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A superconductor/ferromagnet/superconductor Josephson junction with anomalous phase shift (ϕ0-S/F/S JJ)
is a system in which the anomalous ground state shift ϕ0 provides direct magnetoelectric coupling between a
magnetic moment and a phase of the superconducting condensate. If a chain of such ϕ0-S/F/S JJs are coupled
via superconducting leads, the condensate phase, being a macroscopic quantity, mediates a long-range interaction
between the magnetic moments M i of the weak links. We study the static and dynamic magnetic properties of
such a system. It is shown that it manifests properties of an n-level system, in which the energies of the levels are
determined by only projections of the total magnetic moment

∑
M i onto the easy magnetic axis. It is similar to

a magnetic atom in a Zeeman field, but the role of the field is played by the magnetoelectric coupling. However,
unlike an atom in a magnetic field, the relative order of energies of different states is controlled by electrical
means. It is also demonstrated that

∑
M i can be fully controlled by a supercurrent and the response of the

magnetic system to local external perturbations is highly nonlocal.

DOI: 10.1103/PhysRevB.109.054523

I. INTRODUCTION

The physics of equilibrium magnetic states and magnetic
excitations crucially depends on the type of magnetic inter-
action between the magnetic moments. Direct and indirect
exchange interactions, spin-orbit effects, and dipole-dipole
interactions lead to a large number of different magnetic
states, including ferromagnetism, antiferromagnetism, alter-
magnetism, helimagnetism, skyrmions, spin glasses, etc.
Another interesting direction is the interaction of more macro-
scopic magnets, which is very important, for example, for
magnetoresistive phenomena [1,2]. It can be realized via in-
direct interlayer exchange interaction [3–5], via dipole-dipole
interaction, and, more relevant to the subject of the present
paper, via superconductors.

Coupling via superconductors can be realized by different
physical mechanisms. One of them is the proximity effect.
As first pointed out by de Gennes, a superconductor makes
the antiferromagnetic configuration of magnets more favor-
able [6]. The reason is that with such a mutual orientation
of magnets, superconductivity in the interlayer is less sup-
pressed as a result of partial compensation of paramagnetic
depairing. The characteristic scale of such an interaction is
the superconducting coherence length ξS . A lot of theoretical
proposals and experimental realizations of a superconducting
spin valve have been based on the interaction via the proximity
effect [7–14]. Later, it was proposed [15] that the interaction
between magnets can also be mediated by the electromagnetic
proximity effect [16], the essence of which is the appearance
of Meissner currents in a superconductor in response to the
presence of an adjacent magnetic material. The characteristic
scale of this coupling is the penetration depth of the magnetic
field λ.

Recently, another mechanism for establishing interaction
between magnetic moments was proposed. It is not related
to the proximity effects and is based on another physical
principle. The interaction is of magnetoelectric origin and is
mediated by supercurrents, which makes it extremely long
range and decay according to a power law. The magneto-
electric coupling was considered both for magnetic impurities
in superconductors [17–19] and for weak links of coupled
Josephson junctions (JJs) [20]. In the last case the interaction
is mediated by the phase of a superconducting condensate,
which is a macroscopic quantity. For this reason the charac-
teristic scale of the interaction is not restricted by the typical
proximity scales of a superconductor, such as ξS and λ, and
can be much larger [20].

The coupling between the superconducting phase and the
magnetic moment is realized in JJs with a strong spin-orbit
coupling in the interlayer region [21–32] or in JJs on a
topological insulator [33–37], where the surface conduction
electrons have the property of full spin-momentum locking
[38–41]. Physically, the presence of the coupling between
the superconducting phase and the magnetic moment in JJs
manifests in the form of the so-called anomalous phase shift
in the ground state of the junction [42,43]. The essence of
this effect is that under the simultaneous breaking of inversion
symmetry, which allows for the spin-orbit coupling (SOC),
and time-reversal symmetry, which is due to the presence of
the magnetic moment, a supercurrent can be induced in the JJ
at zero phase difference between the leads. In the ground state
of the junction this “anomalous supercurrent” is compensated
by the phase shift ϕ0 �= 0, π , which is called the anomalous
ground state phase shift, and the JJs manifesting this effect
are called ϕ0-JJs.
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The breaking of the time-reversal symmetry can be
achieved more easily by applying a magnetic field to
the JJ. JJs with anomalous phase shift generated by the
Zeeman effect of the applied magnetic field have already
been implemented experimentally by several groups [44–47],
including on a topological insulator. Realization of ϕ0-
superconductor/ferromagnet/superconductor JJs (ϕ0-S/F/S
JJs) is a more challenging problem, but the possibility
to obtain in such systems direct coupling between the
magnetization of the weak link and the superconducting
phase opens great prospects for applications of such struc-
tures for controlling magnetization [42,48–53]. One of the
possibilities is to use two-dimensional (2D) or quasi-2D fer-
romagnets, in which the Rashba spin-orbit coupling can be
strong due to the structural inversion symmetry breaking, for
the interlayers. The other way is to exploit ferromagnetic
insulator/three-dimensional topological insulator (3D TI) hy-
brids as interlayers [54–61].

