
PHYSICAL REVIEW B 109, 054521 (2024)

Thermodynamic transitions and topology of spin-triplet superconductivity: Application to UTe2
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The discovery of unconventional superconductivity in the heavy-fermion material UTe2 has reinvigorated
research of spin-triplet superconductivity. We perform a theoretical study of coupled two-component spin-triplet
superconducting order parameters and their thermodynamic transitions into the superconducting state. With
focus on the behavior of the temperature dependence of the specific heat capacity, we find that two-component
time-reversal symmetry breaking superconducting order may feature vanishing or even negative secondary
specific heat anomalies. The origin of this unusual specific heat behavior is tied to the nonunitarity of the
composite order parameter. Additionally, we supply an analysis of the topological surface states associated
with the different possible spin-triplet orders: single-component orders host Dirac Majorana surface states in
addition to possible bulk nodes. A second component breaking time-reversal symmetry gaps these surface states
producing chiral Majorana hinge modes. DFT + U band-structure calculations support that these topological
phases are realized in UTe2 when introducing weak superconducting pairing. Our topological analysis suggests
measurable signatures for surface-probe experiments to acquire further evidence of the superconducting pairing
symmetry.
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I. INTRODUCTION

Obtaining a versatile platform with topologically protected
surface states and/or persistent superconducting surface cur-
rents is of high current priority within the condensed matter
physics community. These desires have naturally focused at-
tention on spin-triplet (odd-parity) superconductivity where
both properties are relevant due to nontrivial winding and
potentially also time-reversal symmetry breaking (TRSB) of
the superconducting order parameter. The exploration of ma-
terials exhibiting these features and their unusual response to
electromagnetic fields pose exciting research directions with
relevance for robust quantum computing with emergent non-
Abelian anyons in the form of Majorana quasiparticles [1].

The material UTe2 is a new candidate for topological
spin-triplet superconductivity [2]. In this heavy-fermion com-
pound, superconductivity sets in at Tc = 1.5–2 K depending
on the method of sample preparation [3,4]. Emergence of
unconventional spin-triplet pairing in UTe2 is supported by
several experimental facts including exceedingly large upper
critical magnetic fields well beyond the Pauli limit for spin-
singlet order [2,5,6], a modest Knight shift upon entering
the superconducting state [2,7–9] and re-entrant field-induced
superconductivity [2,10]. In addition, a nonzero polar Kerr
effect at T < Tc signals spontaneous TRSB by the supercon-
ductivity [11], even though this property has recently been
challenged by follow-up experiments [12]. The existence of
TRSB is consistent with the existence of an anomalous normal
component of the conductivity found by surface microwave
impedance measurements [13], and TRSB may also be a
supporting ingredient for the generation of chiral Majorana
modes at step edges in UTe2 [14].

At present the pairing symmetry of UTe2 is not agreed
upon, and it remains open which irreducible representation

(irrep) of the D2h point group the superconducting condensate
prefers. Restricting the discussion to odd-parity irreps in the
presence of strong spin-orbit coupling (SOC) singles out the
Au, B1u, B2u, and B3u irreps as possible candidates for the
order parameter symmetry [15,16]. Accidental degeneracies
further allows for TRSB combinations thereof, for example
B3u + iAu, which additionally constitutes a rare example of a
nonunitary superconducting order.

In principle, the gap symmetry in the material can be
determined by detailed measurements of the momentum
dependence of the superconducting gap as done in other
unconventional superconductors [17], however, these mea-
surements are very challenging given the small energy scales.
At present, basically all allowed candidates and their pair-
wise complex combinations are being considered, but the
recent discussion has largely been focused on B3u + iAu or
one of the Bu irreps. In this regard, a recent experimental
study of the temperature- and field-orientation-dependence
of the magnetic penetration depth concluded that only the
two-component TRSB B3u + iAu phase appears consistent
with the data due to its nodal structure [18]. This is in con-
trast to several other experiments advocating for one of the
single-component Bu gap symmetries, including, e.g., recent
ultrasound [19], field-dependent specific-heat measurements
[20], and scanning tunneling microscopy (STM) experiments
[21]. A single component condensate is consistent with spe-
cific heat measurements on high-quality samples reporting a
low-temperature power law tail and a single transition that
does not split under uniaxial strain [4,22–24].

To a large extent, the discussion of single- versus mul-
ticomponent TRSB superconductivity and the associated
conflicting experimental evidence parallels that of recent de-
velopments in the understanding of the superconducting phase
of Sr2RuO4. For instance, muon spin relaxation measurements
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on this material indicate TRSB in the superconducting state,
with a transition temperature that splits off from Tc under uni-
axial strain [25,26]. However, thermodynamic probes [27–30]
and SQUID microscopy [31] do not observe any sign of a
second transition, thus casting doubts on the two-component
scenario. In fact, many probes are straightforwardly explained
by a single superconducting dx2−y2 -wave order parameter
[32–37].

Here, motivated by the conundrum between the conflicting
evidence for single- versus two-component superconductivity
in UTe2, we investigate the thermodynamic transition into
a TRSB nonunitary spin-triplet superconductor. Specifically,
we focus on the specific heat capacity and its property upon
entering nonunitary TRSB phases. We find that the behavior
of the temperature dependence of the specific heat capacity
in the case of a two-component TRSB superconducting order
may feature vanishing or even negative secondary transition
anomalies. We show how the origin of such unusual specific
heat behavior is tied to the nonunitarity of the composite order
parameter. This result may help reconcile conflicting evidence
for single- versus two-component superconductivity in UTe2.

We further describe the topology and corresponding
anomalous boundary excitations of the superconducting
phases relevant for UTe2. These results provide additional
signatures distinguishing the orders in experiments probing
the surface excitations. We find that a pure superconducting
order with B3u symmetry is a second-order topological nodal
superconducting phase [38] hosting Majorana Dirac cones
[39,40] on the surface and a Majorana flat band at hinges.
Breaking time-reversal symmetry with a weak admixture with
Au symmetric superconducting order generically gaps the
Majorana Dirac surface cones and turns the flat hinge band
into a chiral Majorana mode [41]. For an approximately equal
mixture of B3u and Au symmetric orders the system may tran-
sition into a Weyl superconducting phase with Fermi arcs of
Bogoliubov quasiparticles [42]. A pure order with Au symme-
try is a fully gapped, strong topological superconductor with
Majorana Dirac surface states [39]. Here, a small admixture
of B3u symmetric superconducting order turns the system into
a second-order topological superconducting phase with chiral
Majorana modes on hinges. In our analysis, we emphasize the
consequences for the (0,−1, 1) surface that is experimentally
relevant for UTe2 [14].

To support that these topological phases are realized in
UTe2 when including superconducting pairing of the respec-
tive symmetry, we calculate the band structure using DFT +
U ab initio calculations. For a relevant range of moderate
Hubbard repulsion U where the band structure is metallic
as observed experimentally, we find that the Fermi surface
has a sheet that can be deformed into a sphere and a cylin-
der without crossing any time-reversal invariant momenta.
Since the cylinder by symmetry always encloses an even
number of time-reversal invariant momenta, we consider only
the spherical pocket as relevant for the strong topological
phases discussed here. This motivates our model of a spherical
Fermi surface used in the topological analysis. Calculating a
symmetry-based indicator [43] from the DFT + U band struc-
ture, we find that the previously discussed topological phases
are indeed realized when introducing weak superconducting
pairing of the respective symmetry in the UTe2 band structure.

The paper is organized as follows. In Sec. II, we present
a general Landau free-energy analysis of two coupled
one-dimensional (1D) spin-triplet order parameters. This sec-
tion introduces the different allowed mutual structures of the
two triplet irreps. Section III contains a general discussion of
the specific heat capacity and the thermodynamic anomalies at
the critical temperatures of the two active components. Next,
in Sec. IV, we turn to the particular case of UTe2 and discuss
its electronic structure, the thermodynamic superconducting
transitions, and its topological properties including the surface
states arising both from the band structure and the different
possible superconducting order parameters. Finally, Sec. V
provides a general discussion and our conclusions.

II. FREE ENERGY OF COUPLED SPIN-TRIPLET
ORDER PARAMETERS

A single-band spin-triplet superconductor is characterized
by the vector order parameter �d (T, k) in the convenient
Balian–Werthamer basis, � = ( �d · �σ )iσ2, such that �d trans-
forms as a vector under combined spin and spatial rotations
[44]:

� =
[
�↑↑ �↑↓
�↓↑ �↓↓

]
=

[−dx + idy dz

dz dx + idy

]
. (1)

The superconducting gaps are given by [45,46]

|�σ |2 = | �d|2 + σ | �d∗ × �d| (2)

and are spin-split for so-called nonunitary states which are
characterized by | �d∗ × �d| �= 0.

Consider two competing triplet orders, respectively associ-
ated with symmetry-distinct 1D irreps of the corresponding
point group and hence generally on-setting at two distinct
critical temperatures, Tc1 and Tc2. The phase diagram can
be mapped out using Ginzburg–Landau theory. As such, we
retain all symmetry-allowed terms to quartic order involving
two complex vector order parameters �d1 (onset at Tc1) and �d2

(onset at Tc2), resulting in the free energy density

F[ �d1, �d2] = α(T )| �d1|2 + β1| �d1|4 + β2| �d∗
1 ×�d1|2

+ α̃(T )| �d2|2 + β̃1| �d2|4 + β̃2| �d∗
2 ×�d2|2

+ γ1[( �d1 · �d∗
2 )2 + ( �d∗

1 · �d2)2]

+ γ2[( �d1 · �d1)( �d∗
2 · �d∗

2 ) + ( �d∗
1 · �d∗

1 )( �d2 · �d2)]

+ γ3| �d1|2| �d2|2 + γ4( �d1 · �d∗
2 )( �d∗

1 · �d2)

+ γ5( �d∗
1 · �d∗

2 )( �d1 · �d2), (3)

where �a · �b = �aT �b. This theory has nine quartic coefficients,
reflecting the enhanced complexity in having multiple pos-
sible scalar contractions of three-dimensional (3D) vectors,
i.e., via both the scalar product and the antisymmetric cross
product, in contrast to the case of scalar (singlet) orders.

