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Sampling-free computation of finite temperature material properties in isochoric and isobaric
ensembles using the mean-field anharmonic bond model
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The recently introduced mean-field anharmonic bond model has shown remarkable accuracy in predicting
finite temperature free energies for certain potential models of fcc crystals without thermodynamic sampling.
In this work, we extend the model to treat modern machine learning potentials in both isochoric and isobaric
ensembles while preserving existing vibrational correlations and ensuring thermodynamic self-consistency.
Testing against molecular dynamics simulations of bulk fcc Al and Cu, we find free energies with an accuracy
of a few meV/atom up to the melting temperature under typical operating pressures, with similar accuracy for
thermal expansion. Our sampling-free estimation is universally superior to the quasiharmonic approximation for
less than ten percent of the computational cost and many orders of magnitude more efficient than thermodynamic
integration. We discuss applications of the method in modern computational materials science workflows.
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I. INTRODUCTION

Accurately determining temperature-dependent material
properties, such as free energy and thermal expansion, is
essential for gaining insights into and predicting material
behavior. Unlike at T = 0 K, where a single minimized
configuration is sufficient, computing these properties at fi-
nite temperatures demands statistical averaging over a vast
ensemble of distinct configurations [1,2]. Sampling con-
figurations on this scale becomes impractical when using
density functional theory (DFT) based [3] methods, which
are highly precise but resource intensive. Consequently, well-
established approximations like the harmonic approximation
and quasiharmonic approximation (QHA), which allow for
the analytical evaluation of thermodynamic properties, are
routinely employed [4,5].

While the QHA has proved effective in addressing an-
harmonicity due to volume expansion, several studies have
shown that it falls short of accurately capturing the full extent
of anharmonic effects [6–11]. Accounting for anharmonicity
beyond the QHA involves utilizing sampling techniques such
as thermodynamic integration (TI) [12,13], which require a
suitable reference system, typically taken to be the QHA.
The numerical efficiency of TI depends on the similarity be-
tween the potential energy surfaces of the reference and target
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systems within the region of configuration space where ther-
modynamic sampling occurs [14]. When the surfaces diverge,
it demands extensive sampling to ensure accurate results.

To construct a reference system that better approximates
the target system than the QHA, Glensk et al. [8] proposed a
“local anharmonic” (LA) approximation, which assumes that
contributions to the internal energy of an atom beyond the
harmonic approximation are dominated by its nearest neigh-
bors. For a fcc system, it was deduced that contributions from
just the first nearest neighbors are sufficient to describe anhar-
monicity. This deduction was based on the observation that the
density of bonds between an atom and its first nearest neigh-
bors, as obtained from ab initio molecular dynamics (MD)
simulations, is symmetric exclusively along the transversal
directions (perpendicular to the bond) but asymmetric along
the longitudinal direction (along the bond). Meanwhile, the
bond densities of the second and third nearest neighbors were
found to be nearly symmetric along all three directions.

Following this observation, a simple first nearest neighbor
LA bonding potential was parameterized by sampling the
potential energy surface around an atom along the longitudinal
and transversal directions. Passing trajectories to this bonding
potential yielded forces and energies that closely matched
those obtained from ab initio MD, suggesting it is a better
reference for TI than the QHA. Additionally, the LA-predicted
free energies were in close agreement with those obtained
from ab initio TI, typically differing by only a few meV/atom
across various fcc materials, significantly speeding up TI
convergence. However, the requirement to perform thermody-
namic sampling still resulted in a much higher computational
cost when compared to the QHA.

To eliminate the need for thermodynamic sampling,
Swinburne et al. [15] introduced the mean-field anharmonic
bond (MAB) model [16] for fcc crystals. In the MAB model,
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the first nearest neighbor bond density at any given temper-
ature is estimated analytically as a function of the bonding
potential by using bond symmetries and bond-pair corre-
lations and enforcing thermodynamic self-consistency. The
anharmonic free energies predicted by this model were also
found to be within a few meV/atom of those obtained from TI,
requiring mere seconds of computation time. The MAB model
offers the same level of simplicity as the harmonic models
while demonstrating the ability to predict anharmonic free en-
ergies with a comparable computational efficiency. However,
in [15], the model was tested only on directionally separable
first nearest neighbor bonding potentials and was restricted to
the NV T ensemble.