Reference [20] showed that in a system of two coupled ϕ0-
JJs with ferromagnetic weak links characterized by magnetic
moments M1,2 the magnetic state of the system, that is, the di-
rections of both magnetizations, can be fully controlled by the
phase difference between the external superconducting leads.
It was found that at large values of the phase difference the
most favorable state of the magnets is ferromagnetic, and the
directions of both magnetizations are dictated by the phase. At
the same time, at small values of the phase difference the most
favorable state is antiferromagnetic. In this case the state of a
given magnet is not fixed by the phase, and therefore, there is
an indirect interaction between them which is mediated by the
superconducting phase.

In the present paper we continue investigations of coupled
ϕ0-S/F/S JJs and generalize the results of Ref. [20] to the
case with an arbitrary number of coupled JJs. We find that the
system with an arbitrary number of easy-axis magnets, which
are weak links of the ϕ0-JJs, behaves like a magnetic atom
in some aspects. States with different projections of the total
magnetic moment

∑
Mi onto the easy axis (where the sum is

taken over all the weak links) are degenerate in the absence of
interaction mediated by the condensate phase, i.e., above the
critical temperature of the superconductor or in the absence of
the anomalous phase shift. Including the interaction removes
this degeneracy, similar to the case of a magnetic atom in a
Zeeman field. However, unlike an atom in a magnetic field, the
relative energies of different projections of the total magnetic
moment are controlled by the external phase difference.

This paper is organized as follows. In Sec. II we describe
the system and the model which we study. Section III is
devoted to an investigation of the equilibrium magnetic state
of the system. In Sec. IV we study the dynamical processes
of the transition of the system between different stable states.
In Sec. V we discuss the influence of the possible nonequiv-
alence of different JJs on the effects considered above. Our
conclusions are presented in Sec. VI.

II. MODEL

We consider a linear chain of N coupled ϕ0-S/F/S JJs,
where S indicates a conventional superconductor and F stands
for a homogeneous ferromagnet with magnetic moment Mi,

FIG. 1. Sketch of a coupled system of N ϕ0-S/F/S JJs. The
magnetic moment of each JJ is shown by a red arrow. ψi is a phase
of the superconducting region connecting the ith and (i + 1)th weak
links with respect to the phase of the left lead, which is taken to be
zero.

where i is the number of the weak link in the chain. Further,
we introduce unit vectors along the direction of the corre-
sponding magnetization mi = Mi/|Mi|. It is assumed that the
ferromagnets are easy-axis magnets with the easy axis along
the y direction. A sketch of the system is shown in Fig. 1. The
superconducting phase difference ψN between the leads is an
external controlling parameter.

The physical origin of the inversion symmetry breaking
leading to the ϕ0 behavior can be different and does not
influence our conclusions. For example, for the interlayers,
one can use a few monolayer van der Waals ferromagnets
up to the monolayer limit [62–64], where the Rashba SOC
can be intrinsic or due to the structural inversion symmetry
breaking. The other possibility is a complex interlayer made
of a combination of a thin-film ferromagnet and a heavy metal
layer like Pt, providing strong SOC. The interlayer can also
be composed of a ferromagnetic insulator on top of the 3D
TI, as mentioned in the Introduction. If the ferromagnet is
an insulator, it is assumed that the magnetization M of the
ferromagnet induces an effective exchange field h ∼ M in the
underlying conductive layer.