For the theory of Eq. (3) to be bounded from below, we
require β1, β̃1 > 0. Further coefficient magnitude and sign
criteria will be required to guarantee thermodynamic stabil-
ity, as exemplified in a specific instance below. As usual,
the quadratic coefficients are assumed to go negative be-
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low the respective critical temperatures, α(T < Tc1) < 0, and
α̃(T < Tc2) < 0.

Considering for reference Eq. (3) in the case of γ j = 0 for
j ∈ {1, . . . , 5}, the two components decouple. If β2 < 0 (re-
spectively β̃2 < 0), the component �d1 (respectively �d2) itself
becomes nonunitary. However, from a microscopic evalua-
tion of the quartic coefficients in the absence of magnetic
fields, β2 (respectively β̃2) is positive semidefinite and de-
termined by Fermi surface average of the form factors of
�d1 (respectively �d2) to the fourth power [47,48]. Still, it can
be argued that residual magnetic interactions can stabilize a
single-component nonunitary order parameter [49,50]. For an
example of how microscopic evaluations of the Ginzburg–
Landau coefficients restrict the a priori possible phases of the
phenomenological theory, we refer to Appendix A.

Minimization with simple Ansätze

We consider next the theory of Eq. (3) in the special case in
which the two order parameter components are parameterized
by their amplitudes (D1, D2), two real unit vectors (d̂1, d̂2) and
a relative, complex phase (ϕ ∈ [0, π/2]), i.e.,

�d1 = D1d̂1, and �d2 = D2eiϕ d̂2. (4)

In other words, we assume the constituents �d1 and �d2 to
be unitary, but nonunitarity can still be induced in a coex-
istence phase in which |d̂1 × d̂2| �= 0, and ϕ ∈ (0, π/2]. We
emphasize that we are here concerned with possible nonuni-
tarity in a coexsistence phase of two symmetry-distinct orders.
Note that a single-component order parameter, such as �d =
�0(kz,−ikz, 0)T, is sufficient for nonunitarity [15,46]. This
order, however, displays trivial heat capacity features in the
context of the analysis in Sec. III, see also Appendix C. Here,
we pursue the two-component nonunitary scenario motivated
by its possible relevance for UTe2.

When the above Ansätze are inserted into Eq. (3) the free
energy reduces to a form familiar from a scalar theory analog
[51], which is straightforwardly minimized analytically:

F[D1, D2, d̂1 · d̂2, ϕ] = α(T )D2
1 + α̃(T )D2

2 + β1D4
1

+ β̃1D4
2 + κD2

1D2
2, (5)

with

κ ≡ 2 cos (2ϕ)[(d̂1 · d̂2)2γ1 + γ2] + γ3 + (d̂1 · d̂2)2(γ4 + γ5).
(6)

In addition to the positive definiteness imposed on β1 and β̃1,
we must also impose 4β1β̃1 > κ2 (seen by requiring positive
eigenvalues of the quartic form matrix associated with the free
energy potential) to ensure thermodynamic stability.

In Eq. (5), the dependence on (d̂1 · d̂2)2 and ϕ only en-
ters through the cross term κ , and minimization of this term
gives the four possible coexistence phases, as controlled by
the three parameters γ1, γ2, and ν ≡ 1

2 (γ4 + γ5): κA = γ3 −
2γ2, κB = γ3 + 2γ2 + 2γ1, κC = γ3 + 2γ1 + 2γ2 + 2ν, and
κD = γ3 − 2γ1 − 2γ2 + 2ν, with the phases for both ν > 0
and ν < 0 summarized in Fig. 1. Given quartic coefficients
satisfying 4β1β̃1 > κ2 in any of the four phases, D1 and D2

are found by minimzing the remaining theory, given the κ’s

FIG. 1. Theoretical phase diagrams controlled by the parameters
γ1, γ2, and ν ≡ 1

2 (γ4 + γ5), of Eq. (3) with the Ansätze �d1 = D1d̂1

and �d2 = D2eiϕ d̂2. The four coexistence phases, labeled A, B, C, and
D, are stabilized in the regimes of corresponding label color in the
plane spanned by γ1 and γ2, with ν > 0 in the left panel and ν < 0
in the right panel. Sample �d vectors and analog phase realized in
superfluid 3He are listed in the text box below the phase diagrams.

above, over the amplitudes, resulting in

D2
1 = max

{
κα̃ − 2β̃1α

4β1β̃1 − κ2
, 0

}
,

D2
2 = max

{
κα − 2β1α̃

4β1β̃1 − κ2
, 0

}
. (7)

In the four cases above, coexistence of the components re-
quire D1, D2 > 0, i.e., κ j α̃ > 2β̃1α and κ jα > 2β1α̃ for j ∈
{A, B, C, D}. As seen explicitly by the entrance of α and
α̃, these latter two requirements are in general temperature
dependent.

As summarized in Fig. 1, three of the coexistence phases
have (experimentally realized) analogues in superfluid 3He.
The phase we label A, characterized by d̂1 ⊥ d̂2 and ϕ = π/2,
is the only nonunitary phase. A sample order parameter for
this phase is �d = (D1, iD2, 0)T, which explicitly breaks the
symmetry between | ↑↑〉 and | ↓↓〉 since |�↑↑| = | − dx +
idy| �= |dx + idy| = |�↓↓|. This resembles the A1 phase of
3He, which is stabilized by an external magnetic field [52]
and can be verified through a crisp heat capacity double
transition [53]. In contrast, the phase labeled B preserves
time-reversal symmetry, with a sample order parameter being
�d = (D1, D2, 0)T, reminiscent of the B phase of 3He (with
|�↑↑| = |�↓↓|). Finally, the phase labeled D is chiral and has
a sample order parameter of the form �d = (0, 0, D1 + iD2)T,
with a well-known example being the px + ipy phase (the A
phase) of 3He.

III. SPECIFIC HEAT OF TWO-COMPONENT
SPIN-TRIPLET TRANSITIONS

Here we turn to a discussion of the thermodynamic tran-
sitions of two-component spin-triplet superconducting orders,
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with focus on the entropy and specific heat behavior near the
two transition temperatures.

General theory

We consider a single-band superconductor described by the
following Bogoliubov-de Gennes (BdG) Hamiltonian at the
mean-field level

HBdG = 1

2

∑
k

��†
kH(k) ��k , (8)

where

H(k) =
[
ξ (k)1 �(k)
�†(k) −ξ (−k)1

]
, (9)

in the basis ��k = (ck↑, ck↓, c†
−k↑, c†

−k↓)T. We assume inver-
sion symmetry in the normal state, ξ (k) = −ξ (−k), and
will henceforth refer to the components of the order pa-
rameter in the Balian–Werthamer basis of Eq. (1). We
consider an order parameter of the form � = ( �d · �σ )iσ2

with

�d (T, k) = �0

⎡
⎣

√
1 − T

Tc1

�d1(k) + iε

√
1 − T

Tc2

�d2(k)

⎤
⎦, (10)

where �d1, �d2 ∈ R3 do not depend on T and belong to dis-
tinct odd-parity, 1D irreps of the relevant crystal point
group, and ε is assumed to be a real parameter control-
ling the relative size of the components and the strength
of TRSB. In general, this ansatz has restricted us to
the exotic yet interesting case of a (unitary) triplet or-
der parameter on-setting at Tc1 with a subsequent second
order transition to a composite nonunitary triplet order
at Tc2.

The specific heat, C(T ) = T ∂S
∂T , is derived from the en-

tropy of a Fermi gas

S(T ) = −kB

∑
k,σ

{ f [Eσ (T, k)] ln f [Eσ (T, k)]

+ (1 − f [Eσ (T, k)]) ln(1 − f [Eσ (T, k)])}, (11)

where f (E ) = (1 + exp(βE ))−1 is the Fermi function, and
Eσ (T, k) =

√
ξ (k)2 + |�σ (T, k)|2 are the quasiparticle exci-

tation energies, where σ = ± is indexing the spin, and the spin
dependent gaps are given by Eq. (2) with a mean-field temper-
ature dependence. We invoke two standard assumptions when
calculating the heat capacity from Eq. (11). First, the momen-
tum sum is replaced by integrals over (ξ, k) where now k
lies on the iso-surface ξ (k) = ξ :

∑
k · → ∫ ωc

−ωc
dξ 〈·〉FS, where

ωc is the cutoff (e.g., the electronic bandwidth), 〈A〉FS =∫
SF

dk
(2π )3

Aσ

vF (k) , and vF(k) = |∇kξ (k)| is the Fermi velocity.
This approximation is justified in the thermodynamic limit.
Second, we assume weak coupling, |�|, T � ωc such that

the ξ integration limits can be extended.1 The heat capacity
becomes

C(T ) = 1

kBT 2

∫ ∞

−∞
dξ

∑
σ

〈
ξ 2 + |�σ |2 − T

2
∂|�σ |2

∂T

4 cosh2
( Eσ

2kBT

)
〉

FS

.

