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The Dirac hierarchy (DH), comprising an eightfold bulk Dirac cone (DC), a fourfold surface DC, a twofold
hinge, and a corner state, has been proposed and observed in acoustic systems recently. DH establishes a
versatile platform for exploring exotic phenomena related to the hierarchy of Dirac physics and topological
phases at varying dimensions. However, the investigation of DH in the context of photonic crystals is still
lacking, as the electromagnetic interactions in the 3D configuration are complex and difficult to match with
the tight-binding model. In this study, we first propose a photonic DH in the Mie-confined resonance framework
with band chirality. DH with 2D surface states, 1D hinge states, and 0D corner states is obtained by lattice
distortions. Besides, we extend the 3D framework to the disclination-introduced photonic system and prove the
coexistence of robust disclination, corner, and hinge states. Our work explores the Dirac physics in photonics,
offers insights to manipulate electromagnetic waves at varying dimensions, and reveals unconventional bulk-
disclination correspondence in 3D photonic materials.
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I. INTRODUCTION

Over the past decades, the success of topological insula-
tors (TIs) has injected vitality into condensed matter physics
[1–4]. These TIs, protected by band topology theory [5],
have enabled unconventional bulk-boundary correspondence,
allowing the control of unidirectional waves across platforms
such as acoustics, photonics, and circuits [6–11]. In addition,
there have been exciting discoveries and artificial fabrications
of novel topological materials based on spatial symmetry
and time-reversal-symmetry reflection [12–14]. Among these
findings, the Dirac cone (DC) observed in 2D graphene
lattices has attracted attention due to its massless proper-
ties in electronic systems [15–18]. Currently, the discovery
of higher-order topological insulators (HOTIs) has provided
deeper insights into lower-dimensional topological systems
[19–27]. In 3D HOTI, DCs are classified into bulk, surface,
and hinge versions, forming what is known as the Dirac hier-
archy (DH). This concept has been implemented in acoustic
crystals by introducing a multilayer sonic monolayer lattice to
achieve in-plane and out-of-plane distortions [28–30].

Until now, DH in 3D photonic crystals (PhCs) has been
limited due to complex electromagnetic (EM) properties com-
pared to sonic waves. Moreover, the decay rate of the Mie
resonances’ states in dielectric photonic HOTIs is slow, re-
sulting in distinct physics between the tight-binding model
(TBM) and dielectric PhCs, and hence the band chiral symme-
try is no longer protected [31]. In addition, the DH structure
typically preserves Cn symmetry, forming what is known as
topological crystalline insulators (TCIs), which have been
extensively studied in 2D systems to reveal bulk-disclination
correspondence with boundary-localized fractional charge
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[32–34]. However, the disclination defect is rarely discussed
in 3D PhCs. Therefore, it is promising that we can bring DH
into 3D photonic platforms and even defect-introduced sys-
tems to capture multiple topological phases, which ushers in
new approaches to exploring the coexistence of HOTI phases
and defect modes in 3D frameworks.

Here, we propose a refined dielectric PhC with confined
Mie resonance. The unit cell consists of a stacked 2D TCI
connected with a 1D vertical Su-Schrieffer-Heeger (SSH)
chain. The central and lateral regions of the structure are
inserted with metal pillars to allow exponential decay of Mie
resonance states, and drilled metal plates provide vertical
couplings. This design guarantees the chiral symmetric band
dispersions that resemble those observed in a TBM. By chang-
ing the horizontal and vertical directional couplings, the DC
will split into lower dimensions in an orderly manner. 0D
corner modes can be obtained by constructing Cn-symmetric
TCIs or breaking mirror symmetry. More importantly, the idea
of confined Mie resonance PhCs can be used to study 3D
disclination-introduced PhCs. By establishing the multilayer
finite-size plate through the “cut-and-glue” method, we ob-
serve robust 1D hinge, 0D corner, and disclination modes
simultaneously. Our research has not only broadened Dirac
physics in photonic HOTIs, but has also extended topological
phases with bulk-disclination correspondence from 2D to 3D
versions.

II. MODEL CONSTRUCTIONS

We introduce the PhC model based on the TBM as depicted
in Fig. 1(a). The unit cell consists of two components: the
double-layer honeycomb lattices and the vertical SSH chains.
The eightfold bulk DC is maintained when the ratios of in-
plane inter- and intracell couplings (t1 and t0) and out-of-plane
inter- and intralayer hopping (tz1 and tz0) are both equal to 1
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FIG. 1. The TBM of our PhC and corresponding topological phase transition process. (a) The eightfold DC (tz1/tz0 = t1/t0 = 1). (b) The
fourfold surface DC (tz1/tz0 > 1). (c) The twofold hinge DC between the surface band gap (t1/t0 > 1). (d) The third-order corner mode (t1 > tm1,
t0 < tm0).