The current-phase relation of each of the ϕ0-S/F/S JJs in
the chain takes the form I = Ic,i sin(χi − ϕ0,i ), where Ic,i is
the critical current of the ith magnet, χi = ψi − ψi−1 is the
superconducting phase difference at this JJ, and ϕ0,i is the
anomalous phase shift for a given JJ. In general, the anoma-
lous phase shift ϕ0,i in S/F/S JJs depends on the direction of
magnetization mi. The particular form of this dependence is
determined by the type of spin-orbit coupling. For definite-
ness we consider Rashba-type SOC because it arises due to
the structural inversion asymmetry and is the most common
type of SOC for low-dimensional ferromagnets and thin-film
ferromagnet/normal metal (F/N) hybrid structures. In this
case the anomalous phase shift takes the form

ϕ0 = r ĵ · (n × m), (1)

where ĵ is the unit vector along the Josephson current and
n is the unit vector describing the direction of the structural
asymmetry in the system. For the case under consideration it is
along the z axis. r is a constant quantifying the strength of the
coupling between the magnetic moment and the condensate.
It depends on the material parameters of the ferromagnet,
Rashba constant α, and length of the ferromagnetic interlayer
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and has been calculated in the framework of different models
[24,28]. Equation (1) is also valid for the S/F/S JJs on top of
the 3D TI, for which it has been predicted that r = 2hd/vF

[35,50], where d is the length of the interlayer and vF is the
Fermi velocity of the surface conduction electrons in 3D TIs.
The results presented below depend only on the symmetry of
Eq. (1) expressing how the anomalous phase shift depends
on the direction of the magnetization mi; the dependence of
the constant r on the junction parameters is irrelevant for
our conclusions. If we choose to have the x axis along the
Josephson current, then the symmetry of our system dictates
that

ϕ0,i = rimyi. (2)

This relation also survives in the dynamic situation mi =
mi(t ) and has been used to calculate the magnetization dy-
namics in voltage-biased and current-biased JJs [48–50,52].
Now it is clear that our choice of the magnetic easy axis along
the y direction maximizes the magnetoelectric coupling be-
tween the magnetic moment and the superconducting phase.

In the framework of our model we assume that the critical
current Ic,i does not depend on the direction of the magneti-
zation mi. In fact, the behavior of the critical current depends
crucially on the particular type of S/F/S JJ considered. For
example, it can be independent of the magnetization direction,
as reported for ferromagnets with SOC [24], or it can depend
strongly on the x component of the magnetization, which is
the case for the ferromagnetic interlayers on top of a 3D TI
[35,50]. For the case of two coupled JJs the influence of the
dependence Ic(m) on the results was considered in Ref. [20].
It was found that taking into account this dependence does not
change the results qualitatively and just modifies the bound-
aries of different regimes.

The energy of the system consists of Josephson energies of
all junctions and easy-axis anisotropy energies of all magnets:

E =
N∑

i=1

[
h̄Ic,i

2e
[1 − cos(ψi − ψi−1 − ϕ0,i )] − KiVF,i

2
m2

yi

]
,

(3)

where the first term is the Josephson energy and the second
term is the magnetic anisotropy energy. Ki is the anisotropy
constant of the ith magnet, and VF,i is its volume. ψi is a
phase of the ith superconductor (see Fig. 1). The current
conservation dictates

Ic,i sin(ψi − ψi−1 − ϕ0,i ) = Ic, j sin(ψ j − ψ j−1 − ϕ0, j ) (4)

for arbitrary i and j.
In general, one should take into account the phase gradient

due to the supercurrent flowing through the system. This leads
to the fact that the phase ψi of the ith superconductor is not
constant, ψi(x) = ψi,l + κi(Ichain/Ic,i )(x/L), where ψi,l is the
superconducting phase at the left end of the ith superconduc-
tor, L is its length, and the second term accounts for the phase
gradient due to the supercurrent Ichain flowing through the
system. The coefficient κi quantifies the relation between the
superconducting phase gradient and the supercurrent and can
be estimated as κi ∼ eIc,iL/σS�S, where � is the supercon-
ducting order parameter, σS is the normal state conductivity of

FIG. 2. Sketch of an asymmetric Josephson interferometer,
where the coupled system of ϕ0-JJs is parallel to an ordinary JJ with
large critical current Ic,large � Ic,i. The scheme allows us to control
the phase ψN via the external current I (see text).

the ith superconductor, and S is its cross section. To simplify
the analysis we disregard the order parameter phase gradient.
Its influence on the phase diagram of the coupled system was
investigated in Ref. [20] for the case of two JJs, and it was
found that it results in a renormalization of the parameter r
and does not qualitatively influence the results. In addition,
numerical values of κi were estimated for realistic systems,
and it was concluded that the phase gradient can be safely
neglected at least up to submillimeter lengths of the supercon-
ductors [20].