(12)

The term containing the temperature derivative of the gaps
in Eq. (12) is responsible for a discontinuous jump in C(T )
at the onset of the order parameter. In the scenario of two
symmetry-distinct order parameter components as considered
in the preceding section, discontinuous jumps occur at both
Tc1 and Tc2. Focusing on the second onset (Tc2), which in
the A phase of the preceding section marks the transition
from a unitary to a nonunitary state, the specific heat capacity
anomaly is quantified by the difference:

�C(Tc2) ≡ C(T −
c2 ) − C(T +

c2 ) = 1

8kBTc2

∫ ∞

−∞
dξ δc, (13)

where T = T ±
c2 refers to taking the one-sided limits limT →T ±

c2
,

approaching Tc2 from above and below, and where

δc =
∑

σ

〈[
∂|�σ (T, k)|2

∂T

∣∣∣∣
T +

c2

− ∂|�σ (T, k)|2
∂T

∣∣∣∣
T −

c2

]

× sech2

(
Eσ (Tc2, k)

2kBTc2

)〉
FS

. (14)

We use the order parameter ansatz of Eq. (10) in Eq. (14)
and obtain two contributions. The first contribution comes
from ∂| �d|2

∂T and is positive semidefinite, hence supplying �C
with an anticipated positive semidefinite contribution, similar
to that reported in the spin-singlet scenario of Ref. [33]. A
second and nonstandard contribution, however, comes from
− ∂| �d∗× �d|

∂T |T −
c2

due to the spin-split gaps for nonunitary orders in
Eq. (2). The latter contribution is explicitly negative semidefi-
nite because E−(T −

c2 , k) � E+(T −
c2 , k) for all crystal momenta,

and it is only finite for nonunitary states. This gives rise to the
following exact result including both terms discussed above:

δc = 2(ε�0)2

Tc2

〈
sech2

(√
ξ 2 + g2

2kBTc2

)[
| �d2|2 − �2

0

kBTc2

| �d1 × �d2|2√
ξ 2 + g2

×
(

1 − Tc2

Tc1

)
tanh

(√
ξ 2 + g2

2kBTc2

)]〉
FS

, (15)

where

g ≡ �0| �d1|
√

1 − Tc2

Tc1
. (16)

This result shows how the nonunitarity of the order parameter
is associated with a negative contribution to the specific heat
discontinuity that can result in a partly or entirely suppressed,
or even net negative, secondary specific heat jump. We note
that the formula above contains a Fermi surface average as
also discussed in view of ferromagnetic and antiferromagnetic

1The integrand in the heat capacity has support over a
range controlled by T in the weak-coupling limit since
ξ 2/[4 cosh2(ξ/[2kBT ])] ≈ ξ 2 exp(−ξ/[kBT ]), and the standard
deviation of the latter distribution is

√
3kBT .
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nonunitary pairing states [54], but the additional nonconstant
terms that are multiplied before the average and the fact that
the square | �d1 × �d2|2 enters, disallows a direct connection.
Further, we note that ferromagnetic pairing states can gener-
ally have a larger contribution.

From the entropic point of view, the sign of the second
heat capacity anomaly (Eq. (14)) is simply related to the
“sign” of the nonanalyticity of S, i.e., sign[ ∂S

∂T |T −
c2

− ∂S
∂T |T +

c2
].

This is further explained in Appendix B. Though we have not
proven the stability of the order parameter considered, there
is nothing at the thermodynamic level that formally disallows
the unusual negative sign of the heat capacity discontinuity. In
Appendix B, we also discuss how the above result generalizes
to critical exponents beyond mean field. Moreover, while in-
traband couplings can affect the power law of the temperature
profile of the gap near the lower transition [55], we stress
that our ansatz in Eq. (10) concerns two symmetry-distinct
second-order transitions, for which coupling terms at quartic
order in the free energy can lead to a renormalization of Tc2

while leaving the critical exponent unaltered [56].
One may question whether a single-component nonunitary

order is sufficient to obtain the anomalous heat capacity be-
havior above. This case is considered in Appendix C and turns
out to always have a positive heat capacity jump. Techni-
cally, this is because a diverging ∂| �d∗× �d|/(∂T ) at T = T −

c2
is needed to give a finite-valued outcome when multiplied
with

∑
σ σ sech2(Eσ /(2kBT −

c2 )), which approaches zero as√
δT when expressing T −

c2 = Tc2 − δT in the two-component
case. In the single-component scenario, the prior factor does
not diverge, which emphasizes that the negative heat capac-
ity contribution hinges on a transition splitting, Tc2 < Tc1,
as also reflected in the negative term being proportional to
1 − Tc2/Tc1 in Eq. (15).

Another generic observation from Eq. (15) that impacts
the negative contribution can be pointed out. The negative
term has a prefactor of �0/(kBTc2) which in BCS theory takes
the conventional value of πe−γ ≈ 1.764. It is well known
that both gap anisotropies (at weak coupling) [57], as well
as strong-coupling effects [58] can increase this ratio, both of
which enhance the unusual negative jump effect.

IV. APPLICATION TO UTe2

In this section, we perform a material-specific study of two-
component spin-triplet superconductivity applied to UTe2.
In this compound nonunitary superconducting states from
different irreps are actively discussed as candidate states
for explaining several experimental findings such as TRSB
[11,12] and chiral edge modes [14]. We start the section with
a detailed discussion of the electronic structure of UTe2.
This allows us to discuss thermodynamic transitions of UTe2

and illustrate the unusual specific heat behavior that may be
associated to two-component nonunitary spin-triplet super-
conductivity. Finally we present a material-specific discussion
of the topological properties of superconducting UTe2.

A. Electronic structure

Experimentally, the specific heat was measured on clean
samples of UTe2 exhibiting higher Tc’s of around 2 K and

(a) (b)

FIG. 2. (a) Band structure along the three principal axis where
the BZ boundaries in the x̂, ŷ and ẑ directions are marked by red,
green, and blue dots, respectively. The symmetry of the bands under
inversion operation are marked by red circles (+1) and full black dots
(−1). (b) Fermi surface as obtained from an ab initio calculation for
U = 1.2 eV and plotted with software described in Ref. [59].

large residual resistivity ratios of several hundreds, finding: (i)
a single specific heat capacity transition and (ii), a C/T ∼ T 2

tail consistent with point nodes in the superconducting gap
[4,22–24]. For quantitative calculations of the specific heat
and the detailed functional form of C/T , a precise descrip-
tion of (a) the superconducting order parameter and (b), the
low-energy electronic structure including the Fermi surface
shape and the Fermi velocities are needed. Given the magnetic
susceptibility at low temperature [6] compatible with a Fermi
liquid, we assume a picture of itinerant electrons where U 5 f
states contribute.

As earlier works [60–64], we adopt the approach of con-
sidering a series of electronic structures from a DFT + U
calculation where the effective U is a free parameter even-
tually fixed by comparison to spectroscopic data and discuss
common properties of the low-energy electronic structure and
the symmetry-based indicators in Sec. IV C 3. The starting
point is the body-centered orthorhombic lattice structure of
UTe2 with space group Immm and lattice structure as deter-
mined experimentally [65]. We use the WIEN2K package [66]
with the generalized gradient approximation [Perdew-Burke-
Ernzerhof (PBE) functional] [67], use a k mesh of 5000 k
points (173) together with with RMT × KMAX of 9.0 in a
relativistic calculation including SOC on all atoms and adding
correlations on the U 6d and 5 f electrons with the parameter
U while keeping the Hund’s exchange interaction J = 0. In
this setting, we obtain an insulating state at U = 0 which
becomes metallic at U0 = 0.97 eV with a band of mixed
parity crossing the Fermi level between � and X [62] and a
second corrugated cylindrical Fermi pocket which grows and
eventually vertically spans the Brillouin zone boundary. In-
creasing further to U1 = 1.03 eV, a small pocket at � appears
which quickly is pushed down at U3 = 1.06 eV again to yield
a Fermi surface topology with the important band crossing
between � and X present over a sizable range of U , see Fig. 2.
At U4 = 1.44 eV this band crossing is lifted and the electronic
structure resembles the one of a putative ThTe2 calculation
[63,68] with slightly corrugated Fermi surfaces; increasing the
correlations further, reduces the corrugation and increases the
Fermi velocities. Calculations with finite Hund’s interaction
J = 0.1U and 0.2U give qualitatively similar results with the
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energy scales Ui shifted upwards. Having these quantitative
and qualitative variations in mind, one can try to pinpoint the
relevant regime by comparing to ARPES and quantum oscil-
lation data to determine the topology of the Fermi surface.

The ARPES data in Ref. [69] have been interpreted as
existence of a hole pocket around the � point, while another
work found a dispersive band dropping down at the “Z point”
[70], which is labeled X in our notation. Reference [68] shows
data consistent with two-dimensional (2D) cylindrical tubes of
Fermi surfaces. More recent experiments on cleaner samples
detect a cylindrical-shaped electron Fermi surface without
connections at the “Z point” of the Brillouin zone (BZ) [71],
in agreement with the 3D conductivity component from re-
sistivity measurements together with an analysis of scattering
rates as detected by ARPES [72]. Recently, quantum oscil-
lation measurements in clean crystals reported the finding of
several frequencies consistent with 2D Fermi surfaces with lit-
tle corrugation [24]. Another work observed a low-frequency
component reminiscent of a 3D Fermi surface pocket from a
band with moderately small effective mass m∗ = 5.7me [73].
This is in contradiction to a mapping of the Fermi surface
from quantum oscillations finding only 2D Fermi surfaces and
constraining any 3D Fermi surface to a very small volume or
exhibiting extremely large effective masses m∗ > 78me to ren-
der it unobservable at the base temperature of the experiment
[64].

