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Generalizing odd elasticity theory to odd thermoelasticity for planar materials
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We generalize the odd elasticity of planar materials to thermoelasticity, admitting spatially inhomogeneous
properties. First, we show that for active systems breaking Onsager relations thermal evolution is given by
an odd generalization of the Maxwell-Cattaneo relation. Next, three different heat conduction models of odd
solids are considered, leading, respectively, to a classical coupled thermoelasticity with Fourier law, thermoe-
lasticity with relaxation times of the Maxwell-Cattaneo type, and thermoelasticity with two relaxation times.
Governing equations are established in terms of either displacement-temperature pair, stress-heat flux pair, or
stress-temperature pair. Next, we establish a form of the stiffness tensor, ensuring its inversion to a compatibility
tensor, and write equations of elasticity in the presence of eigenstrains, such as thermal strains, where we find that
the stress field remains unchanged for a specific additive change of the compliance tensor field. This so-called
stress invariance gives an equivalence class of a wide range of odd materials with different values of material
properties. Effectively, within each class, the elastic compliances may be modified by a field linear in the plane
without affecting the stress field. Finally, we study hydrodynamic modes in an odd thermoelastic solid with
Fourier heat conduction and argue that contrary to even elastic solids, the temperature can affect both dilatational
and shear waves. We present odd corrections to sound attenuation and diffusion coefficients.
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I. INTRODUCTION

Thermoelasticity, the interdisciplinary study that converges
the principles of thermodynamics with those of elasticity,
is a cornerstone in the realm of continuum mechanics. As
a field of inquiry, it bridges the gap between thermal and
mechanical behavior in materials. Understanding thermoelas-
tic phenomena is crucial for a host of applications ranging
from industrial processes, aerospace engineering, and mate-
rial science to cutting-edge research in nanotechnology and
biological systems.

As the demands for advanced materials with specific
properties grow, be it in extreme temperatures, pressures,
or other challenging conditions, the predictive power of
thermoelastic models becomes increasingly significant. Tra-
ditional elasticity theories may fall short when subjected to
varying temperature fields, often resulting in inaccurate pre-
dictions and undesirable outcomes in applications such as
turbine blade design, thermal barrier coatings, or nuclear re-
actor construction. Herein lies the indubitable importance of
thermoelasticity—it provides a more comprehensive model,
capturing the intricate interplay between thermal and elastic
effects, to achieve better accuracy and reliability in predictive
analysis and design.
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Moreover, the theory of thermoelasticity finds applications
in the real-time analysis of stress and strain in nanostructures,
high-speed machinery, and other systems where both mechan-
ical and thermal effects cannot be ignored. With the advent
of high computational capabilities, solving complex thermoe-
lastic problems is becoming increasingly feasible, thereby
opening new avenues for innovation and application.

Traditionally, thermoelasticity has been employed to un-
derstand how conventional materials respond to thermal and
mechanical stimuli. In active matter, this traditional frame-
work needs to be extended to account for the internal energy
sources that drive system behavior. Unlike passive systems,
active matter is characterized by a constant input of energy
at the microscopic level, leading to macroscopic patterns of
motion and deformation. This inherently makes the thermoe-
lastic description of active matter far more complex but also
far more intriguing.

The recent few years have witnessed the development of
odd elasticity, a theoretical framework for elastic materials
that do not store energy in the same way as hyperelastic
materials do [1–4] (for a review, see Ref. [5]). Various phys-
ical systems display such responses, typically due to the
breakdown of Maxwell-Betti reciprocity. At this point, new
challenges arise: first, to extend the framework of odd elas-
ticity to nonisothermal and/or nonadiabatic behaviors. This
is considered here with three thermoelastic models: classical
coupled thermoelasticity with Fourier law, thermoelasticity
with relaxation times of Maxwell-Cattaneo type, and ther-
moelasticity with two relaxation times. While the latter two
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models are fundamentally different from one another, they
can be simplified to the classical coupled one when the re-
laxation times are set to zero. The goal is to write down the
governing equations admitting, in general, spatially inhomo-
geneous properties. The next question concerns the possibility
of invariance of the stress field in an odd thermoelastic two-
dimensional (planar) material. This problem of a so-called
“Cherkaev-Lurie-Milton (CLM) shift in a compliance tensor
field” [6] is tackled in a more general setting of eigenstrains.
We determine an equivalence class of a wide range of odd
materials in which the elastic compliances may be modified
without affecting the stress field.