For the problem under consideration it is important to
have a fixed phase difference ψN between the external su-
perconducting leads and to have the possibility to control it.
Experimentally, the phase ψN can be controlled in several
ways. One of them is to insert the considered system into
the superconducting loop under the applied magnetic flux.
However, the direct proportionality between the Josephson
phase and magnetic flux in a loop configuration holds only
if the loop inductance is negligible. If it is non-negligible,
peculiar effects may occur in the presence of ϕ0-JJs [65],
which requires additional care. The other way is to insert
it into the asymmetric Josephson interferometer, where the
considered system is parallel to an ordinary JJ with a much
higher critical current. Then the magnetic state of the system
can be controlled by the external current. In the present paper
we consider the second method to control the external phase
difference. A scheme of the corresponding system is presented
in Fig. 2. The total external current I and the phase ψN be-
tween the external superconducting leads are related as

I = Ic,large sin ψN + Ichain, (5)

where Ic,large is the critical current of the additional ordinary JJ
and Ichain is the current through the chain of ϕ0-S/F/S JJs. We
assume that Ic,large � Ic,i. In this case ψN ≈ arcsin[I/Ic,large].
All the calculations of the dynamics of our coupled ϕ0-S/F/S
JJs, which are discussed in Sec. IV, are performed for the
system sketched in Fig. 2, where we set the external current I .

III. PHASE-CONTROLLED EQUILIBRIUM
MAGNETIC STATE

First, we assume that all the coupled JJs are identical,
that is, they all have the same parameters r, Ic, and KVF .
The influence of variations of these parameters is studied in
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Sec. V. Then from Eq. (4) it follows that there are two possible
solutions for the phase distribution along the chain of the
coupled JJs. The first solution is that the total phase difference
ψi − ψi−1 − ϕ0,i at each of the JJs equals � + 2πni, where ni

is an integer number. � can be found from the condition

N∑
i=1

(� + 2πni ) =
N∑

i=1

(ψi − ψi−1 − ϕ0,i ), (6)

which gives

� = ψN

N
−

∑N
i=1 ϕ0,i

N
+ 2πn

N
, (7)

where n = ∑N
i=1 ni is an integer number. Substituting this

solution for the phase distribution into the Josephson energy,
we obtain the following expression for the total energy of the
system:

E = NEJ (1 − cos �) − EM

N∑
i=1

m2
yi, (8)

where EJ = h̄Ic/2e and EM = KVF /2.
The second solution of Eq. (4) is given by the total phase

difference ψi − ψi−1 − ϕ0,i = π − �u − 2πni at M JJs and
ψi − ψi−1 − ϕ0,i = �u + 2πni at the N − M remaining JJs.
In this case, analogously to the derivation of Eq. (7), we obtain

�u = ψN − ∑N
i=1 ϕ0,i + 2πn − πM

N − 2M
, (9)

where M < N/2. The total energy of the system takes the form

E = EJ [N − (N − 2M ) cos �u] − EM

N∑
i=1

m2
yi. (10)

For a given magnetic configuration, that is, for given values
of myi at all weak links, the total energy of the system E (ψN ),
described by Eq. (8), as a function of the phase difference be-
tween the external superconducting leads ψN has N different
branches. The total energy described by Eq. (10) has N − 2M
branches for a given M. Our numerical analysis shows that all
the energy branches described by Eq. (10) are unstable; that
is, for a given ψN the system cannot live at such a branch and
immediately goes to one of the branches described by Eq. (8).

