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The exploration of new pathways to achieve superconductivity in materials has always been a central focus
of research in condensed matter physics. Skutterudites have garnered attention due to their intriguing physical
properties and broad range of applications. In this study, we propose that rotating the planar P4 units within skut-
terudites is a viable method to induce superconductivity. The predicted compound, referred to as skutterudite-like
CeP3, exhibits phonon-mediated superconductivity at ambient pressure. This phenomenon arises from the inter-
action between Ce/P-derived phonons and the Ce 4 f and P 3p electrons. The energy barrier for transitioning from
the skutterudite-like CeP3 to the conventional skutterudite-type CeP3 is as high as 1.53 eV/atom, indicating a
substantial irreversibility. Additional calculations reveal that skutterudite-like CeP3 becomes thermodynamically
stable at 25 GPa in the binary Ce-P phase diagram. Consequently, the skutterudite-like CeP3 can be synthesized
by initially compressing the most stable bulk binary CeP and P at 25 GPa, followed by decompression. This
work represents a significant step forward in the design of superconducting skutterudite-like compounds.

DOI: 10.1103/PhysRevB.109.054522

I. INTRODUCTION

Skutterudites MX 3 (e.g., M = Co, Rh, Ir; X = P, As, Sb),
are materials composed of intricately nested high-symmetry
atomic building blocks of metals (M ) and pnictogens (X )
[1,2], and have attracted significant attention in condensed
matter physics and materials science [3]. This interest stems
from their diverse and interesting properties, which have led to
their classification as multifunctional families, including ther-
moelectrics [4–6], non-Fermi liquids [7–9], heavy-fermion
compounds [10,11], and superconductors [12,13]. Most con-
ventional skutterudites are semiconducting due to their
standard stoichiometry, which is unfavorable for the onset
of superconductivity [14]. So far, superconductivity in skut-
terudites has been induced and controlled by introducing
additional alkaline-earth metal, transition metal, or lanthanide
atoms into the interstitial spaces for electron doping [15,16].
The morphology and distribution of the original M/X atomic
building blocks remain unchanged. Moreover, Qi et al. made
an innovative discovery that a small amount of P/As atoms
in IrP3/IrAs3 can be self-inserted into the interstitial region
for hole doping when subjected to hydrostatic pressure [17],
resulting in the achievement of superconductivity. From a dif-
ferent perspective, superconductivity in skutterudites may also
be associated with variations in the atomic building blocks
(X4), offering a unique opportunity to explore superconduct-
ing compounds.
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The design and selection of regulatory pathways to alter
the building blocks in compounds have become a promising
approach for the development of functional materials. To the
best of our knowledge, the technique of rotation has shown
significant potential in stabilizing compounds with unique
properties [18–25]. For instance, double-layer graphene with
a precise torsion angle exhibits astonishing superconductivity
[18], reshaping our understanding of the carbon attributes and
graphene itself. Pressure-induced K2ReH9 undergoes a tran-
sition from a semiconductor to a metal and superconductor
due to the rotation of the H triangle within its structure [19].
It exhibits remarkable superconductivity at 127.1 K under 75
GPa. Furthermore, oxygen-octahedral rotations are prevalent
in perovskite-type compounds, illustrating their effectiveness
in modulating stability [20], inducing magnetic transforma-
tion [21], achieving negative thermal expansion [22], and
controlling magnetic anisotropy [23,24], among other fea-
tures.

Pressure, as the most powerful method of overcoming
reaction barriers, has been extensively used in the synthe-
sis of unknown compounds, particularly those that cannot
be obtained at ambient pressure [26,27]. Remarkably, cer-
tain pressure-induced compounds can even be quenched
and stabilized at ambient pressure [28]. Moreover, numer-
ous compounds exhibit distinct properties linked to their
unique structural components [29–32]. For examples, two
groundbreaking discoveries, H3S and LaH10, showcase high-
temperature superconductivity attributed to the S-H covalent
framework [29] and the sodalite-like hydrogen cage [30], re-
spectively. SrB3C3, an exceptionally lightweight and durable
material recently synthesized, exhibits both superconductivity
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and hardness, which can be related to the truncated octahe-
dral BC cage [28,31]. Furthermore, CeH9, stabilized at much
lower pressures (<100 GPa) compared to many polyhydride
superconductors, also displays superconductivity primarily
driven by the H29 cage [32].