[Fig. 1(a)]. When tz1/tz0 > 1, the SSH chain exhibits topo-
logical behavior, causing the bulk DC to split into a fourfold
surface DC [Fig. 1(b)]. Subsequently, by setting t1/t0 > 1,
the surface DC becomes gapped, the structure manifests a
HOTI phase, and a twofold hinge DC appears [Fig. 1(c)]. Fur-
thermore, a third-order corner mode occurs by breaking the
mirror symmetry (t1/tm1 > 1, t0/tm0 < 1) [Fig. 1(d)]. Thus, we
derive the complete hierarchy picture in a 3D framework with
different topological phases at specific dimensions. Our model
can be expressed as the Hamiltonian matrix [28],

H (q) = Hz ⊗ I6 + I2 ⊗ Hxy, (1)

where Hz = (tz0 + tz1 cos qz )σx + sin qzσy represents
the SSH Hamiltonian, σx and σy are Pauli matrices,
and I2 and I6 are 2 × 2 and 6 × 6 identity matrices,
respectively. Hxy = [0, h(qx, qy); h∗(qx, qy), 0] is the
monolayer hexagonal lattice Hamiltonian with h(qx, qy) =
[t1e(iqx+iqy ), t0, t0; t0, t1e−2iqy , t0; t0, t0, t1e(−iqx+iqy )], and q(qx,

qy, qz ) is the normalized wave vector in momentum space,
where qx = kx/2, qy = √

3ky/2, and qz = kz. Apparently,
Hz satisfies the chiral symmetry �zHz�z = −Hz, where
�2

z = 1. In this way, the eigenenergy of the system is written
as E = Exy + Ez, denoting the in-plane honeycomb lattice
eigenenergy Exy and the vertical SSH chain eigenenergy Ez

[28]. Similarly, the complete set of eigenstates of the model
is delivered into two parts: � = �xy ⊗ �z, where �xy (�z ) is
the eigenstate of Exy (Ez ). It is noticed that the hierarchy can
be interpreted via the classifications of �xy (�z ). We have
the following: if �xy and �z are bulk states, the system keeps
bulk modes. If �z keeps topological and �xy remains the bulk
state, the parent structure supports surface states. If �xy is the
edge state (or in-plane corner state) and �z is the edge mode,
the system will feature the 1D hinge (or 3D corner) state.

Figure 2(a) illustrates a 3D view of the proposed lattice
TBM. The unit cell consists of two single-layer honeycomb
lattices connected by SSH chains. The real design of the
PhC consists of bifurcated dielectric rods with metal pillars
embedded between the dielectric rods [Fig. 2(b)]. Each di-
electric pillar has three branches that interact with the nearest
dielectric pillar. In the classical wave environment, the lattice
allows propagation solutions at every frequency. That is, the
lower bands are plane-wave-like, while the higher bands are
TBM-like [35], and the chiral symmetry of the energy bands
around the zero-energy line is no longer protected. In this
regard, metal rods can be inserted between dielectric pillars,

FIG. 2. Design and the band spectrum of our 3D PhC. (a) TBM
of the PhC. (b) Architecture of the unit cell. (c) The bulk band
structure of the model at tz1/tz0 = t1/t0 = 1. The 3D Brillouin zone
(BZ) and the lowest eigenmode profile. (d) Band dispersions of the
surface modes. The inset view presents the piling supercell and the
projected 2D BZ.
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which confine the slowly decaying Mie resonances’ states
[36]. The Ez components of the lattice shown in Fig. 2(c)
shows a localized field around the scatters at the lowest band
(purple star). For PhCs without embedded metal rods, the
eigenmode profile of the lowest band shows linear dispersion
and plane wave behavior; see the Supplemental Material [37].
Metallic rods between dielectric pillars form the structure that
strengthens the nearest-neighbor hopping of the two isolated
scatters. EM wave propagation in such lattice configurations
can be well matched with the TBM.