This work extends the MAB model to utilize not just
analytical potential models as bonding potentials but also
potential models of any functional form using the concept of
LA bonding potentials (introduced by Glensk et al. [8]) in both
the NV T and NPT ensembles of bulk fcc crystals.

We first revisit the core principles of the LA approxima-
tion and provide a detailed insight into how a mean-field
approximation of the bond density simplifies the evaluation of
thermodynamic properties. By incorporating physically mo-
tivated offsets to the analytical pressure and internal energy
of the model from a T = 0 K energy-volume calculation, we
extend its applicability to the NPT ensemble at negligible
additional computational expense. We also make refinements
to the estimated bond density based on correlations observed
in the effective potentials of the bond densities obtained from
MD trajectories. The improved model is assessed by em-
ploying a highly anharmonic analytical first nearest neighbor
Morse potential and LA bonding potentials parameterized
from complex machine learning potential models for Al and
Cu [17]. We aim to demonstrate the numerical efficiency of
the improved MAB model over harmonic models in accu-
rately estimating finite temperature thermodynamic properties
(internal energy, thermal expansion, and free energy) of fcc
crystals without the need for thermodynamic sampling in both
NV T and NPT ensembles.

II. METHODOLOGY

A. Bond lattice coordinates

Consider a crystal of N atoms in d dimensions with a vol-
ume V0(1 + ε)d , where ε is an isotropic strain, such that ε = 0
corresponds to zero strain. Each atom i at position {Ri}i=N

i=1
has m nearest neighbors, with the index of its lth neighbor,
l ∈ [1, m], given by l (i). We define a “bond vector” b(l )

i ∈ Rd

as the separation between atoms i and l (i), namely,

b(l )
i ≡ Rl (i) − Ri. (1)

Without any loss of generality, we are free to represent the
atomic positions by the set {b} of all bond vectors, but as they
clearly have mdN degrees of freedom, physical bond configu-
rations must lie on some dN-dimensional surface C({b}) = 0.
Previous work [15] showed that this surface is defined by the
compatibility constraint

b(l )
i − b(l )

k(i) = b(k)
i − b(k)

l (i), (2)

such that neighboring bonds do not move independently of
each other. At this stage, we have simply defined an overcom-
plete set of coordinates for the atomic system under study.

B. Local anharmonic approximation

The LA approximation [8] assumes that nearest neighbor
(or “local”) interactions dominate anharmonic contributions
to the internal energy of a target system. The LA model thus
connects the m nearest neighbors of each atom and has a total
energy

ULA({b}) = 1

2

N∑
i=1

m∑
l=1

Vl
(
b(l )

i

)
, (3)

with Vl being the “bonding potential” for the bond vector b(l )
i .

The factor of 1/2 accounts for each pair of atoms sharing a
bond. The expected anharmonic internal energy per atom at
some temperature T and strain ε then reads

U ah
LA(T, ε) = 〈ULA({b})/N〉T,ε − 3

2
kBT

= 1

2

m∑
l

∫
Vl (b)ρl (b, ε, T )db − 3

2
kBT, (4)

where ρl (b, ε, T ) is the bond density of the lth bond at T and
ε, i.e., the d = 3 dimensional equilibrium distribution of b(l )

i ,
which for unaries is identical for all i ∈ [1, N]. U ah

LA can be
used to calculate the per atom anharmonic free energy

F ah
LA(T, ε) ≡ T

∫ T

0
U ah

LA(T ′, ε)/(T ′)2dT ′. (5)

The model also has a virial temperature

Tvir (T, ε) = 1

6kB

m∑
l

∫ (
b − aε

l

) · ∇Vl (b)ρl (b, ε, T )db (6)

and a pressure of

P(T, ε) = −P0(ε)

2

m∑
l

∫
aε

l · ∇Vl (b)ρl (b, ε, T )db, (7)

where P0(ε) = N/[3V0(1 + ε)3] and aε
l is the associated

equilibrium lattice vector. We discuss how these expres-
sions provide self-consistency requirements for the mean-field
model in Sec. II F.

