, (H10)

where

T̃1...N = �−1MN . . .M1� (H11)

is the scattering transfer matrix for the sample in this setup.
We then read off T̃n = �−1Mn�.

While we could now apply our results to the problem with
these more general leads, it is more convenient to instead show
that the probability distribution of the minus logarithm of the
transmission coefficient is the same for all choices of leads.
To do this, let us write the sample transmission coefficient
as T1...N for the problem with Tarasinski leads and as T̃1...N

for the problem with more general leads. Our goal is to show
that for large samples, − ln T1...N and − ln T̃1...N have the same
probability distribution.

The claim follows immediately from the relation

T̃1...N = �−1T1...N�, (H12)

in which the only difference between the two scattering
transfer matrices is multiplication by boundary terms, which
have negligible effect as N → ∞. To see this explicitly, we
parametrize T1...N in terms of the transmission coefficient and
transmission and reflection phases, and then we expand in
small T1...N :

T1...N = 1√
T1...N

(
eiφt1...N −√

1 − T1...N ei(φt1...N −φr1...N )

−√
1 − T1...N e

i(φr1...N −φt ′1...N
)

e
−iφt ′1...N

)
(H13a)

= 1√
T1...N

(
eiφt1...N −ei(φt1...N −φr1...N )

−e
i(φr1...N −φt ′1...N

)
e
−iφt ′1...N

)
+ O

(
T 1/2

1...N

)
. (H13b)

By the assumption that localization occurs, the error term is
exponentially small for large N . Equation (H12) [with T̃1...N

also expanded as in Eq. (H13b)] then yields

− ln T̃1...N = − ln T1...N − 2 ln |uk+,↑uk−,↓ − uk−,↑uk+,↓|

+ 2 ln |uk+,↑ − e−iφr1...N uk+,↓|
+ 2 ln |ei(φr1...N −φt ′1...N

)
uk−,↑ + eiφt1...N uk−,↓| + · · · ,

(H14)
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in which the second, third, and fourth terms on the right-hand
side are all O(N0) as N → ∞ (all may be bounded by N-
independent constants). The omitted terms are exponentially
small in N . Thus, we confirm that − ln T̃1...N and − ln T1...N are
asymptotically equal, and hence they have the same probabil-
ity distribution.

APPENDIX I: TOY RECURSION RELATION

To help illustrate our calculation of the joint probability
distribution, we apply the same method to a toy example: a
random walk with variable step lengths. This example will
also explain the comment below Eq. (4.14) regarding the
convenience of working with a variable that does not increase
on average.

Consider a toy recursion relation given by

s1...N+1 = s1...N + aN+1, (I1)

where the random variables an are i.i.d. and where some initial
value s1 is given. For large N the probability distribution of
s [PN (s) ≡ 〈δ(s1...N − s)〉1...N ] goes to a Gaussian with mean
〈an〉nN + O(N0) and variance N (〈a2

n〉n − 〈an〉2
n) + O(N0). We

proceed next to recover this result by applying the approach
we used in Sec. IV.

We start by defining a shifted variable s̃1...N − α, where α

is any constant. The recursion relation for s̃ is readily found
to be s̃1...N+1 = s̃1...N + aN+1 − α, from which we obtain the
recursion relation for the probability distribution of s̃ [P̃N (s̃) ≡
〈δ(s̃1...N − s̃)〉1...N ]

P̃N+1(s̃) =
∫

ds̃′P̃N (s̃′)δ(s̃′ + an − α − s̃)〉n (I2a)

≡ F̃[N, s̃; {P̃N }], (I2b)

where we note that F̃ is a linear functional in its last argument.
To solve this equation, we will make an ansatz P̃(ansatz)

N (s̃) that
is proportional to 1/

√
N and show

F̃
[
s̃;
{
P̃(ansatz)

N

}] = P̃(ansatz)
N+1 (s̃) + O(1/N2). (I3)

Our ansatz is a Gaussian with mean and variance that both
scale linearly with N , i.e.,

P̃(ansatz)
N (s̃) = 1√

4πcN
e− 1

2 (s̃−bN )2/(2cN ), (I4)

where b and c are constants to be determined by requiring
Eq. (I3) to hold. Equation (I3) will also hold if the mean
and variance in the ansatz have arbitrary N-independent con-
stants added; in the terminology of Sec. IV B, these constants
parametrize a family of trajectories that satisfy the recursion
relation up to small error.