Further, using Eq. (8), we can investigate which magnetic
configurations of the system are stable in the system for a
given set of parameters EJ , EM , and r. Because the magnetic
energy of the system is a concave function of myi and the
Josephson energy depends on only the magnetizations in the
combination

∑N
i=1 ϕ0,i = r

∑N
i=1 myi, the minima of E as a

function of {myi} can be located only at the edges of the
hypercube build on {myi}. That is, the minima can be only at
points where no more than one |myi| �= 1. Then we can find a
minimum of the energy with respect to all myi independently.

Under the condition sgn[myi]∂E/∂myi|myi=±1 < 0 “corner
states” myi = ±1 are minima of the energy. This condition
is fulfilled irrespective of the external phase difference ψN

if 2EM/EJ > r. This regime is not interesting if our goal is
to control the magnetic configuration via the external phase.
For this reason in our study we focus on the opposite regime,

FIG. 3. Phase diagram of the coupled ϕ0-S/F/S JJs. The lines
2EM/EJ = r and 2EM/EJ = r2/N divide the diagram into regions I,
II, III, and IV. For description of the regions see text. The pink point
indicates parameters (r, EM/EJ ) for which static and dynamic results
presented in Figs. 4–8 are calculated.

2EM/EJ < r, where there is a solution

sin � = 2EM/rEJ (11)

corresponding to the condition ∂E/∂myi = 0, at which the
magnetic configuration, corresponding to a given energy
branch, becomes unstable. This parameter region allows us to
control the magnetic configuration by adjusting the external
phase.

There is also another important condition which deter-
mines the behavior of the magnetic configuration. One can
define parameter regions where only magnetic configurations
corresponding to corner states myi = ±1 are stable and pa-
rameters regions where myi �= ±1 (“nonaligned states”) are
possible. To find the corresponding parameter regions we
have to analyze when |myi| �= 1 can be a minimum of the en-
ergy. For this purpose we consider the conditions ∂E/∂myi =
−2EMmyi − EJr sin � = 0 and ∂2E/∂m2

yi = EJr2 cos �/N −
2EM > 0. From these conditions we find that the most favor-
able conditions for the realization of a state myi �= ±1 are at
cos � = 1; that is, sin � = 0, and myi = 0. This situation can
be realized if

2EM

EJ
<

r2

N
. (12)

The above considerations can be summarized in the form
of a phase diagram, which is represented in Fig. 3. The lines
2EM/EJ = r and 2EM/EJ = r2/N divide the diagram into
four regions. In region I nonaligned states are not allowed, and
all the corner states are always stable for an arbitrary �N . In
region II nonaligned states are not allowed, but corner states
can become unstable for some phase difference. In region
III nonaligned states are allowed, and all corner states are
stable for an arbitrary �N . In region IV nonaligned states are
allowed, and all magnetic configurations become unstable for
some value of �N . This phase diagram is a generalization of
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the phase diagram discussed in Ref. [20] to the case of an
arbitrary number of ϕ0-S/F/S JJs with N � 2.

Parameters EM/EJ and r were estimated in Ref. [20]
for the model of the insulating ferromagnet on top of
the 3D TI. If we take the parameters corresponding to
Nb/Bi2Te3/Nb Josephson junctions [66] (the junction length
d = 50 nm, Ic = 40 A/m, and vF = 105 m/s) and assume K ∼
[(10–102) erg/cm3] × dF for yttrium iron garnet (YIG) thin
films [67], where dF = 10 nm is the F thickness along the
z direction, then we obtain EM/EJ ∼ 10−2–10−1. On the
other hand, if, for a ferromagnetic weak link, we consider
permalloy with very weak anisotropy, we can estimate K ∼
103 erg/cm3 × dF [48]. This gives us EM/EJ > 1. Therefore,
different regimes from EM/EJ � 1 to EM/EJ > 1 can be
realized experimentally. Based on the experimental data for
the Curie temperature of the magnetized TI surface states
[60], for which a Curie temperature in the range 20–150 K
was reported, we can roughly estimate h � 0.01 − 0.1hYIG for
YIG/3D TI interlayers. This corresponds to the dimensionless
parameter r = 2hd/vF � 2 − 13. On the other hand, r should
be much smaller for ferromagnetic interlayers with intrinsic
SOC and for combined interlayers consisting of a ferromagnet
and a heavy metal because of the reducing factor �so/εF [24],
which is typically considerably less than unity. Here �so is
a typical value of the SOC-induced splitting of the electron
spectra, and εF is the Fermi energy of the material. From these
estimates it follows that, in principle, all regions of the phase
diagram could be experimentally accessible.