C. LA approximation for bulk fcc crystals

For a relaxed, bulk fcc crystal, all N atoms are equivalent
in terms of their local environments, each with m nearest
neighbors. If we assume that only the m = 12 first nearest
neighbors of an atom contribute to the anharmonicity in the
system, in the absence of lattice vibrations, b(l ) ≡ al (1 + ε),
i.e., the associated equilibrium lattice vector with the appro-
priate strain. Any two equilibrium lattice vectors al and ak are
related to each other by a symmetry operation represented as
a matrix Gkl ∈ Rd×d , such that al = Gkl ak . This reduces the
bonding potentials and bond densities for l to

Vl (b(l ) ) ≡ V1(G1lb(l ) ), ρl (b(l ) ) ≡ ρ1(G1lb(l ) ), (8)
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FIG. 1. (a) “Cage” of first nearest neighbors of an atom in an
fcc crystal, with the reference bond in green, its antiparallel bond in
orange, and the remaining bonds in violet. (b) Displacement direc-
tions of atom i for the parametrization of the LA bonding potential
from the Cu-ACE potential model with the resultant (c) forces and
(d) potential along each direction (blue solid line along âL , dashed
yellow line along âT 1, and dotted green line along âT 2).

respectively. The per atom anharmonic internal energy as
a function of T and ε can then be rewritten for bulk fcc
crystals as

U ah
fcc(T, ε) ≡ 6

∫
V1(b)ρ1(b, T, ε)db − 3

2
kBT . (9)

D. LA bonding potential

The LA approximation requires the definition of a sin-
gle bonding potential V1, which must depend exclusively on
the nearest neighbor bond vectors. A simple first nearest
neighbor bonding potential can be parameterized from any po-
tential model from the relaxed T = 0 K structure by sampling
the potential energy surface around each inequivalent atom
along the longitudinal (âL) and two transversal (âT 1 and âT 2)
directions [8].

As all atoms in a bulk fcc crystal are equivalent, one of
the atoms i is displaced along each of the three principal
directions (âL, âT 1, and âT 2), as shown in Fig. 1(b), and the
resultant force Fl (i) on its neighbor l (i) is recorded. The force
[Fig. 1(c)] and potential [Fig. 1(d)] along the principal direc-
tions are then

FX (u) = Fl (i)(uâX ) · â′
X , VX (u) = −

∫ u

0
FX (u′)du′, (10)

respectively, where u is the displacement along the direction
X = L, T 1, T 2. The vector â′

X corresponds to the fact that
for displacements along the transversal directions, âil (i) [the
separation between atoms i and l (i)], âT 1, and âT 2 are no
longer orthogonal, as âL is replaced by âil (i). The orthonormal

basis can be recovered by applying a Gram-Schmidt process
to the vectors spanned by âil (i), giving â′

T 1 and â′
T 2. For

displacements along the transversal directions, Fl (i) also has
a component along âil (i), which makes the force along each
transversal direction

FT x(uT x ) = Fl (i) − Fil (i)(uil (i) ), (11)

where x = 1, 2, with uil (i) = |b|, uT 1 = b · â′
T 1, and uT 2 = b ·

â′
T 2. The resulting bonding potential is then

V LA
1 = VL(uil (i) ) + VT 1(uT 1) + VT 2(uT 2). (12)

Due to symmetry relations of the fcc crystal, it is sufficient
to generate only two sets of displacements (one along âL and
another along âT 2, as elaborated further in Sec. II H to fully
parametrize an LA bonding potential.

E. Mean-field anharmonic bond model

To remove the computational burden of thermodynamic
sampling, Swinburne et al. [15] recently introduced the MAB
model, which aims to estimate thermodynamic properties of
the LA model directly from properties of the bonding poten-
tial. The target of the MAB model is to estimate a single bond
density ρMAB(b, ε, T ), or, more specifically, its Boltzmann
inverse, the “effective” bonding potential

Ṽ (b, ε, T ) = −kBT ln |ρMAB(b, ε, T )|, (13)

such that ρMAB(b, ε, T ) ≈ ρ1(b, ε, T ). If achieved, this al-
lows efficient evaluation of U ah

fcc in NV T and NPT ensembles
through rapid three-dimensional quadrature using Eq. (9).