In summary, there is experimental evidence for a Fermi
surface of UTe2 similar both to the intermediate-U and the
large-U regime of the DFT + U calculations. In the following,
we pursue mainly the intermediate-U case with the Fermi
surface topology shown in Fig. 2. For the strong topological
phases discussed in this work, the Fermi surface is equivalent
to 2D sheets and a closed pocket around X .

B. Thermodynamic transitions and specific heat

As evident from the above, both the Fermi surface
shape and topology and the detailed spin- and momentum-
dependent structure of the superconducting order parameter of
UTe2 are currently matters of substantial controversy. There-
fore we restrict the study of the specific heat to a qualitative
analysis and return to a discussion of the consequences of the
detailed electronic structure of UTe2 in the topology section.
To examine the effects of nonunitary pairing states on-setting
at a second triplet order parameter transition, we simply use a
model of a quadratic band structure and select among possible
triplet superconducting order parameters for D2h and leave
any quantitative calculation of the specific heat to future stud-
ies once the Fermi surface of UTe2 and the superconducting
order are better determined.

In terms of possible TRSB pairing candidates for UTe2,
motivated by recent experimental developments [18], we con-
sider initially the case of �d1 = �dB3u and �d2 = �dAu belonging
to point group D2h in the presence of spin-orbit coupling
(Table I). Locations of the point nodes of the nodal gap in
the spherical Fermi surface are shown in Fig. 3 for different
values of the “mixing parameter” ε. Calculations of C(T )/T
per normal state value from Eq. (12) are shown in Fig. 4. The
insets of Fig. 4 display the integrand of Eq. (15), i.e., the value
of the quantity before integration over the Fermi surface, at

TABLE I. Odd-parity irreducible representations of D2h (includ-
ing SOC [74]). In the second column, X represents any function that
transforms like sin kx under the point group operations, and similar
for Y and Z . In the third column: “p.” refers to point nodes with the
locations on a spherical Fermi surface indicated in a parenthesis [75].
The coefficients c1, c2, c3 are real, but otherwise unrestricted by the
point group.

Irrep. Order parameter Nodes

Au �d = (c1X, c2Y, c3Z )T gapped
B1u �d = (c1Y, c2X, c3XY Z )T p. (along ẑ)
B2u �d = (c1Z, c2XY Z, c3X )T p. (along ŷ)
B3u �d = (c1XY Z, c2Z, c3Y )T p. (along x̂)

ξ = 0. Clearly, the momentum structure of this quantity is
dictated by two competing terms of Eq. (15), involving both
| �d1(k)|, | �d2(k)|, and | �d1(k) × �d2(k)| (see also Appendix B).
As seen directly from Eq. (15) and (16), reducing Tc2 while
keeping Tc1 fixed is identified as an efficient way to increase
the relative impact of the negative contribution to �C.

As also demonstrated by Fig. 4(d), it is possible to obtain a
specific heat drop at the second transition, signifying a slower
entropy decrease with decreasing temperatures at T lower
than Tc2. Although generically requiring fine tuning, a sce-
nario in which the positive and negative terms cancel to yield
a vanishing second heat capacity anomaly is also conceiv-
able [Fig. 4(c)], effectively making the transition third order.
For the parameters used in Fig. 4 this happens around Tc2 =
0.615Tc1. Smearing from spatial inhomogeneities may further
wash out any signature of the second transition [56,76].

Due to the assumptions of the spherical Fermi surface, the
results for C(T )/T in Fig. 4 remain unchanged had we instead
used �d1 = �dB1u or �d1 = �dB2u . In addition, the important ingre-
dient for acquiring an anomalous contribution to the specific
heat is the nonunitary nature of the two-component d-vector.
Therefore pairing states of the form B1u + iεB2u and simi-
lar combinations also exhibit such unusual thermodynamic
transitions, including the possibility of a vanishing second
specific heat anomaly. These states turn out to be of the type
ferromagnetic nonunitary pairing states [54] unless fine-tuned
by parameters to yield (accidental) vanishing magnetization.

FIG. 3. Nodes of the zero-temperature gap |�σ=−|, as obtained
from Eq. (2) for the order parameter �dB3u + iε �dAu , cf. Table I. Loca-
tions of point nodes are indicated with purple dots. This scenario was
studied in the context of penetration depth measurements of UTe2 in
Ref. [18]. For |ε| > 1, the state is fully gapped.
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(a)

(c) (b)(d)

FIG. 4. Specific heat jumps for the triplet order parameter �d (T, k) of Eq. (10) for irreps B3u (on-setting at Tc1) and Au (on-setting at Tc2)
with an orthorhombic crystal (point group D2h) and a spherical Fermi surface for several sets of coefficients c as explained in the labels, cf.
Table I. [(a)–(d)] show the specific heat per temperature for the case shown in purple in the top left panel. The insets, with color scale and
momentum axes defined to the right of (a), display the integrand (at ξ = 0) of Eq. (15), labeled δ̃c, resolved over the Fermi surface to reveal
positive and negative contributions to the secondary specific heat jump. (c) is the fine-tuned case of Tc2 = 0.615Tc1 at which the second heat
capacity jump vanishes and the phase transition is effectively third order. In these calculations, we kept ε = Tc2/Tc1 and a mean-field gap value
of �0 = 2 × 1.764kBTc1.

C. Topological properties

In this section, we begin by determining the topolog-
ical phases and corresponding anomalous boundary states
of a Bogoliubov-de Gennes (BdG) Hamiltonian describing
a spherical Fermi surface with D2h point group symmetry
and various superconducting orders. We discuss all pure
odd-parity orders as well as mixtures where one order is
considered as an infinitesimal perturbation to the other. Here,
we focus on the anomalous boundary phenomenology of the
topological phases and leave the validation of the topological
phases to Appendix D. Table II summarizes the topological
phases obtained for the considered superconducting orders.

Next, in Sec. IV C 3, we apply the theory of symmetry-
based indicators to predict the topology of the superconduct-
ing phases obtained by including superconducting pairing
in the band structure calculated from DFT + U as summa-
rized in Sec. IV A. These results support that the topological
phenomenology described for a spherical Fermi surface may
indeed apply to UTe2.

1. Nodal phases

The nodal points in the quasiparticle spectrum at the inter-
section of the Fermi surface with the nodal lines of the order
parameters are protected by a topological invariant defined on
an enclosing surface of the reciprocal-space BdG Hamilto-
nian. By the bulk-boundary correspondence, this topological
invariant has associated anomalous boundary excitations [38]
that we describe in the following.

B3u superconducting order. A superconducting order pa-
rameter with B3u symmetry has a nodal line along the kx axis

that intersects with a spherical Fermi surface at (kF, 0, 0)T as
shown in the leftmost panel of Fig. 3. As a function of kx, the
node coincides with a change of a second-order topological
invariant protected by mirror symmetry and chiral antisym-
metry defined on 2D slices with fixed kx within the 3D BZ
(see Appendix D for a validation of the result). The order
of the topological phase determines the dimensionality of
the corresponding anomalous surface states [77,78]. At kx =
0, time-reversal symmetry requires that this 2D topological
phase is first order.

Altogether, the boundary signatures can be understood as
follows. As sketched in Fig. 5(a), mirror-symmetry breaking
surfaces host a single Majorana Dirac surface cone around
kx = 0 [101].2 Mirror symmetries My and Mz require that
surfaces whose orientation is related by mirror symmetry host
Majorana Dirac surfaces cones with opposite chirality. As a
consequence, a mirror-symmetric hinge hosts a flat band of
zero-energy states. In reciprocal space, the flat band connects
to the bulk node at kx = kF and disappears thereafter. These
are typical boundary signatures of second-order topological
nodal superconductors of type (ii) [38].

2The attribute “Majorana” indicates that the Dirac cone describes
Bogoliubov quasiparticles that are their own antiparticle [39–41].
The Majorana Dirac cone thereby describes a single massless Ma-
jorana fermion in two dimensions. This property distinguishes the
surface Majorana Dirac cone from surface Dirac cones in topo-
logical insulators [101] where the quasiparticles are ordinary Dirac
fermions.
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TABLE II. Summary of the topological phases obtained for a single, spin-degenerate band with spherical Fermi surface and D2h point
group symmetry and superconducting order with symmetry specified by the irreducible representations in the left column. For the mixed
orders, the factor |ε| � 1 indicates that the corresponding order is an infinitesimal perturbation to the other. The right column specifies
possible gapless excitations on a (0, −1, 1) crystal surface that are associated to the bulk topology, in addition to bulk nodes. Further details
on each phase are given in the main text. (†) The entries for the mixture B3u + iAu considers a specific choice of a chiral order parameter
�d (k) = (0, c1kz + ic2ky, 0)T, and similarly for the mixtures B1u + iAu and B2u + iAu.