Further, we choose parameters of the system belonging to
region II (the pink point in Fig. 3) and investigate the equi-
librium and dynamic behavior of the system for the chosen
set of parameters. This set of parameters is chosen because
of (i) the possibility to control the magnetic configuration
by the external phase, (ii) the smallness of typical realistic
values of EM/EJ [20] (except for ferromagnets with very weak
magnetic anisotropy), and (iii) the absence of the nonaligned
states, which complicate the physical picture. According to
Eqs. (2), (7), and (8) the Josephson energy depends on only the
total projection My = ∑N

i=1 myi of all the magnets on the easy
axis. For this reason in the absence of the nonaligned states
there are only N + 1 essentially different magnetic configura-
tions corresponding to My = {−N,−N + 2, . . . , N − 2, N}.
For each of the configurations E (ψN ) has N branches, which
differ by a value of �, as described above and quantified by
Eqs. (7) and (8).

In Fig. 4 we demonstrate low-energy branches of E (ψN )
for N = 3. There are four possible magnetic configurations,
and for each of the configurations the lowest-energy branch is
plotted. The other branches are not shown because they do not
participate in the processes of dynamical switching between
the magnetic configurations, described below. The dashed
parts of the curves represent the parts of the corresponding
branch where the magnetic configuration becomes unstable.
The distance from the minimum of the corresponding branch,
determined by the condition sin � = 0, to the point of in-
stability, where the branch becomes dashed, according to
Eq. (11) is determined as

�ψN = N arcsin

[
2EM

rEJ

]
. (13)

FIG. 4. Lowest-energy branches of E (ψN ) for N = 3. There are
four possible magnetic configurations. They are shown by arrows,
and for each of them the lowest-energy branch is plotted in the
corresponding color. The dashed parts of the curves represent the
parts of the corresponding branch where the magnetic configuration
becomes unstable. r = 0.3, and EM/EJ = 0.025.

Therefore, the analysis of the energy of the chain of cou-
pled ϕ0-S/F/S JJs indicates that the system behaves similarly
to an atom where all magnetic configurations are degenerate
at r = 0, but nonzero r removes the degeneracy. The split
states are characterized by different projections of the total
magnetization My of the macroscopic atom on the easy axis.
But unlike an atom in a Zeeman field, the order in energy
of these split states can be changed by varying the external
superconducting phase ψN , as illustrated in Fig. 4.

IV. DYNAMICS AND SWITCHING OF THE
MAGNETIC STATE

Here we discuss several dynamical effects in the system
of coupled ϕ0-S/F/S JJs which directly illustrate the anal-
ogy between the system and the macroscopic n-level system.
The dynamics of the ith magnet is described by the Landau-
Lifshitz-Gilbert equation [68–70]:

∂mi

∂t
= −γ mi × Heff + αmi × ∂mi

∂t
− γ rIchain

2eMddF
[m × ey],

(14)

where γ is the gyromagnetic ratio, Heff = (K/M )myey is
the local effective field in the ferromagnet induced by the
easy-axis magnetic anisotropy, and α is the Gilbert damping
constant. The last term in Eq. (14) describes the spin-orbit
torque exerted on the magnet by the electric current Ichain

[20,53,71–73]. The torque is averaged over the ferromagnet
thickness dF along the z direction. The total current flowing
through each of the JJs consists of the supercurrent and the
normal quasiparticle current contributions [51]:

Ichain = Ic sin(ψi − ψi−1 − ϕ0,i )

+ 1

2eRN
(ψ̇i − ψ̇i−1 − ϕ̇0,i ), (15)

where RN is the normal state resistance of a separate ϕ0-S/F/S
JJ. The dynamics of all magnetizations mi is calculated nu-
merically from Eqs. (14), (15), and (5).
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FIG. 5. Time evolution of the energy and magnetic configuration
upon varying the external current from −Ic,large to Ic,large according to
I = (βt − 1)Ic,large, with β = 0.002(γ K ). (a) External phase ψN (t ).
(b) Energy of the coupled chain of ϕ0-S/F/S JJs as a function of time.
Intervals of t in which the system is in one of its stationary states
are shown in colors corresponding to the states in Fig. 4. (c) myi(t )
and (d) mxi(t ) for all magnets. r = 0.3,

EM
EJ

= 0.025, α = 0.1, and
Ic,large/Ic = 100.