The mean-field approximation is applied to the compatibil-
ity constraint in Eq. (2), simplifying the treatment of bond-pair
correlations. The first approximation simply confines each
atom within a “cage” of static nearest neighbors, as illustrated
in Fig. 1(a), implying

b(l ) − b(k) = 〈
b(l )

i

〉 − 〈
b(k)

i

〉 = aε
l − aε

k . (14)

Under this approximation, when one of the neighbor bonds
changes, it becomes straightforward to ascertain how the
bonds that connect the atom to its other neighbors are affected.
Using the relations defined in Eq. (14), the effective potential
for the mean-field model of the fcc crystal is written as

Ṽmf (b, ε) = 1

2

12∑
l=1

V1
[
G1l

(
b − aε

1

) + aε
l

]
. (15)

However, the approximation in Eq. (14) was found to be too
restrictive; in particular, any reference bond l [green bond
in Fig. 1(a)] had a strong correlation to its antiparallel bond
(orange bond), with index l + 6. The mean-field model is
modified to reflect this, giving

b(l ) − b(k) = 〈
b(l )

i

〉 − 〈
b(k)

i

〉 = aε
l − aε

k , k �= l + 6, (16)

which effectively extends the cage along the equilibrium bond
direction, forming an infinite “chain” of bonds. This one-
dimensional system can be solved analytically, giving the
correlated mean-field (mfc) effective potential

Ṽmfc(b, ε, T ) = 1
2

{
V1(b) − V1

[
G17

(
b − aε

1

) + aε
7

]}
+ Ṽmf (b, ε) + λ(ε, T )â · b, (17)
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where λ(ε, T ) is a scalar Lagrange multiplier that conserves
the volume of the system, such that 〈b〉 = aε at temperature
T and strain ε. This is achieved by finding the unique root
of f (λ) = 〈b; λ(ε, T ) = λ〉 · aε − ‖aε‖2, which typically re-
quires only milliseconds of CPU effort.

F. Thermodynamic self-consistency

The expressions for the virial temperature [Eq. (6)] and
pressure [Eq. (7)] introduced in Sec. II B provide valuable
self-consistent criteria for the mean-field model in both NV T
and NPT ensembles. The MAB model already has one
self-consistent property: the Lagrange multiplier λ(ε, T ) in-
troduced in Eq. (17), which ensures self-consistency for the
volume such that 〈b〉 = aε .

In a sufficiently equilibrated MD simulation, where many-
body interactions are properly accounted for, Tvir = T .
However, in earlier work [15], it was found that Tvir < T
for the bond lattice model. This is because a self-consistent
temperature definition is not guaranteed in a mean-field treat-
ment unless all the nearest neighbor bonds and their respective
correlations with each other are considered in the model. As
our MAB model accounts for only the first nearest neighbor
bonds and their correlations, we enforce a self-consistent tem-
perature renormalization condition

Tvir(Teff (T ), ε) ≡ T, (18)

giving a renormalized bond density

ρMAB(b, ε, T ) → ρMAB(b, ε, Teff (T )). (19)

Similar to the Lagrange multiplier, Teff (T ) is determined by
finding the unique root of f (Teff ) = Tvir (Teff , ε) − T . This
raises the cost of the MAB model to around 0.02–0.2 CPU
seconds per temperature and strain.

For the NPT ensemble, the model must satisfy the same
temperature condition [Eq. (18)] as for NV T , but now the
strain is also free to vary such that

P(T, ε) = P. (20)

This can typically be determined in O(10) iterations, giving a
final cost of around 0.2–2 CPU seconds per temperature and
pressure.

The original MAB model was tested on directionally sep-
arable first nearest neighbor bonding potentials in the NV T
ensemble. In this work, we target much more complex, many-
body potentials. Targeting meV/atom accuracy for these more
complex systems necessitates two additional refinements to
the MAB model, both of which incur no significant additional
computational effort.

G. Refinement 1: Energy-volume dependence

As T → 0, the bond density ρ1 converges to a δ function
centered around b = aε = (1 + ε)a0, with the internal energy
per atom reducing to

lim
T →0

Ufcc(T, ε) = 6V1[(1 + ε)a0]. (21)

FIG. 2. Energy-volume curves of the (a) Al-MTP and (b)
Cu-ACE potential models from static calculations (black circles,
labeled MS) and the LA bonding potential, without (dashed green
line) and with (solid orange line) the offset term.