Taking the aforementioned factors into account, we pro-
pose an innovative approach to stabilize a different category
of skutterudites, referred to as skutterudite-like structures.
This method involves manipulating the orientation of the P4

units within the traditional skutterudite lattice, facilitated by
first-principles calculations. Specifically, we have identified
14 dynamically stable compounds that can exist under am-
bient pressure conditions. Notably, CeP3, a skutterudite-like
compound, demonstrates unexpected superconductivity under
ambient pressure. We have also investigated the potential
synthesis pathway, which involves the most stable bulk CeP
and P to a compression of 25 GPa followed by annealing to
return to ambient pressure. Our research introduces a differ-
ent approach to modulate the superconducting properties of
skutterudites.

II. COMPUTATIONAL DETAILS

The structural design of skutterudite-like compounds was
accomplished using the three-dimensional visualization soft-
ware VESTA [33]. We have applied the density functional
theory (DFT) for the high-throughput screening, utilizing the
Vienna ab initio simulation package (VASP) code [34]. Our
primary criterion for the evaluation was the dynamical sta-
bility of the designed compounds, which we assessed using
the PHONOPY code through the supercell finite displacement
method [35]. The projector augmented wave (PAW) with
5s25p64 f 15d16s2 and 3s23p3 electrons are adopted as va-
lence electrons for Ce and P atoms, respectively [36]. The
exchange-correlation functional was treated with the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approximation
[37]. A kinetic cutoff energy of 600 eV was applied, along
with the Monkhorst-Pack scheme featuring a k-point grid of
2π × 0.03 Å−1 in the Brillouin zone, ensuring an enthalpy
convergence of less than 1 meV/atom. To estimate the poten-
tial barrier for transitioning from the skutterudite-like CeP3 to
the conventional skutterudite-type CeP3 at ambient pressure,
we conducted a variable-cell nudged elastic band (VCNEB)
calculation using the USPEX code [38,39]. The electron local-
ization function (ELF) was employed to describe the electron
distribution [40] and the nature and strength of the chemical
bonding. Furthermore, the crystal orbital Hamilton population
(COHP), a more in-depth method for analyzing the origins of
chemical bondings, was computed using the LOBSTER pack-
age [41]. To assess the electron-phonon coupling (EPC) in
skutterudite-like CeP3, we carried out calculations with the
QUANTUM ESPRESSO package based on density functional per-
turbation theory (DFPT) [42].

III. RESULTS AND DISCUSSION

In conventional skutterudites, the metal atoms (M ) are
located at 8c sites, creating a simple cubic (sc) sublattice
[Fig. 1(a)]. On the other hand, the nonmetal atoms (X = P,
As, Sb) occupy the 24g sites, forming rectangular planar X4

rings with edges aligned along the directions of the base vec-
tors. Additionally, these X4 rings exhibit different orientations
along the a, b, and c axes within the plane, giving rise to three
distinct types of body centered cubic (bcc) sublattices [2].

Given the substantial interstitial region around the P4

ring in conventional skutterudite MP3, previous studies have
demonstrated that the introduction of additional atoms can
effectively modulate the properties, such as superconductivity
[15,16]. This characteristic presents an opportunity to ma-
nipulate the P4 ring appropriately for the design of novel
skutterudite-like structures. In our quest to identify a low-
energy configuration, we systematically rotated all P4 rings
uniformly at intervals of 2.5/5 degrees within the range 0–90°
around their planar symmetry center [Fig. 1(b)]. We combined
this rotation with a transformation of the P4 ring from a
rectangle to a rhombus shape, which alters atomic interactions
and results in a more compact structure with lower energy.
Notably, when the diagonals of the P4 ring align with the
directions of the basis vectors (approximately a rotation angle
of 45°), the corresponding structure exhibits the lowest energy
[Fig. 1(c)]. Interestingly, this structure shares the same space
group (Im-3) and sc M sublattice as the conventional skut-
terudite. However, the P4 ring consists of two nonequivalent
P atoms occupying the 12d and 12e sites, named P1 and P2,
respectively. Additionally, the distances between the M atoms
and P1/P2 atoms are extended, while the distances between
the M atoms, as well as the lattice constants, are shortened.
These characteristics favor a reduction in the total energy, as
will be discussed later.