First of all, we demonstrate that in the setup sketched in
Fig. 2 any magnetic configuration can be realized by varying
the external current I . Thus, the magnetic configuration is
fully controllable by electric means. The results are presented
in Fig. 5. Figure 5(a) is auxiliary and demonstrates the depen-
dence of the external phase difference on time when we vary
the external current I ∝ t . Figure 5(b) represents the depen-
dence of the total energy of the system on time. In some ranges

FIG. 6. Time evolution of (a) the system energy and (b) easy-
axis projections of all magnets myi under external reversal of m2 by
the pulse of an applied magnetic field. Magnetic field H = 4Key is
applied during the time interval shown by the shaded region in (b).
r = 0.3,

EM
EJ

= 0.025, α = 0.1, and ψN = −0.05.

of t the system is in its stationary states, shown in Fig. 4. These
time intervals are additionally shown in colors corresponding
to the colors used in Fig. 4. Figures 5(c) and 5(d) illustrate the
time evolution of all magnetic moments. myi(t ) are presented
in Fig. 5(c), and mxi(t ) are plotted in Fig. 5(d). mzi(t ) are not
shown because they behave very similarly to mxi(t ).

Further, we study the dynamics of the system caused by an
external reversal of one of the magnets. To reverse one of the
magnets we fix a definite value of the external current I which
corresponds to a particular stable magnetic configuration and
apply a magnetic field H = ±4Key during the time interval
�t = 50(γ K )−1 to one of the magnets. The resulting dynam-
ics can be very different. Since the physics of the magnetic
system is not determined by a magnetic interaction with any
characteristic spatial scale, the reversal of a given magnet can
cause reversals of any magnet in the system. The dynamics is
determined by only the order and stability of the energy levels
of the system for a given phase.

In Fig. 6 we demonstrate that if the initial magnetic con-
figuration is stable and, for a given phase difference, there
is another stable state corresponding to a higher energy, it
is possible to excite the system to this state. We reverse one
of the magnets; the resulting state is stable, and the system
remains in this state. In Fig. 6(a) we plot the dependence of
the total energy of the system on time, and Fig. 6(b) represents
the time evolution of all magnetic moments.
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FIG. 7. The same as in Fig. 6, but for a different external phase
difference ψN . Magnetic field H = −4Key is applied to m1 during
the time interval shown by the shaded region in (b). r = 0.3,

EM
EJ

=
0.025, α = 0.1, and ψN = 0.20.

In Figs. 7 and 8 we demonstrate the case in which the
initial magnetic configuration is stable for the chosen phase
difference but there is no stable state for the resulting magnetic
configuration if we reverse one of the magnets. Then different
possibilities can be realized. The first option is shown in
Fig. 7. The reversal of m1 by the magnetic field pulse leads
to the reversal of all the other magnets. As a result the system
switches to the lower-energy state.

The other possibility is illustrated in Fig. 8. We reverse m1

using the external magnetic field. For the chosen phase dif-
ference there is no stable state for the resulting configuration
↓↓↓, and therefore, m3 is also reversed. But the probability
that m2 is reversed is the same. In this case, a random magnet
may be reversed; it is not determined by the distance from the
externally reversed magnet.

Figures 6–8 demonstrate the results for N = 3 just as an
example to illustrate the general behavior. If the chain consists
of N > 3 ϕ0-S/F/S JJs, then at a given ψN one can have
more than two stable branches. An analogous increase of the
number of stable branches (up to N + 1) can also occur if one
changes the value of the parameter EM/EJ without changing
N . In this case by reversing one of the magnets we can reach
any of these stable configurations at a given ψN . That is, the
physics is the same as in Figs. 6–8, but there are more possible
initial and final states of the system.

FIG. 8. The same as in Fig. 6, but for a different external phase
difference ψN . Magnetic field H = −4Key is applied to m1 during
the time interval shown by the shaded region in (b). r = 0.3,

EM
EJ

=
0.025, α = 0.1, and ψN = −0.05.