We can therefore calculate an energy-volume curve, giving a
zero temperature pressure

P0(ε) = −dU

dV
= −1

3V0(1 + ε)2

dU

dε
, (22)

using the identity dV = 3V0(1 + ε)2dε.
When applying an isotropic strain to an atomic system at

T = 0 K, the volume V of the system (and hence the equi-
librium bond aε) changes proportionally to the applied strain.
For a simple first nearest neighbor Morse bonding potential,
EMorse(V ) = ELA(V ), as there are no other interactions con-
tributing to EMorse. For molecular static (MS) calculations
with many-body atomic interactions, EMS(V ) �= ELA(V ) in
general, as seen in Fig. 2, due to the first nearest neighbor
assumption in ELA. In order to account for this inequality, an
additional correction term to the internal energy of the system,
Eoffset (ε) = EMS(ε) − ELA(ε), is necessary. Equation (9) thus
becomes

U ah
fcc(T, ε) → U ah

fcc(T, ε) + Eoffset (ε)

N
. (23)

As the pressure of a strained system becomes nonzero when
dU
dV �= 0, the correction term is also reflected in the pressure
evaluated by the model, modifying Eq. (7) to

P(T, ε) → P(T, ε) − N

3V0(1 + ε)2

d

dε
Eoffset (ε). (24)

Evaluation of EMS(ε) using an interatomic potential is in-
expensive and is a necessary step in obtaining T = 0 K
structures from DFT methods. As such, this step does not add
any additional computational overhead. However, we find it
essential for accurate predictions in the NPT ensemble.

H. Refinement 2: Transversal effective potential

Our final model refinement concerns the transversal com-
ponents of the bond density, defined by the lattice directions
(âL, âT 1, âT 2). Figure 3(a) shows contour lines for ρmfc

MAB
superimposed on contours of ρMD extracted from finite tem-
perature MD. “Projections” of their effective potentials along
the lattice directions are shown in Fig. 3(b), with the longitu-
dinal projection defined in Eq. (25) below.

Figure 3(b) clearly shows that the MAB model accurately
predicts the longitudinal projection, and both the model and
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FIG. 3. Contours of the first nearest neighbor single bond density
for a first nearest neighbor Morse potential from the (a) original
MAB model and the (c) refined model, superimposed on the colored
MD single bond density (intensifying color indicates increasing den-
sity). The one-dimensional projections of their effective potentials
along âL (blue), âT 1 (yellow), and âT 2 (green) are shown in (b) and
(d), respectively. The solid lines indicate the model projections, while
the dashed lines indicate the MD projections.

MD give symmetric transversal projections. However, while
the MD transversal projections are essentially harmonic and
closely follow the attractive portion of the longitudinal pro-
jection, the MAB transversal projections are much stiffer and
more closely follow the repulsive portion of the longitudinal
projection. This behavior was observed in all test systems
studied; it is expected, as the system will typically make
many-body rearrangements (not captured in the MAB model)
to avoid high-energy configurations.

Rather than build new constraints into the MAB model to
incorporate these observations, which would raise the compu-
tational cost, we instead employ a simple ansatz that gives
highly accurate transversal projections for negligible addi-
tional effort. We first project the MAB effective potential
[Eq. (17)] along the longitudinal direction

Ṽ L
mfc(b) ≡ Ṽmfc(b · âL ). (25)

We then fit a harmonic potential κT b2/2 to Ṽ L
mfc(|b|) for the

transverse displacements, retaining Ṽ L
mfc(b) for longitudinal

displacements. This yields a “refined” effective potential

Ṽrmfc(b) = Ṽ L
mfc(b · âL ) + κT

2
(b · âT 1)2 + κT

2
(b · âT 2)2.

(26)

As evident from Figs. 3(c) and 3(d), the resulting bond density
ρrmfc

MAB gives much better agreement with ρMD than ρmfc
MAB. We

note that while Eq. (26) is separable, this cannot be lever-
aged to accelerate quadrature as the LA bonding potential
[Eq. (12)] is not separable in general.

I. Computational details

The workflow for the MAB model is implemented within
the PYIRON [18,19] integrated development environment. The
model was tested for fcc structures with three different po-
tential models: a highly anharmonic first nearest neighbor
Morse potential (with parameters De = 0.143, α = 2.163, and
re = 2.856), a publicly available atomic cluster expansion
(ACE) [20] potential for Cu [17], and a newly fitted general-
purpose moment tensor potential (MTP) [21,22] for Al. The
Al-MTP was fitted according to the methodology outlined
in [23] and is available on request; a detailed description
of the potential properties will be the subject of a separate
publication.