III. DIMENSIONAL HIERARCHY

The directional couplings are realized as follows. By al-
tering the radius of the inserted metallic rods, we can control
the in-plane coupling terms, while the out-of-plane coupling
can vary by tuning the sizes of drilled holes, as described in
Fig. 2(b). The initial parameters are given as follows: the lat-
tice constant a = 30 mm and h = 24 mm, the width (length)
of each bifurcated bar L1 = 2.4 mm (L0 = 3.6 mm), the size
of the central (side) metallic pillar a0 = 0.4a (a1 = 0.4a), the
thickness of the top (bottom) metal plate w1 = 2 mm (w0 =
2w1), the height of the dielectric rod hr = 8 mm, the radius of
the top and bottom (middle) drilled holes d1 = d0 = 2.4 mm,
and the relative dielectric permittivity of dielectric rods ε = 9.
The distance between two nearest dielectric rods is fixed as
l = a/3. For the original eightfold bulk DC (tz1/tz0 = 1), the
degeneracy occurs at the Z point (red solid dot), as shown in
Fig. 2(c). Throughout this paper, all full-wave simulations and
numerical calculations are performed using the finite element
method software COMSOL Multiphysics.

A. First-order hierarchy with surface Dirac cone

To establish a topological SSH chain within our PhC model
(tz1/tz0 > 1), we adjust the sizes of holes d0 and d1 to be
2.4 mm and 6.4 mm, respectively, where a larger hole corre-
sponds to a stronger hopping strength. The eightfold DC will
collapse, and the first-order DH is obtained. We construct a
multilayer supercell consisting of three PhCs, with top and
bottom plates undrilled to create perfect electric conductor
(PEC) boundaries in the z direction, as shown in the inset
of Fig. 2(d). The surface band dispersions of nontrivial SSH
chains along K̄-�̄-M̄-K̄ are shown in Fig. 2(d), where the
surface states span the range of 9.4–9.8 GHz. The fourfold
DC appears at about 9.6 GHz at the �̄ point (red solid dot).
To further investigate surface wave transmission, we construct
a three-layer finite-size architecture to perform a full-wave
simulation; see the Supplemental Material [37].

The introduction of the nontrivial SSH chain (tz1 > tz0)
splits the band, and the eightfold Dirac cone is lifted into two
Dirac cones at the A point (kz = π ), as shown in the upper
panel of Fig. 3(b). To distinguish between the two phases, we
need to further examine the band properties of the degeneracy
bands at the A point from band 3 to band 10 (counting from
the bottom band). For the eightfold degeneracy, the eigenstate
profiles have a pair of chiral partners with symmetric (S) and
asymmetric (A) modes. We have highlighted the bands with A
modes in orange color and S modes in gray color. Figure 3(a)
illustrates the mode profiles at the A point with the SSH chain

FIG. 3. Bands and eigenfields of the trivial and topological SSH
chain in the confined Mie resonance PhC. (a) Left part: Simulations
of the topological SSH chain’s eight eigenmode profiles at the Z
point. Right part: The eigenmode profiles at the Z point for trivial
SSH chain. (b) The band structures of the topological and trivial unit
cell along the path Y-Z-X-Y.

of tz1 > tz0 and tz1 < tz0, respectively. The eigenmode profiles
at the top and bottom parts of the unit cell show that the
bands 3–6 are A modes (S modes) and bands 7–10 are S
modes (A modes) for the nontrivial (trivial) SSH chain. Both
cases exhibit dipole p and quadrupole d natures. This indi-
cates a phase transition process along the vertical direction,
which is independent of the in-plane couplings.

B. Second-order hierarchy with hinge Dirac cone

To achieve the second-order hierarchy, we further adjust
the in-plane couplings of the honeycomb lattice. By setting
a0 = 0.4a and a1 = 0.34a while keeping other parameters
unchanged, the 2D hexagonal lattice is topological and ex-
hibits second-order edge states. Figure 4(a) provides in-plane
views of two types of hinges, the armchair-typed hinge (A
hinge) and the zigzag-typed hinge (Z hinge), with periodic
boundary conditions in the x direction and PEC boundaries
in the y direction. The hinge band dispersions of the A hinge
and Z hinge are calculated and presented in Figs. 4(d) and
4(e), respectively. For the A hinge, the second-order hinge
modes traverse the surface band gap in the frequency range
of approximately 8.65–8.95 GHz with a band gap, while for
the Z hinge the twofold DC emerges at about 8.8 GHz. To
investigate the transmission of hinge modes, we construct a
second-order piled PhC sample, as shown in Fig. 4(b). In this
configuration, the source (red solid circle) is positioned on the
left edge of the sample, the hinge probe (blue solid circle) is
located on the right edge, and the surface probe (green solid
circle) is inserted into the top plate of the structure. The upper
panel of Fig. 4(c) computes the hinge wave transmission on
the top layer at the excitation frequency of 8.87 GHz, while
the lower panel shows the surface state on the top layer at
8.94 GHz. Additionally, Fig. 4(f) presents the |Ez| intensity
profile of surface states (green region) and hinge states (blue
region) spanning 8.6–9.0 GHz, which closely aligns with the
hinge dispersion shown in Fig. 4(d). It is noticed that the A
hinge hosts a hinge band gap (light blue region), where corner
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FIG. 4. Constructions of the A hinge and Z hinge. (a) The schematic graph of the periodic supercell array in the x direction for A hinge and
Z hinge, respectively. (b) 3D view of the piling finite-size sample. (c) Upper panel: |Ez| field distribution of hinge modes at 8.88 GHz. Lower
panel: |Ez| field distribution of surface modes at 8.94 GHz. (d) and (e) Hinge band diagrams for A hinge and Z hinge, respectively. The twofold
1D Z hinge DC appears in the surface band gap. (f) Simulated |Ez| field intensity profiles of hinge and surface state ranging from 8.6–9.0 GHz.