Converting to Fourier space, we obtain

F̃[q; {P̃N }] = 〈e−iq(an−α)〉nP̃N (q) (I5a)

= [
1 − iq(〈an〉n − α) − 1

2 q2〈(an − α)2〉n

+ O(q3)
]
P̃N (q) (I5b)

and

P̃(ansatz)
N (q) = e−ibNqe−cNq2

. (I6)

The error estimate (4.28) from the main text, with F̃N (q)
replaced by P̃(ansatz)

N (q), still holds because the constant b only
appears in the overall phase. Thus, we can neglect terms of the
form q jP̃(ansatz)

N (q) (with j � 3) in F̃[q; {P̃(ansatz)
N }] since they

are O(1/N2) in s̃ space.
We next do a Taylor expansion of P̃(ansatz)

N (q) in N . Unless
the constant b is zero (as in the main text), we must include
the second derivative term in this expansion; the key relation
is

P̃(ansatz)
N+1 (q)

= P̃(ansatz)
N (q) + ∂

∂N
P̃(ansatz)

N (q) + 1

2

∂2

∂N2
P̃(ansatz)

N (q) + · · ·
(I7a)

=
[

1 − (ibq + cq2) − 1

2
b2q2 + O(q3)

]
P̃(ansatz)

N (q), (I7b)

from which Eq. (I5b) yields

P̃(ansatz)
N+1 (q) − F̃

[
q;
{
P̃(ansatz)

N

}]
= i(−b + 〈an〉n − α)qP̃(ansatz)

N (q) − (
c + 1

2 b2

− 1
2 〈(an − α)2〉n

)
q2P̃(ansatz)

N (q) + · · · . (I8)

Thus, requiring Eq. (I3) to hold for large N uniquely deter-
mines the constants b and c:

b = 〈an〉n − α, (I9a)

c = 1
2

(〈
a2

n

〉
n − 〈an〉2

n

)
, (I9b)

which are the correct values. Note that if we choose α =
〈an〉n, then we need not include the second derivative term in
Eq. (I7a), since b = 0; this is essentially what is done in the
main text.

In contrast, we show next that a naive calculation based on
finding a Fokker-Planck equation for P̃N (s̃) yields the variance
of s depending on α, which is incorrect unless a particular
value of α is chosen. Starting from the recursion relation (I2a),
we consider an − α to be a small parameter [more precisely,
we replace an − α → λ(an − α) and expand in λ]. Expanding
the delta function on the right-hand side yields

P̃N+1(s̃) =
〈
P̃N (s̃) − (〈an〉n − α)

∂

∂ s̃
P̃N (s̃)

+ 1

2
〈(an − α)2 ∂2

∂ s̃2
P̃N (s̃)

〉
n

+ O[(an − α)3].

(I10)

Taking N large we replace (although this step turns out not to
be correct in general)

P̃N+1(s̃) − P̃N (s̃) → ∂

∂N
P̃N (s̃), (I11)
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and we thus obtain the Fokker-Planck equation

∂

∂N
P̃N (s̃) = −(〈an〉n − α)

∂

∂ s̃
P̃N (s̃)

+ 1

2
〈(an − α)2〉n

∂2

∂ s̃2
P̃N (s̃) + O[(an − α)3].

(I12)

The initial condition s1 does not affect the slope in N of
the mean or variance, but for definiteness let us take s1 = α

so that s̃1 = 0 and hence P̃1(s̃) = δ(s̃). Then the solution of
Eq. (I12) (dropping the third-order error term) is the Gaussian

with mean N (〈an〉n − α) and variance N〈(an − α)2〉n. Shifting
back to the original variable s, we see that the mean is correct,
but the variance is wrong unless we choose α = 〈an〉n.

The problem with the calculation just presented is that the
expansion (I11) needs to be done to one more order, as in
Eqs. (I7a) and (I7b). In other words, it is turns out that the
solution Eq. (I12) is such that the replacement (I11) is not
consistent (in that the second derivative term is not in fact
negligible). If α = 〈an〉n is chosen, then b = 0, so the second
derivative term in (I7b) vanishes and the replacement (I11) is
correct.
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