Reference MD data for each potential model was gener-
ated using the LAMMPS simulator [24] within PYIRON using a
4 × 4 × 4 supercell for 15 temperatures ranging from 5 up
to 1000 K for the Morse potential and up to their respec-
tive experimental melting temperatures for Al-MTP (933.5 K)
and Cu-ACE (1357.8 K). Ten independent runs of 100 000
steps each (with 1000 snapshots) were carried out for each
temperature in both the NV T and NPT ensembles to reduce
statistical errors. Reference QHA data were generated using
the PHONOPY [25] package within PYIRON from nine strained
structures for the same 15 temperatures. The MD anharmonic
free energies were derived from the thermodynamic integra-
tion of the anharmonic internal energies over the square of the
inverse temperature using Eq. (5). The energy-volume curves
necessary for obtaining the offsets in Eqs. (23) and (24) were
also evaluated from these strained structures.

The LA bonding potentials for Al-MTP and Cu-ACE were
parameterized from the T = 0 K relaxed structure by per-
forming static calculations at 15 displacements towards the
first nearest neighbor (along âL) and 15 more towards the
second nearest neighbor (along âT 2) using the methodology
described in Sec. II D. A 100 × 50 × 50 (L × T 1 × T 2) mesh
grid of bond vectors {b} was used for the MAB model. The
thermodynamic self-consistency optimizations in the NV T
and NPT ensembles were performed according to the for-
malism described in Sec. II F using the Levenberg-Marquardt
algorithm [26] in SCIPY.OPTIMIZE.ROOT [27].

III. RESULTS AND DISCUSSION

A. Accuracy of the LA bonding potential

We first compare the pointwise accuracy of per atom forces
and energies predicted by the LA bonding potential and the
QHA against MD reference data for Al-MTP and Cu-ACE.
For a given configuration of a system with N atoms, we
determine the average energy per atom U and the 3N atomic
forces Fiα , where i ∈ [1, N] and α ∈ [x, y, z].

While force comparisons are straightforward, for energy
evaluations, our primary focus lies in the deviation of the
average energy from its harmonic expectation of 1.5kBT .
However, as discussed in Sec. II F, the LA model requires
a temperature renormalization of Tvir. This renormalization
is necessary as the LA model typically underestimates T by
approximately 1%–7%, depending on the system and temper-
ature. To account for this adjustment, we use the following
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FIG. 4. Comparison of the pointwise forces and average internal
energy per atom fluctuations predicted by the LA bonding potential
for the (a) and (b) Al-MTP and (c) and (d) Cu-ACE potential models.
δUMD,LA,QH are defined in (27), (28), and (29) respectively. We plot
the most anharmonic case, the highest simulation temperatures (T =
933.5 K for Al and T = 1357.8 K for Cu), in the NV T ensemble at
the T = 0 K volume.

definition for the per atom energy deviations, which do not
affect force evaluations:

δUMD = UMD − U0 − 1.5kBTMD, (27)

δULA = ULA − 1.5kBTLA, (28)

δUQH = UQH − U0 − 1.5kBTQH, (29)

where TX is the virial temperature calculated by each method.
By construction, TQH = TMD = T . The comparison is illus-
trated in Fig. 4 for a target temperature of T = 933.5 K for
Al-MTP and T = 1357.8 K for Cu-ACE in the NV T en-
semble. The system volume was chosen to be the T = 0 K
simulation volume, as it represents the most challenging test
case, where second neighbor interactions are strongest.

Similar to the findings of Glensk et al. [8], our results show
excellent agreement between the forces (F rmse

LA ≈ 0.09 eV/Å)
and renormalized energies (δU rmse

LA ≈ 1.5 meV/atom) pre-
dicted by the LA bonding potential and the MD reference
for both the machine learning potentials. The deviations in
the QHA forces (energies) are the effect of fitting a linear
(quadratic) function to small displacements (≈0.1 Å) from
the equilibrium position of the atoms. In contrast, the dis-
placements in the LA model are large (>1 Å). While third- or
fourth-order polynomials could effectively fit the transversal
bonding forces and potentials [28], applying the same to the
longitudinal force and potential leads to significant underfit-
ting and fails to capture its anharmonic curvature as illustrated
in Figs. 1(c) and 1(d). Although various functional forms that
accurately fit the bonding force (potential) data points could
be considered, we choose a cubic spline [29] function for its
versatility.

B. Error propagation

One of the primary advantages of an analytical, sampling-
free prediction of material properties is the elimination of
statistical errors, which must be highly converged when
targeting meV/atom accuracies. Even with over a million
sampled configurations at each temperature, our MD data still
exhibit noticeable uncertainty. In particular, the integral ex-
pression for F ah(T, ε) [Eq. (5)] accumulates sampling errors
in U ah(T, ε), weighted by the square of the inverse tempera-
ture. This means that small errors in the internal energy at low
temperatures are amplified, while errors at high temperatures
are suppressed. The effect of this error propagation can be
seen in the shaded regions and occasional discontinuities of
the black circles in Figs. 5 and 6.