Irrep. Topological phase (0, −1, 1) surface

B1u, B2u, B3u Second-order topological nodal superconductor
of type (ii) [38]

Majorana Dirac cone protected by time-reversal
symmetry and bulk nodes

B3u + iεB2u, B2u + iεB3u,
B3u + iεB1u, B1u + iεB3u

Second-order topological nodal superconductor
of type (iii) [38]

Fermi arcs of Bogoliubov quasiparticles around
the projection of the Weyl nodes

B2u + iεB1u, B1u + iεB2u Second-order topological nodal superconductor
of type (iii) [38]

Majorana Dirac cone protected by mirror
symmetry and Fermi arcs of Bogoliubov

quasiparticles around the projection of the Weyl
nodes

B3u + iεAu Second-order topological superconductor [77]
with coexisting Weyl nodes

Majorana Dirac cone protected by mirror
symmetry and Fermi arcs of Bogoliubov

quasiparticles around the projection of the Weyl
nodes

B1u + iεAu, B2u + iεAu Second-order topological superconductor [77]
with coexisting Weyl nodes

Fermi arcs of Bogoliubov quasiparticles around
the projection of the Weyl nodes

B1u + iAu, B2u + iAu,
B3u + iAu (†)

Weyl superconductor [42] Large Fermi arcs of Bogoliubov quasiparticles
connecting Weyl nodes with positive and negative

kx

Au First-order topological superconductor [40] Majorana Dirac cone protected by time-reversal
symmetry

Au + iεB3u Second-order topological superconductor [77] Majorana Dirac cone protected by mirror
symmetry

Au + iεB1u, Au + iεB2u Second-order topological superconductor [77] Gapped

−

−

−+

+

z
x
y

(a)

(b)

(c)

(d)

FIG. 5. Sketch of the anomalous boundary signatures around
kx = 0 of the nodal topological phase of the spherical Fermi pocket
with [(a) and (b)] B3u order parameter and [(c) and (d)] B3u + iεB2u

order parameter symmetry. The top row displays a mirror z → −z
symmetric hinge. The bottom row displays step edges on an asym-
metric hinge. With a B3u order parameter [(a) and (b)], surfaces that
respect kx translation symmetry have a Majorana Dirac surface cone.
Dirac cones on surfaces with opposite chirality host a flat Majorana
band at the interface (thick red line). For the mixed order parameter
with B3u + iεB2u symmetry [(c) and (d)], the Majorana Dirac surface
cones gap out due to breaking of time-reversal symmetry. Interfaces
between surfaces with opposite sign of the mass term host a chiral
Majorana mode (thick red arrow).

Step edges on an asymmetric surface, Fig. 5(b), also host
a flat band at zero energy if the chirality of the Majorana
Dirac surface cones on adjacent surfaces are opposite. In
experiment, this may be the case if the chemical structure of
the surfaces are different, for example if the step edge has a
fractional unit cell height. If the step edge has a height of one
unit cell, the chirality of the Majorana Dirac surface cones is
the same unless there is another structural difference between
the surfaces.

In UTe2, phenomenology consistent with this topological
phase has been discussed in Ref. [61]: in this reference, a
weak topological invariant ν1 has been calculated for a band
structure obtained from DFT + U calculations. Together with
the point node for a superconducting order B3u symmetry, this
topological invariant ν1 detects the Majorana Dirac surface
cones that are present in this nodal topological superconduct-
ing phase.

We further describe the properties of a (0,−1, 1) crystal
surface relevant to experiments in UTe2 [14]. The surface
preserves translation symmetries along the (1,0,0) and (0,1,1)
directions as well as mirror symmetry Mx, but breaks the
remaining crystalline symmetries. This surface hosts a Ma-
jorana Dirac cone and may host flat zero-energy states on
step edges between chemically distinct surfaces as described
above. The surface modes hybridize with low-energy bulk
modes around the projection of the bulk nodes onto the surface
BZ.

B1u and B2u superconducting order. The results for B1u

[B2u] symmetric superconducting order are equivalent to the
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results of B3u up to a permutation of coordinates (x, y, z) →
(z, x, y) [(x, y, z) → (y, z, x)]. For B1u [B2u], the (0,−1, 1)
surface corresponds to the (1, 0,−1) [(−1, 1, 0)] surface
when permuting the coordinates such that the order corre-
sponds to the B3u irrep. In both cases, the surface hosts a
Majorana Dirac cone and the bulk nodes project onto the
surface BZ at opposite momenta.

Reference [79] discusses a mirror Chern number as well
as winding numbers as topological invariants to characterize a
model for UTe2 with B1u, B2u, and B3u pairing. The mirror
Chern number also detects a Majorana Dirac surface cone
on mirror-symmetric surfaces. The parity of the mirror Chern
number is equal to the weak invariant ν j, j = 1, 2, 3 com-
puted from the normal-state Fermi pockets in the respective
plane as analyzed in Ref. [61].

B3u + iεB2u superconducting order. In the presence of an
additional, infinitesimal (|ε| � 1) superconducting order with
B2u symmetry and a superconducting phase relative to the
dominant B3u symmetric order, time-reversal symmetry as
well as twofold rotation Rx, Ry and mirror Mx, My sym-
metries are broken due to the incompatible transformation of
the two superconducting orders under the symmetries. The
symmetry breaking splits each node into a pair of Weyl nodes
with opposite charge ±1. The Weyl nodes have the same
kx momentum and are located in the ky = 0 plane. Further-
more, due to TRSB, the Majorana Dirac cones on mirror Mz

symmetry-breaking surfaces [such as the (0,−1, 1) surface]
acquire a mass term opening a spectral gap on the surfaces
[see Fig. 5(c)]. Surfaces related by mirror Mz symmetry have
an opposite sign of the mass term. At the same time, the zero-
energy flat bands acquire a dispersion turning it into a chiral
Majorana mode [41]. The chiral Majorana mode is protected
by the massive Dirac theories with opposite sign on mirror
Mz symmetric hinges. This system is a second-order topolog-
ical nodal superconductor of type (iii) [38]. In addition to the
massive Dirac cones around the center of the BZ, the surface
hosts Fermi arcs of Bogoliubov quasiparticles connecting to
the projection of the bulk Weyl nodes around (±kF , 0, 0)T.
As the total charge of Weyl nodes in each half-space with
positive or negative kx is zero, the Fermi arcs connect only
Weyl nodes within each half space. Similarly to the case
with B3u superconducting order, step edges on mirror Mz

symmetry-breaking surfaces [such as the (0,−1, 1) surface]
host chiral Majorana modes if the mass terms on adjacent
surfaces have opposite sign [Fig. 5(d)].

Reference [62] discusses B3u + iB2u pairing as the most
likely candidate for TRSB multi-component order in UTe2.
This work highlights the appearance of Weyl nodes, but does
not discuss the second-order topology described here.

B2u + iεB1u superconducting order and other permuta-
tions. The discussion for superconducting orders with other
combinations of Bku, k = 1, 2, 3 symmetry can be obtained
by a permutation of coordinates. Here, we explicitly discuss
the experimentally relevant case of B2u + iεB1u symmetry
[19,20].

With dominant B2u symmetric order, the nodes are located
around (0,±kF , 0)T. An admixture with a B1u symmetric
order and relative phase breaks time-reversal, rotation Ry, Rz,
and mirror My, Mz symmetries. As the (0,−1, 1) surface
preserves the mirror Mx symmetry, it hosts a Majorana Dirac

surface cone where the crossing at kx = 0 is protected by
mirror Mx symmetry. It coexists with the projection of the
bulk nodes onto the surface BZ. A similar result holds for
B1u + iεB2u.

The other permutations B3u + iεB1u, B3u + iεB2u, and
B2u + iεB3u break mirror Mx symmetry. Therefore (0,−1, 1)
surfaces with these orders are gapped except for the projec-
tions of the bulk Weyl nodes and corresponding Fermi arcs.

B3u + iεAu superconducting order. Including a small ad-
mixture of superconducting order with Au symmetry with
relative phase breaks time-reversal, rotation Ry, Rz, and mir-
ror My, Mz symmetries. With these broken symmetries, the
slice at 0 < |kx| < π becomes topologically trivial, such that
the nodes at (±kF , 0, 0)T are no longer topologically pro-
tected. Instead, the admixture splits each node into four Weyl
nodes with canceling total charge away from (±kF , 0, 0)T as
shown in Fig. 3. Each Weyl node has charge ±1. The slice
at kx = 0 remains topologically nontrivial characterized by a
mirror Chern number equal to one. The mirror Chern number
indicates the presence of mirror-symmetry protected Majo-
rana Dirac cones on mirror Mx symmetric surfaces. These
Majorana Dirac cones are realized on the (0,−1, 1) crystal
surface. If the bulk is fully gapped or the nodes do not lie
within the ky = 0 or kz = 0 plane, then mirror Mx-symmetric
hinges also support chiral Majorana modes. These are associ-
ated to the mirror Chern number.

B1u + iεAu and B2u + iεAu superconducting order. For
B1u + iεAu [B2u + iεAu] mixed superconducting order, the
nodes are along the kz [ky] direction and the remaining mirror
symmetry is Mz [My]. In these cases, the (0,−1, 1) crystal
surface is gapped except for the Fermi arcs around the projec-
tion of the Weyl nodes onto the surface BZ.

B3u + iAu superconducting order with �d (k) = (0, c1kz +
ic2ky, 0)T. We furthermore consider a TRSB order param-
eter of the specific form �d (k) = (0, c1kz + ic2ky, 0)T. This
order parameter describes a Weyl superconductor [42] with
Weyl nodes with charge ±2 at k = (±kF , 0, 0)T. The pro-
jections of the Weyl nodes with positive and negative kx

onto the surface BZ are connected by Fermi arcs of Bo-
goliubov quasiparticles. This connectivity distinguishes them
from Weyl nodes discussed above for the other nodal phases.
All eigenstates are twofold degenerate due to a SU(2) spin-
rotation symmetry. The Bogoliubov Fermi arcs are realized
on the (0,−1, 1)T crystal surface and connect to the Weyl
nodes at k = (±kF , 0, 0)T. For combinations B1u + iAu and
B2u + iAu, Weyl nodes can be obtained along the kz and ky

directions, respectively.

2. Gapped phases

Au superconducting order. A spherical Fermi surface with
Au superconducting order parameter �d (k) = (c1kx, c2ky, c3kz )
is fully gapped and realizes a strong topological superconduc-
tor in class DIII hosting surface Majorana Dirac cones.