V. EFFECTS OF NONEQUIVALENCE OF JJs

Now we discuss how variations of the parameters Ki, Ic,i,
and ri describing individual ϕ0-S/F/S JJs affect the results
obtained above. We restrict ourselves to parameter regions
I and II of the phase diagram, where nonaligned states do
not occur. First of all, in this case variations of the magnetic
anisotropy constant Ki do not influence E (ψN ). This is be-
cause at myi = ±1 the magnetic anisotropy energy depends
on only the sum

∑N
i=1 Ki.

Now let us consider the influence of variations of the
critical currents of individual JJs Ic,i. Small variations of the
critical current do not influence E (ψN ). Indeed, we can write
Ic,i = Ic,0(1 + xi ), where

∑N
i=1 xi = 0; that is, Ic,0 is the av-

erage critical current of all the JJs. We assume xi � 1. Let
us define an auxiliary parameter �0 as Ichain = Ic,0 sin �0.
Then �i ≡ ψi − ψi−1 − ϕ0,i can be written as �i ≈ �0 +
δ�i. From the condition Ichain = Ic,i sin �i = Ic,0 sin �0 up to
first order with respect to xi we obtain δ�i ≈ −xi tan �0.
Then

∑N
i=1 δ�i = 0. From the conditions

∑N
i=1 δ�i = 0 and∑N

i=1 xi = 0 it immediately follows that the first-order term
in the expansion of E (ψN ) on xi vanishes. Accounting for
higher-order terms with respect to xi can result in asymmetry
and distortions of the energy branches.

The most essential effect on the physics of the N-level sys-
tem, discussed in this work, can be caused by variations of r.
They result in the additional splitting of the energy branches.
If r is the same for all ϕ0-S/F/S JJs, states {my1, my2, . . . } =
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FIG. 9. Schematic illustration of the splitting of the lowest-
energy branches, corresponding to different My. It is assumed that
δri j = |ri − r j | � ∑N

i=1 ri/N ; otherwise, the splitting of each of
the branches can become large, and curves originating from dif-
ferent initial configurations can be mixed. That does not modify
the result qualitatively but makes it difficult to visually perceive
the picture.

{+1,−1, . . . } and {−1,+1, . . . } are degenerate. However, if
r1 �= r2, according to Eq. (7), they have different values of
� and therefore different energies. In general, if all ri are
different, an energy branch corresponding to |My| = |N − 2K|
is split over CK

N branches. This is illustrated in Fig. 9, where
the lowest-energy branches for each of the magnetic configu-
rations are shown.

In addition at high enough temperatures close to the critical
temperature and for JJs with small critical currents Ic,i the
system could also be sensitive to thermal fluctuations. The
general stability of a single ϕ0-JJ against thermal fluctuations
has already been studied [52,74,75]. In our case of a chain
of ϕ0-JJs at a given ψN there are several stable states in the
system. For this reason the thermal fluctuations will primar-
ily spoil the stability of higher-energy metastable states. To
minimize the destructive effect of thermal fluctuations, it is
necessary to work at low temperatures and select larger JJs
with large critical currents.

VI. CONCLUSIONS

In conclusion, we studied the static and dynamic magnetic
properties of a system of N coupled ϕ0-S/F/S Josephson
junctions in which the anomalous ground state phase shift
ϕ0 provides direct coupling between magnetic moments and
the phase of the superconducting condensate. The condensate
phase, being a macroscopic quantity, mediates a long-range
interaction between the magnetic moments. Due to this mag-
netoelectric coupling the system exhibits properties of an
n-level system, where the corresponding energies are deter-
mined by only different projections of the total magnetic
moment

∑
M i onto the easy axis, similar to a magnetic atom

in a Zeeman field. However, unlike an atom in a magnetic
field, the relative energies of different projections of the sys-
tem’s magnetic moment are controlled by the external phase
difference. Further, we demonstrated that if one inserts the
coupled chain of JJs into an asymmetric superconducting
quantum interference device, one can reach any of the states
corresponding to different projections of the total magnetic
moment

∑
Mi onto the easy axis by varying the external

current. We also demonstrated that the long-range coupling
between the weak links leads to highly nonlocal and nontrivial
dynamics of the magnetic configuration under the application
of a local external perturbation to one of the weak links. The
dynamics is determined by only the order and stability of
energy levels of the system for a given phase and therefore
further supports the analogy to macroscopic n-level system.
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