II. IRREVERSIBLE THERMODYNAMICS

We construct the first odd extension of thermoelasticity
by using the language of extended irreversible thermodynam-
ics. In active systems the concept of effective temperature
is introduced as an analogous quantity to the conventional
temperature in equilibrium systems [7]. It serves as a tool to
describe the energy distribution or the degree of agitation of
the particles in the system, despite the lack of true thermal
equilibrium. However, it is important to note that the effective
temperature is not a true thermodynamic temperature. It can
vary significantly from the actual thermodynamic temperature
of the environment and can even depend on the specific prop-
erties of the particles or the type of measurement being made.
Moreover, the concept of temperature out of equilibrium is
not unique. Therefore, whenever we talk about an effective
temperature of an active solid, we assume a measurement
scheme has been prefixed to measure the effective temperature
of the active solid and the temperature field is given by the
thermometer corresponding to the scheme.

In the initial development of thermoelasticity for active
solids, activity is incorporated by violating Onsager’s reci-
procity principle. We start by writing the differential for the
entropy. We assume that it is a function of the energy, sym-
metrized strain, and heat current [8],

s = s(ε, εi j, qi ), (1)

where εkl = u(k,l ). This is analogous to viscoelasticity, where
the stress or momentum current also contributes to entropy.
Taking the divergence one gets

ds = dε

T
+ ∂s

∂εi j
dεi j + ∂s

∂qk
dqk . (2)

We impose the second law of thermodynamics

�s = ṡ + ∇iJ
s
i � 0, (3)

where Js is the entropy current, and supplement the system
with conservation laws

ρüi + ∂ jti j = 0, (4)

ε̇ + ∇ jq j + ε̇i jti j = 0, (5)

ρ̇ = 0. (6)

Here, ρ is the mass density, which we set to unity. Using the
conservation laws, after some algebra, we find

∇i
(
Js

i − qi/T
) + qi∇i(1/T ) +

(
∂s

∂εi j
+ ti j

)
ε̇i j + λiq̇i � 0,

(7)

where we have defined λi ≡ ∂s/∂qi. The positivity of the
entropy generation leads to Js

i = qi/T , ∂s/∂ui j = −ti j . We are
left with

�s = qi∇i(1/T ) + λiq̇i � 0. (8)

We now assume, in the linear regime, that

λi = −αi jq j, (9)

for some phenomenological tensor αi j . When αi j is positive
the system is bounded from below with a well-defined equi-
librium state. Although we have active matter in mind we still
assume that our system is bounded from below. Similarly, we
impose

∇i(1/T ) + αi j q̇ j = γi jq j, (10)

from which relation we obtain

τi j q̇ j = −ki j∇ jT − qi, (11)

where τi j = αikγ
−1
k j , ki j = γ −1

i j /T 2. In passive systems, the
above equation follows from the positivity of the entropy
production. Note that in the universe of active matter, this
relation is not the most general. However, it is not our goal
to introduce as many mechanisms for activity as possible, but
rather have a minimal setup that leads to nontrivial physical
phenomena. In this case, we assume that activity is introduced
by breaking Onsager relations. For even passive materials
(αi j = αδi j , γi j = γ ji = γ δi j) this reduces to the isotropic,
even Maxwell-Cattaneo relation