Au + iεB3u superconducting order. A small (|ε| � 1) ad-
mixture of superconducting order with B3u symmetry and
relative phase to an Au superconducting order breaks time-
reversal symmetry as well as mirror My and Mz and rotation
Ry and Rz symmetries. This gaps the Majorana Dirac surfaces
cones and turns the system into a second-order topological
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superconductor hosting chiral Majorana modes on mirror Mx

symmetric hinges. Similar to the nodal phase with B3u +
iεAu superconducting order, step edges on a mirror-symmetry
breaking surface host a chiral Majorana mode if the micro-
scopic surface theories on the two sides of the hinge lead to
an opposite sign of the mass term of the massive surface Dirac
Hamiltonian. The (0,−1, 1) surface preserves the Mx mirror
symmetry and thereby hosts a Majorana Dirac surface cone
protected by mirror Mx symmetry.

Au + iεB1u and Au + iεB2u superconducting order. For a
B1u [B2u] symmetric admixture with relative phase, a mirror
Mz [My] symmetry remains. Then, the system becomes a
second-order topological superconductor with chiral Majo-
rana modes on mirror Mz [My] symmetric hinges. In both
cases, the (0,−1, 1) surface is gapped.

3. Symmetry-based indicator for DFT + U band structure

The topology of a BdG Hamiltonian resulting from intro-
ducing small superconducting pairing in a metal with given
band structure can be analyzed using the weak-pairing expres-
sions of symmetry-based indicators [43,80–82]. This analysis
requires that the pairing strength is small compared to the
relevant energy scales of the normal-state Hamiltonian such
that no gaps of the resulting BdG Hamiltonian are closed as
the pairing strength is increased. It is further assumed that the
BdG Hamiltonian is gapped at the high-symmetry momenta.
The symmetry-based indicators can detect fully gapped topo-
logical phases, as well as topological nodal phases [83].

Here, we apply the theory of symmetry-based indicators to
study the topological phases resulting from the normal state
band structure of UTe2 obtained from our DFT + U study as
summarized in Sec. IV A. We calculate the symmetry-based
indicator z3 of strong topological phases in 3D, inversion-
symmetric, odd-parity superconductors in class DIII using its
weak-pairing expression [43]

z3 =
∑

ks

(nks+ |occ. − nks− |occ.)(−1)2(h+k+l ) mod 8, (17)

where the sum runs over all eight inversion-symmetric
momenta ks = hG1 + kG2 + lG3 written in terms of the prim-
itive reciprocal lattice vectors G j, j = 1, 2, 3, and nks

α |occ. is
the number of occupied Kramers pairs with inversion parity α

at ks of the normal state band structure.3

The symmetry-based indicator z3 counts the maximum
number of Majorana Dirac surface cones that are present
on any surface modulo eight [77]. With inversion symmetry,
there are both first-order topological phases hosting a Z num-
ber of Majorana Dirac surface cones, as well as second- and
third-order topological phases as a result of Majorana Dirac
surface cones gapping out in sets of two and four to produce
a helical Majorana hinge mode and a Kramers pair of Ma-
jorana corner states, respectively. This leads to an ambiguity
in the topological phases indicated by z3, such that z3 = 2

3In Eq. (17), we further used that terms nks− counting the total
number of bands with odd inversion parity can be chosen to be an
integer multiple of eight by an appropriate energy cutoff such that
nks− mod 8 = 0 at all inversion-symmetric momenta ks.

FIG. 6. Symmetry-based indicator z3 calculated from Eq. (17)
and the DFT + U band structure for UTe2 as a function of Hubbard
repulsion U and for Hund’s exchange interaction J = 0, 0.1U , and
0.2U , as discussed in Sec. IV A. The inset shows a blowup of the
data at an intermediate U range as indicated by the red dashed box
in the main panel.

can describe a second-order or a first-order topological super-
conducting phase hosting two Majorana Dirac surface cones,
z3 = 3 can describe a second-order mixed with a first-order
topological superconducting phase hosting a single Majorana
Dirac surface cone or a first-order topological superconductor
hosting three Majorana Dirac surface cones, and so on. For z3

odd, the surfaces are always gapless due to the presence of an
odd number of Majorana Dirac surface cones.

In point group D2h, the crystalline symmetries in addition
to inversion symmetry impact the topological classifica-
tion and thereby the interpretation of the symmetry-based
indicator z3. With Au symmetric pairing, the topological clas-
sification contains first- and higher-order topological phases
separately [84], as in point group Ci. In this case, the interpre-
tation of z3 is the same as in Ci as summarized above. With
B1u, B2u, or B3u symmetric pairing, the first-order topological
phase is forbidden by the rotation and mirror symmetries [84].
This is reflected by our analysis in Sec. IV C 1 where we found
that single Majorana Dirac surfaces cones occur together with
a bulk node protected by a two-dimensional second-order
topological invariant. As a consequence, for B1u, B2u, or B3u

symmetric pairing, odd values of z3 indicate a second-order
topological nodal superconductor as described in Sec. IV C 1.
For these phases, including an additional, infinitesimal super-
conducting order breaking time-reversal symmetry leads to
the phenomenology described in Secs. IV C 1 and IV C 2.

Figure 6 shows the symmetry-based indicator z3 from
Eq. (17) obtained for the DFT + U band structure calcula-
tions summarized in Sec. IV A as a function of Hubbard
repulsion U . For the experimentally relevant range of mod-
erate U ≈ 0.97–1.44 eV [61,62], we find z3 = 1, except for a
small region around U ≈ 1.05 eV where an additional Fermi
pocket around � appears (see Sec. IV A). This result is con-
sistent with the shape of the Fermi surface obtained from
the DFT + U calculations for moderate U : the electron-like
Fermi surface enclosing the X point (blue and yellow surface
in Fig. 2) can be deformed into a spherical Fermi surface
around the X point and a cylindrical Fermi surface enclosing
the other time-reversal symmetric momenta at the Brillouin
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zone boundary without crossing any time-reversal symmetric
momenta but allowing cutting and gluing of surfaces away
from these high-symmetry momenta. This set of rules ensures
that the z3 symmetry-based indicator dictating the ground
state topology after introducing superconducting pairing re-
mains invariant under the deformations.4 For the spherical
Fermi pocket, our analysis in Sec. IV C 1 and IV C 2 applies.
The remaining cylindrical Fermi surfaces are irrelevant for
the symmetry-based indicator z3 as they enclose pairs of
inversion-symmetric momenta with canceling contributions.
The region for small U � 0.97 eV where z3 = 2 is experi-
mentally not relevant because the DFT + U calculations yield
an insulator in this range.

V. DISCUSSION AND CONCLUSIONS

Through a general Ginzburg–Landau analysis, we have
provided a discussion of two-component spin-triplet super-
conducting orders and their associated allowed composite
structure. This includes criteria for when TRSB nonuni-
tary order emerges at the second transition. The associated
secondary specific heat transition may exhibit the peculiar
feature that it is vanishingly small or even drops upon en-
tering a TRSB nonunitary state. These are general properties
under such circumstances, but we have exemplified these
results through superconducting states relevant for UTe2, a
heavy-fermion compound under considerable current inter-
est due to its strong evidence for topological spin-triplet
superconductivity.

Some experiments on UTe2 are most consistent with
TRSB nonunitary two-component triplet superconductivity
[11,13,14,18]. In that context, our results provide a possible
resolution to the lacking observation of a second specific
heat jump. Other experiments are more consistent with a
condensate consisting of a single component of the 1D triplet
irreps, and indeed the simplest explanation of the specific heat
behavior of high-quality UTe2 samples is that the order is
single-component and belongs to one of the odd-parity irreps
possessing point nodes.

This current puzzle of the detailed pairing structure of
UTe2 motivated us to pursue also the topological properties
of the different superconducting states under consideration
for this material. For a single-band spherical Fermi sur-
face, single-component nodal phases with B1u, B2u, or B3u

pairing host surface Majorana Dirac cones and flat zero-
energy bands at hinges in addition to the bulk nodes. Within
our scope of analyzing the topological properties of TRSB
two-component orders under the assumption that the pair-
ing strength of one order is much weaker than the other,
the observed gapped (0,−1, 1) surface with chiral modes
at step edges [14] are consistent with B3u + iεB2u, B2u +
iεB3u, B3u + iεB1u, B1u + iεB3u, B1u + iεAu, and B2u + iεAu

4Notice that this set of allowed deformations is distinct from the
continuous deformations considered when studying homotopy equiv-
alence of shapes. In addition to continuous deformations, we allow
to cut and glue surfaces away from the time-reversal symmetric
momenta. At the same time, we impose the additional rule that no
Fermi surface may cross the time-reversal symmetric momenta.

pairing. For these orders, the node of the dominant B ju, j =
1, 2, 3, order splits into multiple Weyl nodes with canceling
charge. The (0,−1, 1) surface is gapped, except for Fermi
arcs at large momentum around the projection of the Weyl
nodes. Step edges between chemically distinct surfaces may
host chiral modes. Alternatively, an increased density of states
at step edges could be related to Fermi arcs stemming from
the Weyl nodes. A fully gapped spin-triplet superconducting
state points toward dominant Au pairing, with potential B1u or
B2u-symmetric admixture breaking TRS. Single-component
Au pairing host surface Majorana Dirac cones that would
gap out under a B1u or B2u TRSB admixture. The remaining
orders host Majorana Dirac cones on the (0,−1, 1) surface
protected by mirror symmetry also when TRS is broken. Our
model of a spherical Fermi surface is motivated by DFT +
U band structure calculations from which we calculate a
symmetry-based indicator supporting the applicability of our
results.