modes will generate in the band gap. This can be illustrated
by the topological invariant index for the existence of HOTI
phases in a TCI [38,39]; see Supplemental Material [37].

C. Third-order hierarchy with corner states

Finally, to achieve the third-order hierarchy with the 0D
corner mode, we introduce two approaches: constructing a
Cn-symmetric TCI in the xy plane while maintaining a non-
trivial SSH chain, or breaking the mirror symmetry of the
unit cell, as depicted in Figs. 5(a) and 5(c), respectively. In
the first approach, we maintain the same model parameters
as in the second-order hierarchy. The higher-order topological
properties of PhC are measured with the topological invariant
index [38,39], which is thoroughly analyzed in the Supple-
mental Material [37]. The 0D corner state will emerge in the
piled armchair-rhombus-shaped (ARS) sample. Consequently,
the corner mode occurs at the top corner of the architecture.
Figure 5(b) illustrates the eigenmode of the corner state at
a frequency of 8.79 GHz. In Fig. 5(e), we present the solu-
tion numbers of the ARS structure, where four corner modes
(orange solid dots) are located within the band gap region,
situated between hinge states (blue solid dots) and surface
states (green solid dots). To detect the corner state, we position
a source (red solid circle) near the top corner of the sample,
while the corner (orange solid circle), hinge (blue solid circle),
and surface (green solid circle) probes are placed in corre-
sponding locations, as shown in Fig. 5(a). The inset view of
Fig. 5(e) displays the |Ez| field distributions of corner (orange
region), hinge (blue region), and surface (green region) waves,
which are in excellent agreement with the eigenmode solution
diagram. Figure 5(b) demonstrates the corner mode with the
source excitation frequency at 8.79 GHz on the top surface.

In the second approach, we exploit the broken mirror sym-
metry to obtain the corner state in a zigzag-rhombus-shaped

(ZRS) sample, as depicted in Fig. 5(c). The distortion of
intra- and intercell couplings (with t1 > tm1 and t0 < tm0) in
a real PhC can be achieved by adjusting the L0 between
dielectric rods. Based on Fig. 1(d), we set the L0 of two bifur-
cated branches to be 0.13a and 0.11a to ensure t0 < tm0 and
t1 > tm1; see Supplemental Material [37]. This configuration
results in broken mirror symmetry in the x direction, causing
the corner modes at 8.75 GHz, as depicted in Fig. 5(d). In
Fig. 5(c), we position the source and probes to simulate the
corner, hinge, and surface states, similar to the approach used
in the previous ARS model. Figure 5(f) presents the top slice
of the |Ez| field distribution corresponding to the corner state
at 8.75 GHz. The inset views in Fig. 5(f) display the computed
|Ez| intensity profiles of corner (orange region), hinge (blue
region), and surface (green region) states in a ZRS sample.
These profiles are consistent with the frequency distributions
of the solution numbers.