τ q̇i = −λ∇iT − qi, (12)

where τ = αγ and λ = γ /T 2. However, for odd active ther-
moelastic materials, we can have a generalized relation, with
odd components τodd and kodd. kodd is an active component of
heat conductivity in odd materials. τodd is a relaxation time of
the odd heat flux. Its value is independent of the even compo-
nent. Odd and even heat propagations have a different physical
origin, therefore they do not need to relax in the same way.
This is analogous to odd relaxations in odd viscoelasticity [2].
The necessity to modify the Maxwell-Cattaneo law for odd
active materials that do not obey Onsager symmetry is one
of the central results of this paper. After presenting this basic
model that highlights odd effects in the thermoelasticity of
active solids, we will delve into more comprehensive models.
These models will not only address the violation of Onsager
relations but also incorporate odd elasticity, as well as body
forces and heat rate.

III. THERMOELASTICITY WITH PARABOLIC
OR HYPERBOLIC HEAT CONDUCTION

The Fourier model of heat conduction works very well
when the signal propagation speed does not need to be
accounted for; this is the basis of classical coupled (CC)
thermoelasticity. At sufficiently high modulation frequencies,
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the time delay between the temperature gradient and heat flux
needs to be considered, and this results in a Maxwell-Cattaneo
model with one relaxation time, which is the basis of the
Lord-Shulman (LS) thermoelasticity, e.g., Refs. [9,10]. By
contrast, the Green-Lindsay (GL) thermoelasticity retains the
Fourier law but accounts for two time delays in coupled field
phenomena: one between the stress and stress-temperature
tensor, and another between the entropy and the specific heat.
Thus, with two relaxation times GL offers a theory which is
intermediate between CC and LS theories.

In the subsequent analysis, we focus on the thermal prop-
erties of odd elastic solids. This activity stems from breaking
Maxwell-Betti reciprocity relations. Incorporation of thermal
strains and stresses in elasticity leads to three basic models
of thermoelasticity that generalize the above classic models to
the realm of odd solids:

(i) Heat conduction based on the Fourier law,

qi = −ki jT, j , (13)

where ki j is the thermal conductivity tensor (such that
ki jT,i T, j > 0). Depending on the particular constitution of
the odd material, the Onsager symmetry of ki j = k ji may be
broken. Hereinafter, we switch to the standard tensor notation
for a gradient: a comma followed by the index of coordinate.

(ii) Heat conduction involving one relaxation time τ of the
Maxwell-Cattaneo law,

qi + τ q̇i = −ki jT, j , (14)

where, just as in (12), the overdot stands for the material time
derivative [11]. As pointed out in that reference, this model is
useful in various materials, typically polymeric, including the
living [12] or dead [13] soft biotissues where τ may be on the
order of one or several seconds. The resulting wave-type heat
propagation is referred to as the second sound as opposed to
the usual elastic waves (first sound). Also in this model, the
Onsager symmetry may be broken.

(iii) Heat conduction involving two relaxation times τ0 and
τ1 [14]: This model provides an alternative formulation of
wave-type heat conduction. Again one can further consider
generalizations of this model with broken Onsager symmetry.

Since elastodynamics itself is a hyperbolic theory, the first
of these models lead to a coupled hyperbolic-parabolic ther-
moelastic system, while (ii) and (iii) are purely hyperbolic,
albeit each different in character.

In cases (i) and (ii), the thermoelastic constitutive law
reads εi j = Si jklσkl + Ai j�T , where εkl = u(k,l ) is the strain
with (k, l ) denoting symmetrization on indices i and j, ui

is the displacement; Si jkl is the compliance tensor (to be
discussed below), and σkl is the Cauchy stress tensor. Also,
Ai j (= −Si jkl Mkl ) is the thermal expansion tensor and �T is
the temperature change from T0. The thermoelasticity field
equations can be compactly grasped in one system of two
coupled equations for the displacement-temperature pair:

(Ci jkl uk,l ), j + (Mi jT ), j + bi = ρüi,

(ki jT, j ),i −ce(Ṫ + τ T̈ ) + T0[Mi j (u̇i + τ üi )], j = −r − τ ṙ.