The topological phases discussed for the various odd-parity
superconducting orders may further bind anomalous modes
to vortices. It is well-known that the first-order topological
superconductor as we found for Au pairing hosts helical Ma-
jorana modes at vortices [40]. For nodal B ju pairing, we also
expect helical Majorana modes at vortex lines that are not
perpendicular to the axis connecting the bulk nodes. For the
fully gapped second-order topological superconducting state
with TRSB Au + iεB ju pairing we expect that vortex line ends
may bind Majorana zero modes because the gapped surfaces
are described by massive Dirac theories in Cartan class D,
however we expect their presence to depend on microscopic
details. Similarly, the second-order topological phases in the
remaining nodal superconducting orders may host Majorana
zero modes at the ends of vortex lines. For nodal phases, Ma-
jorana zero modes are not topologically protected because of
hybridization with the gapless bulk or Fermi arc surface states.
Besides vortices, also topological lattice defects, such as dis-
locations, disclinations, and grain boundaries, host anomalous
modes directly related to the crystalline bulk topology and su-
perconducting order [85–87]. The presence of absence of such
anomalous defect modes, and their signatures in surface-probe
measurements [88–96], provide an interesting future research
direction that may help further pin down the bulk topol-
ogy and pairing symmetry of the fascinating heavy-fermion
material UTe2.
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FIG. 7. Phase diagram of a two-component order parameter be-
longing to, e.g., Eu of D4h. The chiral phase breaks time-reversal
symmetry, and the nematic and helical phases break rotational sym-
metry, C4 → C2.

APPENDIX A: INTERMEZZO: TWO-COMPONENT
ORDERS AND MICROSCOPIC EVALUATION

We consider a spin triplet superconductor with an order
parameter, �η ∈ C2, belonging to the two-dimensional irre-
ducible representation Eu of the tetragonal point group D4h.
The symmetry-consistent Ginzburg–Landau theory in this
case takes the form [15]

FEu [�η] = α(T )|�η|2 + β1|�η|4 + 1
2β2

(
(η∗

x )2η2
y + η2

x (η∗
y )2)

+ β3|ηx|2|ηy|2. (A1)

The phase diagram of this model is easily derived from the
parametrization �η = η0(cos φ, exp(iθ ) sin φ)T which upon
insertion in Eq. (A1) gives the following criteria for ther-
modynamic stability (requiring the free energy to be lower
bounded):

β1 > 0,

4β1 + β3 ± β2 > 0. (A2)

Minimizing Eq. (A1) for parameters satisfying these criteria
result in the three standard phases shown in Fig. 7. A priori,
all three phases appear realizable.

We contrast the above theory to a microscopic approach
in which the free energy coefficients are evaluated from the
diagrammatic loop expansion, following Gor’kov [97] and
explained in detail elsewhere [47,48]. In the absence of spin-
orbit coupling, we can without loss of generality take the
order parameter to be �d = ẑ(ηx fx + ηy fy), where fx and fy are
momentum dependent form factors normalized by their max-
imal absolute value. The resulting microscopic free energy
is

FEu [�η] = α̃(T, Tc)(|ηx|2 + |ηy|2) + β̃1(|ηx|4 + |ηy|4)

+ β̃2
[
4|ηx|2|ηy|2 + (η∗

x )2η2
y + η2

x (η∗
y )2

]
,

α̃(T, Tc) = −V
∫

dd p
(2π )d

(
tanh [ξ (p)/(2T )]

2ξ (p)

− tanh [ξ (p)/(2Tc)]

2ξ (p)

)
f 2

j (p),

[
β̃1

β̃2

]
= V

2T 3

∫
dd p

(2π )d
h(ξ (p)/T )

[
f 4

j (p)

f 2
x (p) f 2

y (p)

]
, (A3)

where ξ (p) is the normal-state dispersion, V is the unit cell
volume, where j = x, y are equal by symmetry, and finally
where the function h is given by

h(x) ≡ sinh x − x

4x3(1 + cosh x)
. (A4)

The Cauchy–Schwarz inequality tells us that β̃2
1 � β̃2

2 ⇒
β̃1 � β̃2. Comparing with the coefficients of the phenomeno-
logical theory in Eq. (A1), we see that β1 = β̃1 � 0, β2 =
2β̃2 � 0, and β3 = 4β̃2 − 2β̃1. From the above expressions
combined with the Cauchy–Schwarz inequality, we find that
β2 = 2β̃2 � 0 and β3 = 2β̃2 + 2(β̃2 − β̃1) � 2β̃2 = β2. Plac-
ing this in the phase diagram of Fig. 7, we reach the following
conclusion for the microscopic theory.

Theorem. At the mean-field level of a single-band super-
conductor with crystal point group D4h and an order parameter
belonging to the irreducible representation Eu, the chiral
TRSB phase (I) of Fig. 7, i.e., �d = ẑ�0( fx + i fy) is favoured
when using the loop expansion to evaluate the Ginzburg–
Landau coefficients.

This simple fact does not appear to be commonly pointed
out in the literature, although Ref. [98] analogously mentions
that the weak-coupling limit with D6h symmetry permits a
constant ratio between the only two quartic-order coefficients
of the theory. It is an interesting question to explore the con-
ditions for this result to break down.

APPENDIX B: DETAILS OF THERMODYNAMIC
SPIN-TRIPLET DOUBLE TRANSITIONS

1. Entropy of the double transitions

To elaborate on how the heat capacity anomalies observed
in Fig. 4 manifest in the entropy, we have calculated the
entropy from Eq. (11) for Tc2 = 0.5Tc1 and Tc2 = 0.9Tc1 in
Fig. 8. For these critical temperatures the calculations in Fig. 4
resulted in negative and positive heat capacity anomalies, re-
spectively.

As stated in the main text, the nonanalyticity of S,
i.e., sign[ ∂S

∂T |T −
c2

− ∂S
∂T |T +

c2
] dictates whether the second heat

capacity discontinuity is positive or negative. This is consis-
tently confirmed when calculating the entropy directly from
Eq. (11), as shown in Fig. 8. With Tc2 = 0.5Tc1 we find that
∂S
∂T |T −

c2
− ∂S

∂T |T +
c2

< 0 [consistent with �C(Tc2) < 0], whereas

for Tc2 = 0.9Tc1, we find ∂S
∂T |T −

c2
− ∂S

∂T |T +
c2

> 0 [consistent with
�C(Tc2) > 0].

Returning to the result of Eq. (15) we next normalize by
the primary jump at Tc1 to obtain

�C(Tc2)

�C(Tc1)

Tc1

Tc2
=

(
Tc1

Tc2

)2

ε2

1
4kBTc2

∫ ∞
−∞ dξ

〈
sech2

(√
ξ 2+g2

2kBTc2

)[| �d2|2 − �2
0

kBTc2

| �d1×�d2|2√
ξ 2+g2

(
1 − Tc2

Tc1

)
tanh

(√
ξ 2+g2

2kBTc2

)]〉
FS

〈| �d1|2〉FS

, (B1)
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(a) (b)

FIG. 8. The entropy calculated from Eq. (11) for a spherical Fermi surface with k2
F /(2m) = 1 meV for Tc1 = 1.0 K and (a) Tc2 = 0.5 K,

and (b) Tc2 = 0.9 K. The transparent blue lines show the slope of S right below the transition temperatures at which the entropy is nonanalytic.
In (a), sign[ ∂S

∂T |T −
0

− ∂S
∂T |T +

0
] is positive at T0 = Tc1 and negative at T0 = Tc2. In (b), this quantity is positive at both T0 = Tc1 and T0 = Tc2.

where still g = �0| �d1|
√

1 − Tc2/Tc1. For infinitesimal
splittings, Tc2 → Tc1, this result simplifies considerably:
�C(Tc2 = Tc1)/�C(Tc1) = ε2〈| �d2|2〉FS/〈| �d1|2〉FS, i.e.,
the order parameter anisotropy ratio. This explains the
results of Fig. 4 at Tc2 = 1 K: the dashed lines have
〈| �d1|2〉FS = 〈| �d2|2〉FS, whereas the full line clearly has
〈| �d1|2〉FS < 〈| �d2|2〉FS at this temperature.

2. Critical exponents beyond mean field

So far we have considered the case of mean-field crit-
ical exponents (β = 1

2 ) in the order parameter temperature
dependence. The numerical value of the corresponding crit-
ical exponent in the XY universality class in 3D is βXY ≈
0.3485(2) [99]. Let us therefore focus on the derivation of the
unusual negative term in Eq. (15) from the more general order
parameter ansatz of

�d (T, k) = �0[(1 − T/Tc1)a �d1(k)

+ iε(1 − T/Tc2)b �d2(k)], (B2)

where 0 < a, b < 1. Expressing T −
c2 = Tc2 − δT , we

have ∂| �d∗ × �d|/(∂T )|T −
c2

∼ (δT )b−1. The other factor
appearing in Eq. (14), on the other hand, behaves as∑

σ σ sech2(Eσ /(2kBT −
c2 )) ∼ (δT )b, so the general form

of the heat capacity integrand is

δc = A| �d2|2 − B| �d1×�d2|2(δT )2b−1, (B3)

where A and B are numerical factors. Hence, the mean-field
case of b = 1

2 is peculiar in the sense that it separates a vanish-
ing result (b > 1

2 ) from a formally divergent result (b < 1
2 ). In

principle, nonunitary secondary transitions in the entire range
of 0 < b � 1

2 can accommodate the anomalous heat capacity
signature.