IV. DISCLINATION-INTRODUCED
TOPOLOGICAL HIERARCHY

Inspired by the multilayer finite-size PhCs, it is natu-
ral to associate the DH model with the disclination defects
in 2D TCIs, which is produced by inserting or deleting
1/n part (Frank angle � = 2π/6) of the Cn-symmetric plate
[32–34,39,40]. With the cut-and-glue process, the disclination
defect will appear in the central region, as shown in Fig. 6(b).
We extend the 2D disclination model to the 3D hierarchy
framework. Figure 6(a) illustrates the building of the topo-
logical PhC with a metal rod embedded in the center of the
lattice. The in-plane layout of the hexagonal lattice is similar
to the unit cell shown in Fig. 2(b), except for the placement
of dielectric rods and the removal of side metal rods. The
deformed PhC’s TBM is provided in the Supplemental Mate-
rial [37]. The lattice parameters are listed below. The lattice
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FIG. 5. Illustrations of the third-order hierarchy in ARS and ZRS configurations. (a) The finite-size multilayer ARS structure. (b) 3D view
and the top slice of the |Ez| field profile with exaction frequency of 8.78Hz in the ARS sample. (c) The multilayer ZRS sample. (d) 3D view
and the top slice of the |Ez| field profile with exaction frequency of 8.75 GHz in the ZRS model. (e) and (f) Solution numbers of the corner,
hinge, and surface states and corresponding |Ez| spectrum for ARS and ZRS schemes, respectively.

FIG. 6. Description of the PhC for generating disclination modes in a 3D structure. (a) The 3D view of the expanded unit cell. (b) Left
panel: The cutting-and-glue operation for producing defect plate. Right panel: The Wannier center distributions for a topological meta-plane.
(c) Construction of the multilayer finite-size disclination structure. (d) Solution numbers of the hinge, corner, and disclination states and
corresponding |Ez| profiles, respectively. (e)–(g) |Ez| distributions of hinge, corner, and disclination modes at 9.95, 9.70, and 9.55 GHz,
respectively.
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FIG. 7. Simulations on real space stacking hexagonal-shaped
PhC arrays with eigenmode profiles for disclination modes.

constant a = 24 mm (h = 14 mm), the radius of dielectric
rods (central metal rod) r = 5 mm (R = 5 mm), w1 = 1 mm,
w0 = 2w1, the radius of top (central) drilled holes c1 = 1.4r
(c0 = 0.6r), the distance between adjacent dielectric rods l =
a/

√
3. The right part of Fig. 6(b) marks the Wannier centers

(purple dots) in a nontrivial case, where the corner charge
appears due to the principle of fractional charge distribution
in the HOTI phase [32,33,39,40]. In Fig. 6(c), we construct a
three-layer disclination-introduced architecture consisting of
deformed PhCs in both in-plane and out-of-plane directions.
We calculate the eigenmode solutions of the sample and find
a dimensional hierarchy from hinge (blue dots) to corner
(orange dots) to disclination (red dots) modes, as pictured in
Fig. 6(d). To examine the coexistence of HOTI phases and
disclination modes, we analytically excite these modes by
placing two sources near the top center (S1) and near the top
corner (S2), and three detectors are put to receive hinge (blue
solid circle), corner (orange solid circle), and disclination
(red solid circle), respectively. The inset of Fig. 6(d) gives
the corresponding mode intensity profile |Ez|, matching well
with the solution numbers. Figures 6(e)–6(g) show the |Ez|
distribution of hinge, corner, and disclination states at 9.95,
9.70, and 9.55 GHz, indicating robust EM wave transmission
and concentration in the presence of topological defects.

It is known that a 2D Cn-symmetric unit cell has n sec-
tors. Protected by the Cn symmetry, the lattice keeps invariant
under the n-fold rotational operation. The disclination mode
will emerge in the trapped central defect if we deform the
finite-size Cn-symmetric plate. Following this, the 3D mul-
tilayer sample will support disclination modes if we adopt
the honeycomb-SSH-like piling method to generate DH,
where the 0D disclination mode will appear on the top and the
bottom surface of the sample. Figure 7 gives ten eigenmode
profiles of disclination state of the sample in Fig. 6(c), where
the top (bottom) profile in each box represent the eigenmode
at the top (bottom) surface of the configuration. It is evident
that there are five A modes (orange box) and five S modes
(gray box), respectively.

V. CONCLUSIONS

In this work, we propose a photonic DH in a refined
Mie-confined honeycomb-SSH PhC. By carefully adjusting
the in-plane and out-of-plane coupling strengths, we obtain
a series of topological phases at different dimensions based
on the parent configurations. The introduction of metal pillars
and drilled metal plates in the model ensures the chirality
of the band spectrum and vertical modulation. We offer two
approaches to achieving the third-order hierarchy. Analysis in-
dicates a complete bulk-surface-hinge-corner correspondence
in distinct samples with zigzag and armchair hinges. EM
wave excitation on finite-size multilayer architectures shows
robust surface and hinge wave propagation, as well as strongly
localized corner modes. In addition, we develop the DH
and introduce a model that supports the coexistence of cor-
ner, hinge, and disclination phases with topological defects.
These findings open up possibilities for the fabrication of
high-performance optical devices with EM wave storage and
transmission at different dimensions, paving the way for ex-
citing advances in photonics.
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