(15)

Here, Ci jkl = S−1
i jkl is the elasticity (or stiffness) tensor which

has minor symmetries (Ci jkl = Cjikl = Ci jlk) but not the major

one; Mi j is the stress-temperature tensor without symmetry
(Mi j �= Mji); T is the absolute temperature, T0 is the effective
reference temperature, bi is the body force per unit volume,
ρ is the mass density, r is the heat produced per unit time
and unit mass, and ce > 0 is the specific heat at zero strain.
When τ > 0, we have the so-called Lord-Shulman (LS) ther-
moelasticity [15] and, when τ = 0, the classical coupled (CC)
thermoelasticity is recovered.

On the other hand, case (iii) is the basis of the
Green-Lindsay (GL) thermoelasticity [16], which relies
on (13) and two thermoelastic constitutive laws [εi j =
Si jklσkl + Ai j (�T + τ1Ṫ ) and s = −T0Mi jεi j + Mi j (�T +
τ0Ṫ )], where s is the entropy density. The thermoelasticity
field equations of the first and third models are grasped in
one system of two coupled equations for the displacement-
temperature pair:

(Ci jkl uk,l ), j + [Mi j (T + τ1Ṫ )], j + bi = ρüi,

(ki jT, j ),i − ce(Ṫ + τ0T̈ ) + (T0Mi ju̇i ), j = −r. (16)

The formulation of the GL theory implies τ1 > τ0 � 0 and,
when both relaxation times are set to zero, the CC thermoe-
lasticity is recovered.

In various situations (e.g., when the boundary conditions
are given in terms of stress tractions), it is advantageous to
work with the field equations expressed in terms of stresses.
Then, an alternative formulation of the LS theory is obtained
in terms of the stress-heat flux pair (σi j, qi ):

[ρ−1σ(ik,k], j) +c−1
σ (Ai j q̇k,k − Ai j ṙ) + (ρ−1b(i ), j) = S′

i jkl σ̈kl ,[
c−1
σ (qk,k + r)

]
,i +T0

(
c−1
σ Apqσ̇pq

)
,i = −λi j (q̇ j + τ q̈ j ).

(17)

Here, cσ (= ce − T0Mi jAi j) is the specific heat at zero strain.
Also, λi j = k−1

i j is the thermal resistivity tensor such that
λi jqiq j > 0, and

S′
i jkl = Si jkl − T0c−1

σ Ai jAkl . (18)

The field equations of the GL thermoelasticity in terms of
the stress-temperature pair (σi j, T ) read

[ρ−1σ(ik,k], j) −Ai jt
−1
(0)

[
t1c−1

σ (kpqṪ ,q ),p −(τ1 − τ(0) )T̈
] + b̃i, j

= S̃i jkl σ̈kl ,

c−1
σ [(kpqT,q ),p +r] − T0c−1

σ Apqσ̇pq

= (Ṫ + τ(0)T̈ ), (19)

where we have S̃i jkl = Si jkl − τ1
τ(0)

θ0
cσ

Ai jAkl , b̃(i j) =
(ρ−1b(i ), j) − τ1

τ(0)

ṙ
cσ

Ai j , and τ(0) = (1 − ce
cσ

)τ1 + ce
cσ

τ2. The
CC theory is obtained from (17) and (19) by setting τ = 0
and τ1 = τ0 = 0, respectively.

IV. FROM ODD ELASTICITY TO ODD COMPLIANCE

As is well known (e.g., Ref. [5]), the major symmetry rela-
tion Ci jkl = Ckli j does not hold in odd solids. To identify the
elasticity (Ci jkl ) and compliance (Si jkl ) tensors for an isotropic
planar odd solid, we begin with

σkl = Ki jkl uk,l , i, j, k, l = 1, 2, (20)
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where Ki jkl is the tensor (with εi j the Levi-Civita symbol)

Ki jkl = Bδi jδkl − Aεi jδkl + μ(δilδ jk + δimδ jn − δi jδkl )

+ K0(εikδ jl + ε jlδik ). (21)