It is well established that the crystal structure of a com-
pound plays a pivotal role in determining its properties.
Therefore, the variations in interatomic distances and atomic
distribution inevitably lead to differences in chemical bond-
ing and electronic properties. Additionally, within the same
structural configuration, the use of different metal elements
with distinct attributes can also result in property variations.
Consequently, based on the proposed rotated skutterudite-like
structure, we conducted a comprehensive high-throughput
screening involving third-, fourth-, and fifth-row transition
elements, as well as lanthanoid elements from the Periodic
Table [Fig. 1(d)]. As anticipated, we have identified 14 pre-
viously unknown compounds that maintain their dynamic
stability at ambient pressure, including compounds like YP3,
LaP3, and CeP3 [Fig. 1(d) and Fig. S1 of the Supplemental
Material [43]] [41,42,44–49]. For these compounds, we ob-
served that as the atomic number increases, the lattice constant
and the distance of M-P1/P2 interactions initially increase
(from Y to La) and then gradually decrease and converge
(Fig. 2). The former can be attributed to the increase in the
atomic radius, while the latter is due to the contraction effect
of 4 f electrons. Additionally, Bader charge analysis indicates
that the amount of charge transfer gradually decreases and
tends to converge with the increasing atomic number. More
intriguingly, for Y and La elements, which lack 4 f electrons
(Fig. 2), their compounds are indirect band-gap semiconduc-
tors with band-gap value of 0.13 and 0.07 eV, respectively
(Fig. S2 [43]). In contrast, compounds with elements pos-
sessing 4 f electrons display metallic behavior, distinct from
the semiconducting nature of most conventional skutterudites.
Furthermore, their electronic density of states (DOS) at the
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FIG. 1. (a) Crystal structure and P atomic building block of the conventional skutterudite MP3. (b) The total energy as a function of the
rotation of the P4 rings in conventional skutterudite-type MP3 (M = Ce). (c) Crystal structure and P4 units of the designed skutterudite-like
MP3. For clarity, the yellow sphere represents a M atom, and the blue and green spheres represent nonequivalent P1 and P2 atoms. (d) The
considered elements used to explore the skutterudite-like MP3 compounds in the periodic table. The corresponding rotated skutterudite-like
compounds of the elements in the dashed box are stable, while the others are unstable. In addition, for red lanthanoid elements, the number of
electrons in their 4 f orbitals is shown in green in the upper right corner of the element box.

FIG. 2. The lattice constants, the distances of the M-P1/P2 interactions, the donated/accepted charge amount of the M/P1/P2 atom, and the
DOS of the stable rotated skutterudite-like compounds at ambient pressure.
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FIG. 3. (a) The ELF maps in two parallel (0 1 0) planes with
different atomic arrangements. (b) The orbital-resolved PDOS of P1
and P2 atoms, and the COHP of the P1-P2 interaction in skutterudite-
like CeP3 at 0 GPa.

Fermi level (EF) initially increases and then decreases with the
presence of 4 f electrons (Fig. 2), which are bounded by the
semifilled 4 f orbital (4 f 7). Moreover, the metallic behavior
of these compounds is primarily attributed to the presence
of M 4 f electrons, with a minor contribution from M 5d
and P 3p electrons (Fig. S3 [43]). Given that an excess of
4 f /5d electrons at the EF is not conducive to superconduc-
tivity [50], we have selected metallic CeP3, which possesses
the fewest 4 f /5d electrons, as an example to analyze its sta-
bility mechanism, electronic properties, and superconducting
characteristics. Finally, we also propose a potential synthesis
method for this compound. Further discussions on the other
compounds are planned for a future detailed study.

To elucidate the interatomic interactions and the stabil-
ity mechanism of both skutterudite-like and conventional
skutterudite-type CeP3, we conducted a characterization and
comparison of their bonding properties by analyzing the elec-
tron localized function (ELF) and the crystal orbital Hamilton
population (COHP). In both structures, the P atom exhibits
sp3 hybridization, but the atomic bonds are different. In the
conventional skutterudite-type structure, the P atom is bonded
to two metal atoms and two other P atoms [51]. In contrast, in
skutterudite-like CeP3, the P atom forms bonds involving its
two lone pair electrons and two adjacent P atoms [Figs. 3(a)
and 3(b)]. The calculated COHP reveals that the interaction
of the P-P bond within the P4 ring in the skutterudite-like
CeP3 primarily arises from the hybridized states of P 3s with
P 3px, and P 3pz with P 3px orbitals [Fig. 3(b)]. At 0 GPa, the
negative integrated COHP (−ICOHP) value is 2.36 eV/pair
with a bond distance of 2.30 Å, which is slightly smaller than
the −ICOHP value of 3.00 eV/pair with a bond distance of