APPENDIX C: SINGLE-COMPONENT NONUNITARY
TRANSITION

Consider the case of a single-component nonunitary order
parameter onsetting at Tc:

�d (T, k) = �0

√
1 − T/Tc d̂ (k). (C1)

The associated (squared) gaps are given by |�σ |2 = �2
0(1 −

T
Tc

)(|d̂|2 + σ |d̂∗ × d̂|). Employing this to calculate the spe-
cific heat jump �C(Tc), using Eq. (12), now straightforwardly
results in

�C(Tc) ≡ C(T −
c ) − C(T +

c )

=
(

γnTc + �2
0〈|d̂|2〉FS

Tc

)
− γnTc = �2

0〈|d̂|2〉FS

Tc
� 0,

(C2)

where γn ≡ 4k2
Bζ (2)〈1〉FS, with ζ being the Riemann zeta

function, is the Sommerfeld coefficient. This shows that the
anomalous behavior of a negative specific heat jump can not
occur for a single-component nonunitary order parameter, but
only when the onset of nonunitary occurs as a subleading
transition with Tc2 < Tc1, consistent with the result of Eq. (15).

APPENDIX D: VALIDATION OF THE TOPOLOGICAL
PHASES

To identify the topology of the nodal phases, we analyze
slices with fixed momentum kx on which the Hamiltonian
is gapped, except at the nodal point. The topology of the
slices is identified by deforming the Hamiltonian into canon-
ical form. The canonical form is a massive Dirac theory,
for which the topology and its corresponding anomalous
boundary excitations can be identified from an analysis of
its symmetry-breaking mass terms [77,100]. The topology of
the gapped phases is identified similarly by considering the
Hamiltonian defined on the whole BZ.

1. Nodal phases

B3u superconducting order. The Bogoliubov-de Gennes
Hamiltonian [Eq. (9)] for a spherical Fermi surface with
B3u superconducting order parameter of the form �d (k) =
(c1kxkykz, c2kz, c3ky)T can be written using Pauli matrices σ

in spin and τ in particle-hole space as

H (k) = ξ (k)σ0τ3 − c1kxkykzσ3τ1 − c2kzσ0τ2 + c3kyσ1τ1.

(D1)
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The Hamiltonian has nodes at k = (±kF , 0, 0)T. Expanding to
lowest order around the nodes, the Hamiltonian has the form
of a massive Dirac theory

H (k) = m(kx )σ0τ3 − c2kzσ0τ2 + c3kyσ1τ1, (D2)

with mass m(kx ) = ξ ((kx, 0, 0)T). With B3u symmetric super-
conducting order, the Hamiltonian satisfies the symmetries

H (kx, ky, kz ) = −UPH∗(−kx,−ky,−kz )U †
P

= UT H∗(−kx,−ky,−kz )U †
T

= UIH (−kx,−ky,−kz )U †
I

= URx H (kx,−ky,−kz )U †
Rx

= URy H (−kx, ky,−kz )U †
Ry

= URz H (−kx,−ky, kz )U †
Rz

, (D3)

with the representations

UP = σ0τ1,

of particle-hole antisymmetry,

UT = iσ2τ0,

of time-reversal symmetry,

UI = σ0τ3,

of inversion symmetry,

U (Rx ) = iσ1τ3,

U (Ry) = iσ2τ3,

U (Rz ) = iσ3τ0,

of the rotation symmetries, as well as combinations thereof,
in particular the chiral antisymmetry C = T P with represen-
tation

UC = UT U ∗
P = iσ2τ1,

and mirror symmetries M j = IR j , j = x, y, z with represen-
tations

U (Mx ) = iσ1τ0,

U (My) = iσ2τ0,

U (Mz ) = iσ3τ3.

The representations follow from the normal-state repre-
sentations of spinful fermions and the symmetry of the
superconducting order parameter [43].

The topological properties of a massive Dirac theory [such
as Eq. (D2)] can be obtained from an analysis of its mass terms
[40,77,100] and their behavior under the symmetries of the
system. The mass terms are constant terms that anticommute
with the linear-in-momentum terms of the Hamiltonian and
anticommute mutually. Additional symmetry-allowed mass
terms beyond the term proportional to ξ (k) would allow to
adiabatically deform the Hamiltonian to the topologically triv-
ial form Htriv. = mσ0τ3.

To determine the properties of the nodal topological phase
with nodes along the kx-axis, we analyze the topological prop-
erties of the Hamiltonian defined on slices with fixed kx in the

BZ. Taking kx as a parameter in Hamiltonian (D2) yields a
massive Dirac theory whose additional mass terms are

M1 = mσ2τ1

and

M2 = mσ3τ1.

At kx = 0, these two mass terms are prohibited by particle-
hole antisymmetry (M2), time-reversal symmetry (M1 and
M2), chiral antisymmetry C = T P (M1), inversion symme-
try (M1 and M2), and mirror symmetries Mx (M1 and M2)
and My, Mz (M2). Slices with finite 0 < |kx| < π satisfy a
reduced set of symmetries. In this case, the mass terms are
prohibited by chiral antisymmetry C = T P (M1), inversion-
particle hole antisymmetry (M1), and mirror symmetries My,
Mz (M2). The result that both additional mass terms M1

and M2 are prohibited by symmetries for slices 0 < |kx| < π

indicates that the massive Dirac theory Eq. (D2) describes a
topological phase with a topological invariant that protects the
nodal point.

The behavior of the (symmetry-forbidden) mass terms un-
der the symmetries of the system determines the properties
of the anomalous surface states [77,100]. For 0 < |kx| < π ,
the result that the mass term M2 = σ3τ1 is prohibited only by
mirror My and Mz symmetries and inversion-particle-hole
antisymmetry IP indicates that the slices for 0 < |kx| < kF

are in a second-order topological phase with zero-energy
hinge states at mirror symmetric hinges [77,100]. The chiral
antisymmetry PT pins the flat hinge band to zero energy. At
kx = 0, the slice is furthermore invariant under time-reversal
symmetry U (T ) = iσ2τ0K and inversion symmetry U (I ) =
σ0τ3. At this point, the mass term M2 = mσ3τ1 is forbidden
additionally by time-reversal symmetry and mirror symme-
try Mx. This indicates that the topological phase at kx = 0
is first order with helical Majorana edge states and can be
characterized by the topological invariant of a 2D topological
superconductor in class DIII or a mirror Chern number.

B3u + iεB2u superconducting order. Admixture of a weak
B2u symmetric order with relative phase breaks rotation Rx,
Ry, mirror Mx, My, and time-reversal symmetry. In this case,
at kx = 0, the mass terms are forbidden by inversion symmetry
(M1 and M2), mirror Mz symmetry (M2) and particle-hole
antisymmetry (M2). This indicates a second-order topologi-
cal phase with zero-energy Majorana modes at mirror Mz

symmetric hinges. At 0 < |kx| < π , the mass term M1 is
forbidden by the combination of inversion and particle-hole
antisymmetry and the mass term M2 is forbidden by mirror
Mz symmetry. This corresponds to an obstructed atomic limit
which does not have gapless boundary states but protects a
nodal manifold around (±kF , 0, 0)T. These boundary signa-
tures are characteristic for a second-order topological nodal
superconductor of type (iii) [38].

The fourfold degenerate node with B3u pairing is split into
two Weyl nodes with charge ±1. Each Weyl node describes
a linear crossing of two eigenvalues which together with the
symmetry analysis suffices for their identification as Weyl
nodes from exact diagonalization of the Hamiltonian.

B3u + iεAu superconducting order. Including an infinites-
imal order parameter with Au symmetry breaks rotation Ry

and Rz, mirror My and Mz, and, in case of a relative phase of
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the two superconducting orders, time-reversal symmetry. At
kx = 0, both mirror symmetry Mx and inversion symmetry
I prohibit the mass terms M1 and M2. The slice at kx = 0
has a nontrivial mirror Chern number. At 0 < |kx| < π , only
the mass term M1 is forbidden by the combination of inver-
sion and particle-hole antisymmetry. Since M2 is allowed, the
slices with 0 < |kx| < π can be trivialized which implies that
the nodes at (±kF , 0, 0)T may generically gap out or split
into multiple Weyl nodes with canceling total charge as in our
example in Sec. III.

B3u + iAu superconducting order with �d (k) = (0, c1kz +
ic2ky, 0)T. For a mixture �d (k) = (0, c1kz + ic2ky, 0)T, the
Bogoliubov-de Gennes Hamiltonian is of the form

H (k) = ξ (k)σ0τ3 + c1kzσ0τ2 − c2kyσ0τ1. (D4)

This Hamiltonian describes a Weyl superconductor with four-
fold degenerate Weyl nodes at k = (kF , 0, 0)T. On slices
with ξ (k) < 0(ξ (k) > 0), the system has Chern number
Ch = 2(Ch = 0). This Hamiltonian has SU(2) spin-rotation
symmetry enforcing a twofold spin degeneracy of the eigen-
states.

2. Gapped phases

Au superconducting order. A fully gapped Au supercon-
ducting order with �d (k) = (c1kx, c2ky, c3kz )T for a single band
spherical Fermi surface has a Bogoliubov-de Gennes Hamil-
tonian of the form

H (k) = ξ (k)σ0τ3 − c1kxσ3τ1 − c2kyσ0τ2 + c3kzσ1τ1. (D5)

This Hamiltonian describes a strong topological supercon-
ductor in class DIII with surface Majorana Dirac cones. It
has a single mass term M = mσ2τ1 that is prohibited by
time-reversal U (T ) = iσ2τ0K as well as by mirror symmetry
U (Mx ) = iσ1τ0.

Au + iεB3u superconducting order. Breaking time-reversal
symmetry by including an infinitesimal order with B3u sym-
metry in addition to an Au superconducting order turns the
system into a second-order topological superconductor with
chiral Majorana modes on hinges preserving the Mx mirror
symmetry.
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