Hence, we find explicitly

σ11 = (B + μ)u1,1 + K0u1,2 + K0u2,1 + (B − μ)u2,2,

σ12 = −(A + K0)u1,1 + μu1,2 + μu2,1 + (−A + K0)u2,2,

σ21 = (A − K0)u1,1 + μu1,2 + μu2,1 + (−A + K0)u2,2,

σ22 = (B − μ)u1,1 − K0u1,2 − K0u2,1 + (B + μ)u2,2, (22)

from which we identify all Ki jkl ’s.
Unfortunately Ki jkl is not invertible to a compliance form,

so we cannot write uk,l = K−1
i jklσkl . In addition, (20) and (21)

imply σ12 �= σ21 which violates the angular momentum bal-
ance under the assumption of no couple stresses present,
suggesting that A has to be removed to achieve invertibil-
ity. We then have Ci jkl = Ki jkl (where A = 0) with the odd
elasticity property: C1112 �= C1211 and C2212 �= C1222. Using
σ12 = σ21 we then write this Hooke’s law in matrix form,⎛

⎝σ11

σ22

σ12

⎞
⎠ =

⎡
⎣B + μ B − μ K0

B − μ B + μ −K0

−K0 K0 μ

⎤
⎦

⎛
⎝ e11

e22

2e12

⎞
⎠, (23)

which specifies the elasticity matrix [C] mapping the vector of
elastic strains (e11, e22, 2e12) into stresses, where elastic strain
is defined as ekl = u(k,l ). The compliance matrix [S] = [C]−1

is found as

[S] =

⎡
⎢⎢⎢⎣

(K0 )2+μ2+Bμ

4B(K0 )2+4Bμ2
(K0 )2+μ2−Bμ

4B(K0 )2+4Bμ2 − K0

2(K0 )2+2μ2

(K0 )2+μ2−Bμ

4BK2+4Bμ2
(K0 )2+μ2+Bμ

4BK2+4Bμ2
K0

2(K0 )2+2μ2

K0

2(K0 )2+2μ2 − K0

2(K0 )2+2μ2
μ

(K0 )2+μ2

⎤
⎥⎥⎥⎦. (24)

Here, we identify the planar bulk compliance B−1 and the
shear compliance S1212 = μ/[(K0)2 + μ2].

In analogy to the three-dimensional (3D) case [17,18], to
deal with internal stresses and strains in odd thermoelasticity,
we consider the total strain εi j in the body to be the sum of the
elastic strain ei j given above and the eigenstrain ε∗

i j ,

εi j = ei j + ε∗
i j, (25)

where

ei j = Si jklσkl

and

ε∗
i j = Ai j�T, i, j = 1, 2.

The eigenstrain ε∗
i j contributes to the linear momentum bal-

ance as a body force, and to the boundary conditions as a
surface force. In general, eigenstrains and eigenstresses can
also be due to swelling, plastic or transformation, loss/gain of
mass, or changes to the molecular structure of the phases.

V. STRESS FIELD INVARIANCE UNDER A SHIFT
IN COMPLIANCES

In the realm of materials science and mechanical engi-
neering, the study of invariant properties of stress in plane

elasticity and equivalence classes of composites plays a piv-
otal role. Plane elasticity simplifies stress and deformation
to a two-dimensional perspective, essential for analyzing thin
plates or surfaces under load. The invariants of stress, quan-
tities unaltered by coordinate transformations, are crucial for
comprehending material behavior under varying loads, aiding
in predicting material failure and other mechanical properties.
Concurrently, composites, engineered from multiple materials
with distinct properties, are classified into equivalence classes
based on shared characteristics such as mechanical or ther-
mal behavior. This classification is vital for material selection
in engineering, enabling the choice of composites that meet
specific requirements such as strength, weight, or heat resis-
tance. Together, these concepts are fundamental in optimizing
material properties for varied applications, ensuring safety
and efficiency in high-stress environments or when employing
advanced materials. Understanding stress invariance in the
context of active odd solids can provide insights into their
mechanical properties and stability, guiding their integration
into engineering and material science applications where their
unique characteristics might be advantageous.