2.31 Å in conventional skutterudite-type CeP3. Regarding the
metal atom, in the conventional skutterudite-type structure,
it forms d2sp3 hybridized polar covalent bonds with the sur-
rounding six P atoms, characterized by an −ICOHP value of
1.21 eV/pair and a bond length of 2.91 Å [51]. In contrast, the
Ce atom in the skutterudite-like CeP3 engages in ionic inter-
actions with the surrounding 12 P atoms due to the absence
of a clear distribution of electronic states pointing towards
the Ce atom [Fig. 3(a)]. This is consistent with a smaller
−ICOHP value of 0.69 eV/pair and a bond distance of 2.98 Å
for the Ce-P pair. Consequently, the stability mechanism of
skutterudite-like CeP3 can be attributed to the combined Ce-
P interactions and the denser arrangement facilitated by the
rotation and distortion of the P4 ring.

Given that the interesting metallicity observed in
skutterudite-like CeP3, which involves the Ce 4 f and P 3p
electrons [Fig. 4(e)], we delve into its underlying metallic
origin. To do this, we initially construct a hypothetical Ce0P3

model by removing the Ce atoms from the structure (Fig. S4
[43]). Following the minimum energy principle and consider-
ing the bonding environment of the P atom with five valence
electrons, two of these electrons form covalent bonds with
neighboring P atoms. However, the remaining three electrons
reside on the outer side of the P4 ring as unpaired electrons
[Fig. 4(d)]. Ce0P3 displays metallic properties owing to the
presence of these unpaired electrons. If each P atom were to
gain an additional electron, resulting in four unpaired elec-
trons on the outer side (including two lone pair electrons), the
compound would satisfy the octet rule and exhibit nonmetallic
properties. This is demonstrated in the Ce0S3 model, created
by substituting P with S atoms (Fig. S5). By combining the
observed charge transfer from Ce to P atoms in the qualitative
Bader charge analysis with the occupation of antibonding
states in the P-P bonds [Fig. 3(b)], we can conclude that
the metallicity of CeP3 primarily arises from multiple charge
transfers from Ce to P atoms [Fig. 4(d)]. Specifically, one
electron is transferred to the lone pair electrons of the P
atom, causing the compound to exhibit nonmetallic properties
akin to Ce0S3. Meanwhile, the remaining few electrons are
transferred to the antibonding orbital of the P-P bond, which
weakens the strength of the P-P bond and enhances electronic
connectivity.

Studying the topological structure of Fermi surfaces pro-
vides insights into the electronic behavior at the EF. In
skutterudite-like CeP3, there are four bands that intersect
the EF [Fig. 4(f)]. However, for the sake of brevity, we
will focus on the analysis of band 2, band 3, and band 4,
as they make significant contributions to the Fermi surface.
Band 2 crosses the EF along the �-M/R and X-R direc-
tions, and it exhibits characteristics of both a hole pocket
and a steep band. This Fermi surface associated with band
2 has an interesting topology resembling a hollow fire hy-
drant with a central ball [Fig. 4(a)]. This Fermi surface
is primarily attributed to a hybridized state involving Ce
4 fxz2 / fx(x2−3y2 )/ fz(x2−y2 )/ fy(3x2−y2 ) and P 3px orbitals (Fig. S7a).
Band 3 and band 4 in skutterudite-like CeP3 exhibit clear
degeneracy along the X-R-M and �-R directions, and they
demonstrate high band dispersion near the EF. Notably, band
3 also exhibits characteristics of electron pockets along the
�-M direction. The Fermi surfaces associated with band 3 and
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FIG. 4. (a)–(c) The considered three Fermi surfaces (the rest are in Fig. S6 [43]), (d) the schematic diagram of the metallic origin, (e)
PDOS, (f) electronic band structure (numbers 1–4 represent the serial number of the band crossing the EF), (g) the Fermi surface nesting
function ξ (Q), and (h) Eliashberg spectral function α2F (ω), electron-phonon coupling (EPC) parameter λ, and the projected phonon density
of states (PHDOS) of skutterudite-like CeP3 at 0 GPa.

band 4 can be visualized as consisting of eight interconnected
and discrete curved surfaces, oriented towards the Brillouin
zone vertices [Figs. 4(b) and 4(c)]. These Fermi surfaces
arise from the contribution of Ce 4 fyz2 / fxz2 / fx(x2−3y2 )/ fz(x2−y2 )
electronic states (Figs. S7b and S7c). It is indeed intriguing
that the skutterudite-like CeP3 structure exhibits Fermi surface
nesting behavior along all high-symmetry paths, as indicated
by the sharp peaks in the Fermi surface nesting function ξ (Q)
[Fig. 4(g)]. These characteristics, including the presence of
electron/hole pockets, steep bands, and Fermi surface nesting
behavior, have become important indicators of compounds
that have the potential to undergo superconducting transitions
[52,53].