The reduction of statistical errors can be achieved only
through more extensive thermodynamic sampling, which,
while enhancing accuracy, reduces computational efficiency,
making approaches like the MAB model an attractive al-
ternative. We will return to considerations of computational
efficiency in Sec. III E.

C. NV T ensemble

The predicted anharmonic internal energy, free energy, and
system pressure in the NV T ensemble are shown in Fig. 5 for
the three potential models. In addition to the machine learning
potentials, we choose a first nearest neighbor Morse potential
with relatively high anharmonicity. As there are no contri-
butions from atoms beyond the first nearest neighbors, this
choice establishes an ideal test system for the MAB model.

For the many-body potentials Al-MTP and Cu-ACE, the
MAB model gives an excellent prediction of the small an-
harmonic internal energies up to around 65% of the melting
temperature [Figs. 5(d) and 5(e)]. We attribute the underes-
timation at high temperatures to the first nearest neighbor
approximation inherent in the MAB approach. At high
temperatures and fixed volume, the high (>4 GPa) system
pressures cause second nearest neighbors to approach the cen-
tral atom closely enough to modify the predicted bond density,
leading to an upward shift in anharmonic internal energies.
This attribution of error is supported by the absence of such
an upward shift in the MD-predicted internal energies for the
first nearest neighbor Morse potential [Fig. 5(a)].

Additionally, the model demonstrates very good predictive
capability for pressure across all temperatures [see Figs. 5(c),
5(f) and 5(i)]. The systematic overestimation of the pressure
for Cu-ACE with temperature could also be the result of a
larger influence of second nearest neighbors. However, we
find that despite the mismatch in pressure, the MAB model
still predicts the correct thermal expansion in the NPT en-
semble, as can be seen in Fig. 6(i).

We emphasize that the QHA, represented by the dashed
green lines, does not account for anharmonic contributions or
pressure at constant volume.

D. NPT ensemble

Figure 6 summarizes the predicted thermodynamic prop-
erties for the NPT ensemble for the three potential models
at P = 0. As in the NV T ensemble, the influence of second
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FIG. 5. Finite temperature per atom (a), (d), and (g) anharmonic internal energy, (b), (e), and (h) free energy, and (c), (f), and (i) system
pressure predicted by MD (black circles), QHA (dashed green line), and the refined MAB model (solid orange line) for the NV T ensemble.
Each column corresponds to properties evaluated from a different potential model: (a)–(c) the first nearest neighbor Morse, (d)–(f) the Al-MTP,
and (g)–(i) the Cu-ACE potential models.

nearest neighbor interactions at high temperatures leads to
a slight underestimation of the anharmonic internal energy,
although the onset of these effects is delayed due to thermal
expansion. However, it is noteworthy that even with this un-
derestimation, the MAB model outperforms the QHA, as seen
in the insets of Fig. 6.

The model-predicted anharmonic free energies [Figs. 6(b),
6(e) and 6(h)] are <7 meV/atom for Al-MTP and Cu-ACE,
significantly better than the QHA. High temperature devia-
tions in the anharmonic internal energy have limited impact
on the anharmonic free energies as they are scaled by a factor
of 1/T 2. Thus, our primary quantity of interest, NPT anhar-
monic free energies, shows better agreement with brute force
MD than the widely used QHA, despite being nearly 2 orders
of magnitude more computationally efficient. This constitutes
our main contribution.

In addition, we find that the predicted thermal expansion
from the MAB model agrees very well with MD [Figs. 6(c),
6(f) and 6(i)]. Both the anharmonic internal energy and ther-
mal expansion at any temperature are properties derived from
the very same bond density, highlighting the thermodynamic
self-consistency of the model.