We now take the odd elastic body to occupy a simply
connected domain B in the plane, with a boundary ∂B char-
acterized by the unit outer normal vector ni. The body is
assumed to be in static equilibrium (σi j, j = 0) while sub-
jected to traction boundary conditions on its entire boundary
(σi jn j = t (n)

i , ∀xi ∈ ∂B), and to satisfy the global equilibrium∫
∂B

t (n)
i dS = 0,

∫
∂B

εi jkx jt
(n)
k dS = 0. (26)

If the body domain is multiply connected, the tractions are
self-equilibrated (with overall zero force and zero moment) on
each internal boundary. We take the compliances and eigen-
strains to be, in general, inhomogeneous in B and assume
them twice differentiable in B.

The stress invariance problem [6] is described by asking
the following question: “Given a statically equilibrated solid
with a stress field σ = (σ11, σ22, σ12) under prescribed trac-
tion boundary conditions, can the compliance tensor Si jkl be
changed to a new Ŝi jkl in such a way that the stress field
remains unchanged?” Now, the strain compatibility condition
ε11,22 + ε22,11 = 2ε12,12 becomes

∇2[(B−1 + S1212)(σ11 + σ22)]

−2(S1212,11σ11 + 2S1212,12σ12 + S1212,22σ22)

= 4[(S1211σ11),12 +(S1222σ22),12 −(S1211σ12),22

−(S1212σ12),11 ] + 8ε∗
12,12 − 4ε∗

11,22 − 4ε∗
22,11. (27)

Inspecting (27) we see that, for the new stress field to
remain σi j , these relations must hold,

B̂−1 + Ŝ1212 = m(B−1 + S1212), Ŝ1212,11 = mS1212,11,

Ŝ1212,12 = mS1212,12, Ŝ1212,22 = mS1212,12, (28)

where m is an arbitrary scalar. This implies

B̂−1 = mB−1 + a + bx1 + cx2,

Ŝ1212 = mS1212 − a − bx1 − cx2. (29)
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The constants m, a, b, and c are subject to restrictions dictating
that the new compliances be non-negative.

In other words, although Si jkl �= Skli j , the answer to the
above question is affirmative for a so-called shift of Si jkl to
Ŝi jkl according to

Ŝi jkl = Si jkl + SI
i jkl , (30)

where

SI
i jkl (�,−�) = 1

2�
δi jδkl − 1

4�
(δikδ jl + δilδ jk ) (31)

is the shift tensor and �−1 is linear in x1 and x2, only subject
to a condition that the new stiffness tensor Ŝi jkl is positive-
definite everywhere in B.

Writing this in terms of matrices, the shift (30) with (31) is
expressed as a change of the compliance matrix [S] to a new
[̂S] according to

[̂S] = [S] + [SI ], [SI ] = 1

2�

⎡
⎣0 1 0

1 0 0
0 0 −2

⎤
⎦. (32)

Thus, a very wide range of odd thermoelastic materials with
different values of material properties will have the same new
stress field σ̂ as the original σ .

VI. HYDRODYNAMIC MODES

As an instructive example of collective phenomena in ther-
moelastic models, we study collective modes in the following
model of thermoelasticity,

(Ci jkl uk,l ), j +(Mi jT ), j = ρüi,

(ki jT, j ),i +T0[Mi ju̇i], j = ceṪ , (33)

where ki j = k1δi j + k2εi j and mi j = m1δi j + m2εi j .
The above system of equations can be put in the hydrody-

namic form by introducing an auxiliary velocity field v = u̇
that plays the role of a Josephson equation in a system with
a spontaneously broken translation symmetry. It is convenient
to pass to the Fourier space, where the excitations are pro-
portional to plane waves ei(k·x−ωt ). Our aim is to compute the
dispersion relations ω = ω(k) (see, e.g., Ref. [19]).