Based on the Bardeen-Cooper-Schrieffer (BCS) theory,
an investigation into the superconducting properties of
skutterudite-like CeP3 at 0 GPa reveals an estimated electron-
phonon coupling (EPC) parameter λ of 0.54. This value is
comparable to that of several filled skutterudites, such as 0.62
for Ba0.89Ir4P12 and 0.74 for LaRu4P12 [54,55]. Upon combin-
ing the Eliashberg spectral function α2F (ω) with the phonon
density of states (PHDOS), it can be concluded that the low-
frequency phonon vibrations, associated with the coupling
between Ce and P atoms (below 5.5 THz), make a significant

contribution (70%) to the total λ. Conversely, the high-
frequency vibrations, primarily originated from the P atoms,
contribute only 30% [Fig. 4(h)]. Furthermore, the strong dom-
inance of low-frequency EPC can be attributed to the heavier
atomic mass and compact structure of skutterudite-like CeP3.
Consequently, the superconductivity in this material primar-
ily arises from the coupling between low-frequency Ce and
P atomic phonons with the Ce 4 f and P 3p electrons.
By applying the Allen-Dynes modified McMillan equation,
the estimated superconducting transition temperature (Tc) of
skutterudite-like CeP3 is determined to be 2.57 K at 0 GPa
with a typical Coulomb pseudopotential μ* of 0.10 [56,57].
This value is in close agreement with experimental and the-
oretical values reported for electron/hole doped skutterudites,
such as 5.35 K for BaPt4Ge12 and 6.95 K for LaRu4P12 at 0
GPa [55,58], and 4.80 K for IrP3 at 100 GPa [17].

Considering that pressure is an effective strategy for sta-
bilizing unconventional compounds, it is natural to wonder
whether the designed skutterudite-like CeP3 can main-
tain its thermodynamic and dynamical stability within the
high-pressure Ce-P phase diagram. Through first-principles
structure search calculations, it has indeed been identified that
skutterudite-like CeP3 remains a stable ground-state structure
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even at 25 GPa (Fig. S8). It still maintains superconductivity
at 25 GPa, but with a slightly lower Tc of 1.14 K due to the
weakened EPC caused by the reduced DOS at the EF (Table
S2 [43]). Furthermore, skutterudite-like CeP3 exhibits a sig-
nificant transition potential barrier of 1.53 eV/atom that must
be overcome to revert to the conventional skutterudite-type
CeP3 at ambient pressure (Fig. S9). This indicates a strong
irreversibility after the rotation of the P4 units. The energy of
formation of skutterudite-like CeP3, obtained by combining
the most stable precursors CeP and P under ambient pres-
sure, falls within the range of reported metastable phases
(<50 meV/atom) (Fig. S10) [49]. Consequently, this rotated
skutterudite-like compound holds great potential for synthesis
through the process of compressing CeP and P at 25 GPa,
and subsequently quenching to ambient pressure. This method
has been widely explored in the synthesis of compounds, such
as diamond [59], carbides (e.g., BC3) [60], and nitrides (e.g.,
PtN2 [61]), which cannot be obtained under ambient pressure.

IV. CONCLUSIONS

In summary, our study introduces a skutterudite-like struc-
ture achieved by rotating the P atomic building blocks within
the conventional skutterudite framework. We conducted a
comprehensive analysis and identified 14 dynamically stable
MP3 (M = metal) compounds at 0 GPa through first-
principles high-throughput screening. Of particular interest
is the skutterudite-like CeP3, which has been found to be
thermodynamically stable at 25 GPa in the Ce-P system, and
irreversible at ambient pressure. This indicates its potential
synthesis through a compression and subsequent recovery
process. Skutterudite-like CeP3 exhibits metallic properties,

attributed to the excess electrons provided by Ce atoms oc-
cupying the antibonding orbitals of the P-P bonds, thereby
enhancing electron connectivity. Moreover, skutterudite-like
CeP3 displays an interesting superconductivity with a criti-
cal temperature of 2.57 K at 0 GPa. This superconductivity
arises from the coupling of Ce/P atomic phonons and the
electrons within the Ce 4 f and P 3p orbitals. Our research
provides a strong foundation for the design of superconduct-
ing skutterudite-like compounds.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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