E. Computational efficiency

Similar to the QHA, a key feature of the MAB model is
its ability to estimate thermodynamic properties analytically
without the need for thermodynamic sampling. As demon-
strated in the preceding sections, the MAB model consistently
outperforms the QHA in terms of numerical accuracy for the
considered potential models. We now proceed to compare the
computational efficiency of the model. The comprehensive
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FIG. 6. Finite temperature per atom (a), (d), and (g) anharmonic internal energy, (b), (e), and (h) free energy, and (c), (f), and (i) lattice
constant normalized by the T = 0 K lattice constant predicted by MD (black circles), QHA (dashed green line), and the refined MAB model
(solid orange line) for the NPT ensemble. Each column corresponds to properties evaluated from a different potential model: (a)–(c) the
first nearest neighbor Morse, (d)–(f) the Al-MTP, and (g)–(i) the Cu-ACE potential models. The difference between the MD-predicted and
MAB-model-predicted properties are shown in the insets.

computational cost associated with evaluating the properties
of an NPT ensemble using MD, QHA, and the MAB model
is detailed in Table I for each of the potential models. Table I

also provides information on the number of explicit force calls
and the speedup factors of the model with respect to MD and
the QHA.

TABLE I. Total computational cost, with the number of explicit force calls of different approaches for the potential models studied, for the
NPT ensemble. Speedup factors of the model (including the cost of LA bonding potential parametrization) over MD and QHA are also shown.

Time (min/core) No. force

Method 1NN Morse Al-MTP Cu-ACE calls

MD 12.5 7248 2226 106

QHA 27.1 37.5 29.6 9+9
LA+MAB 0+0.09 1.93+0.43 1.75+0.37 (15+15)+9

Speedup factor

MD/MAB 139 3071 1050
QHA/MAB 300 16 14
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It is important to note that obtaining reliable MD reference
data required a substantial number of force evaluations (up to
a million time steps). The difference in the MD computation
times between the first nearest neighbor Morse potential and
the complex machine learning potentials represents the wide
range of time per force evaluations of different interatomic
potentials. In addition to force evaluations at the reference
and displaced structures (9 + 9), the QHA costs include the
cost of diagonalization of the dynamical matrix for each of
the strained structures. Most of the cost for the MAB model
comes from the LA parametrization of the bonding potential
(15 displacements along âL and 15 more along âT 1), along
with nine static calculations to obtain the energy-volume
dependence. From the speedup factors in Table I, it is evident
that the MAB model is significantly more efficient than MD
and over an order of magnitude faster than the QHA. For
the first nearest neighbor Morse potential, the cost of LA
parametrization is zero, as it can be used directly as a bonding
potential. It is also worth noting that for force evaluations in-
volving DFT methods, the speedup factor between the model
and the QHA may decrease, as the number of force calls
will dominate the computational cost of the method. However,
given that the MAB model offers superior numerical accuracy
compared to the QHA, this could be considered a reasonable
trade-off.

IV. CONCLUSION AND PERSPECTIVES

In the present work, we extended the original mean-field
anharmonic bond model to allow the sampling-free evaluation
of anharmonic thermodynamic properties of bulk fcc crystals
in both NV T and NPT ensembles, irrespective of the potential
model. The improved model is able to predict anharmonic
free energies with an accuracy of a few meV/atom when
compared to the MD-derived quantity from machine learning
force fields, with a similar accuracy for the thermal expansion
and pressure. The model shows better numerical accuracy
than the QHA, being able to predict anharmonic properties
for around an order of magnitude less computational cost.

While the first nearest neighbor approximation used by the
MAB model is accurate for many-body potentials down to a
few meV/atom, the systematic underestimation of the anhar-
monic internal energy above 65% of the melting temperature

motivates the inclusion of second nearest neighbors in future
developments. In addition to making the model more accurate
at high temperatures, this extension will also aid application
to bcc and hcp crystal systems, which show a larger degree of
anharmonicity, possibly due to a larger influence of the second
nearest neighbors [11].

The MAB model is classical; i.e., it cannot directly account
for anharmonicity due to nuclear quantum effects, which are
prevalent at temperatures below the Debye temperature of the
material. Such effects can be indirectly approximated using
approaches like the temperature remapping approximation
[30]. The application of the MAB model to different crystal
systems, when coupled with such an approach, would allow
the rapid prediction of quantum-accurate phase diagrams.

Another possible area of application of such a model would
be to systems with defects such as vacancies, alloys, stack-
ing faults, and free surfaces. Thermodynamic data from the
model would be useful in the quick construction of defect
phase diagrams [31]. However, it is important to note that the
number of mean-field approximations required would scale
with each additional inequivalent atom in the system. For
systems with simple defects like monovacancies and dilute
alloys, we expect efficiency gains similar to those observed
for bulk systems.
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