We get a fifth-order equation that does not have a closed-
form solution. However, for our purposes, it is enough to
construct a perturbative solution in the powers of k as k → 0.
We expect two pairs of sound modes plus a diffusive mode due
to the temperature profile. Therefore our perturbative ansatz
for the solution reads [ω2 + iωk2�1(ω, k) − v2

1 (ω, k)k2] ×
[ω2 + iωk2�2(ω, k) − v2

2 (ω, k)k2][−iω + k2D(ω, k)]. In the
lowest order of expansion �1(ω, k) = �1, �2(ω, k) = �2,
D(ω, k) = D. These coefficients correspond to the sound at-
tenuation and the diffusion coefficients respectively. v2

1 (ω, k)
and v2

2 (ω, k) correspond to nondissipative sound velocities
squared. The solution reads

v2
1 = 1

ρ2

[ − [
Bce + (

m2
1 − m2

2

)
T0 + 2ceμ

]
ρ

+
√{

8m1m2T0K0 + 4m2
1T0μ − 4m2

2T0(B + μ) + [
Bce + (

m2
1 − m2

2

)
T0 + 2ceμ

]2 + 4ce
[
[K0]2 + μ(B + μ)

]}
ρ2

]
. (34a)

v2
2 = 1

ρ2

[ − [
Bce + (

m2
1 − m2

2

)
T0 + 2ceμ

]
ρ

−
√{

8m1m2T0K0 + 4m2
1T0μ − 4m2

2T0(B + μ) + [
Bce + (

m2
1 − m2

2

)
T0 + 2ceμ

]2 + 4ce
[
[K0]2 + μ(B + μ)

]}
ρ2

]
. (34b)

Similarly, we can determine the sound attenuation coeffi-
cients

�1 = −2
2k1

[
4[K0]2 + (

2μ − v2
1ρ

)(
2B + 2μ − v2

1ρ
)]

v2
1

(
v2

1 − v2
2

)
ρ2

, (35a)

�2 = −2
2k1

[
4[K0]2 + (

2μ − v2
2ρ

)(
2B + 2μ − v2

2ρ
)]

v2
2

(
v2

2 − v2
1

)
ρ2

, (35b)

and the diffusion coefficient

D = 2k1
[
4[K0]2 + (

2μ − v2
1ρ

)(
2B + 2μ − v2

1ρ
)]

v2
1

(
v2

1 − v2
2

)
ρ2

. (36)

We note that generically in models of thermoelasticity with-
out odd coefficients only dilatational waves are affected by
thermal effects (see, e.g., Refs. [20]). Here, odd coefficients
mix transverse and longitudinal waves, which means that
shear waves also feel temperature profiles. Given the current

experimental effort to understand odd solids (see, e.g.,
Ref. [21]), our study suggests that temperature measurements
can shed light on odd transport coefficients. In addition, odd
coefficients also affect the dissipative responses as they mod-
ify both sound attenuation and diffusion.

VII. DISCUSSION

In this work we have developed the framework of odd
thermoelasticity and investigated several properties of odd
elastic solids. The role of thermal effects in odd elasticity has
been limited to the Fourier heat conduction. In this paper we
show, using the framework of extended irreversible thermo-
dynamics, that in active solids it has to be modified to the
odd generalization of the Maxwell-Cattaneo heat conduction.
Building upon this observation we propose odd theories of
thermoelasticity that should be applicable to odd solids under
various conditions.
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Motivated by the potential applications of active solids,
in the subsequent part of the paper we investigate the stress
formulation of odd elasticity. We derive the odd compliance
matrix and show that the stress is invariant under specific shift
of compliance matrix coefficients.

Finally, we investigate collective modes in a model that
exhibits odd elasticity and violates Onsager reciprocity rela-
tions. The main finding of this analysis is that odd transport
coefficients manifest themselves in temperature profiles. Our
analysis paves the way for a systematic study of thermal
effects in odd solids that can also play an important role in
micropolar or viscoelastic solids.
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