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Amplitude Higgs mode in superconductors with magnetic impurities
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We study the nonlinear response of conventional superconducting alloys with weak magnetic impurities to
an external alternating electromagnetic field. In particular, we calculate a correction to the superconducting
order parameter |δ��| exp(i�t ) up to second order in the external vector potential and show that the frequency
dependence of the order parameter amplitude has a characteristic resonant shape with a maximum at the
frequency which is smaller than twice the magnitude of the pairing amplitude in equilibrium, � < 2�, and at
the same time exceeds the single-particle threshold energy. Our results suggest that in the presence of magnetic
impurities the dynamics of the pairing amplitude in the collisionless regime will remain robust with respect to
dissipative processes. We also evaluate the third harmonic contribution to the current as a function of the probe
frequency and for various concentrations of magnetic impurities.
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I. INTRODUCTION

Recent advances in state-of-the-art optical instruments
and techniques have led to increased interest in problems
which focus on theoretical and experimental studies of vari-
ous nonlinear responses in conventional and unconventional
superconductors [1–6]. It is worth noting that while these
developments must have been motivated, at least in part,
by earlier theoretical discoveries such as stimulation of su-
perconductivity by microwave radiation (Eliashberg effect)
and collisionless dynamics of the pairing amplitude in con-
ventional BCS superconductors [7–12], the main conceptual
motivation to make significant advances in this area of re-
search has come from the realization that a similarity exists
between cosmology and condensed matter physics, specif-
ically to superconductivity as well as other phases which
exhibit well-defined long-range order [13–18]. Indeed, the
fully gapped amplitude mode in superconductors is similar to
the Higgs mode in quantum field theories [19–23]. Therefore,
by exploiting this similarity it becomes, in principle, feasible
to probe the physics associated with the amplitude mode in a
tabletop experimental setup [24].

The excitation and propagation of the amplitude mode in
superconductors are completely decoupled from the charge
density fluctuations which are related to the phase fluctuations
of the pairing field [23]. On timescales which are short in com-
parison with the characteristic timescales for single-particle
relaxation processes, the dynamics of the pairing amplitude
is described by kinetic equations in which the collision in-
tegrals Ie-e ∝ h̄/τe-e and Ie-ph ∝ h̄/τe-ph, which account for
the electron-electron and electron-phonon scattering effects,
respectively, can be ignored [10,25–30]. In other words, the
dynamics of the amplitude mode is considered in the colli-
sionless regime. Therefore, the problem of pairing amplitude
dynamics becomes conceptually analogous to that of the col-
lisionless relaxation of an electric field in electronic plasma
[31,32]. Curiously, while the electric field in electronic plasma
attenuates exponentially fast after an initial perturbation

(Landau damping), in conventional superconductors the am-
plitude mode asymptotes to a constant according to a power
law [10,33,34]:

|�(t )| = �∞

(
1 + a

cos(2�∞t + π/4)√
2�∞t

)
, (1)

where a is some known parameter. The physical origin of
this behavior has been understood using the exact solution to
the problem of the BCS dynamics in fermionic condensates
[27–29,35,36]. Following the initial perturbation, collective
modes with frequencies 2� j = 2(ε2

j + �2)1/2 are excited (ε j

are the roots of a certain nonlinear equation [34]), and in
complete analogy with the problem considered by Landau
[31,32,37], the dynamics of the pairing amplitude will be
determined by a sum over excitation energies. In concert with
the square-root anomaly in the density of states, this sum-
mation ultimately produces a power-law decay of the pairing
amplitude, Eq. (1), provided, of course, that the deviations
from equilibrium are not too large [34].

It is important for our subsequent discussion to keep in
mind that in the linear approximation, i.e., when the initial
perturbation is weak (e.g., quenches of the pairing strength g
are of small magnitude, |δg| � g), �∞ is equal to the value
of the pairing amplitude in equilibrium � [38]. Therefore, in
the context of the pump-probe experiments one would expect
the resonant amplitude Higgs mode to be excited when the
external frequency of the monochromatic field is tuned to
2�res = 2� [37,39–45]. Alternatively, when the superconduc-
tor is in a state which carries a supercurrent, the amplitude
Higgs mode will be excited at resonant frequency �res = 2�

[23].
There is a question of whether the effects of potential

disorder will affect the results we just discussed for clean
superconductors in any way. For zero-dimensional systems
it is obvious that potential disorder will produce the renor-
malization of the single-particle energy levels and therefore
will have no effect on the dynamics of the amplitude mode.
In three-dimensional systems the situation is more subtle. For
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a case of weak disorder the Anderson theorem [46] guar-
antees that potential disorder should not have a significant
effect on the dynamics, and this conclusion should hold in
both the ballistic and diffusive regimes [47–51]. Larkin and
Ovchinnikov [52] showed that when disorder is strong enough
to render the pairing interaction spatially inhomogeneous, in
this case the inhomogeneities lead to pair breaking, and at
the mean-field level, their theory becomes analogous to the
Abrikosov-Gor’kov theory of superconductors contaminated
with paramagnetic impurities [53]. It is therefore expected
that in this case amplitude dynamics may exhibit qualita-
tively different behavior from Eq. (1), and the results of
the recent experiments on superconducting films near the
superconductor-insulator transition [54] seem to be in agree-
ment with these observations, although systematic theoretical
analysis of these systems is inhibited by the fact that the
ground state in strongly disordered superconducting films still
remains very poorly understood [55,56].

Although the effects of potential disorder on an amplitude
mode had already been studied, the question of what happens
to the dynamics of the amplitude mode in superconducting
alloys with magnetic impurities was not addressed until very
recently [57]. This is quite surprising given how conceptually
rich the problem of the interplay between conventional su-
perconductivity and paramagnetic disorder really is (see, e.g.,
[58–65] and references therein). Experimental progress in this
direction is, perhaps, inhibited by the fact that it may be chal-
lenging to introduce magnetic impurities in a controlled way
such that their interplay with the dynamics of an amplitude
mode can be probed in the collisionless regime.

One of the main results of [57] consists of the following
observation: When the relaxation time τs due to the scattering
of conduction electrons on paramagnetic impurities is long
enough that the conditions τs � τee and ζ = 1/τs� � 1 are
met, after a quench of an arbitrarily small magnitude (linear
approximation), the dynamics of the amplitude Higgs mode
on the timescale τs � t � τee remains undamped,

|�(t )| = �{1 + ζ cos(ωst + π/4)}, (2)

even though on shorter timescales τ� � t � τs it approx-
imately follows the Volkov-Kogan asymptotic formula (1).
The frequency of the Higgs mode oscillations is given by
ωs ≈ 2�

√
1 − ζ 2 < 2�. Clearly, Eq. (2) is very different

from the Volkov-Kogan result, Eq. (1), and it implies that
scattering on paramagnetic impurities pushes the frequency of
the Higgs mode below the minimum of the band of excitation
energies � j , rendering it nondissipative. In passing we note
that in clean superconductors the realization of a state with
an oscillating amplitude requires fairly large deviations from
equilibrium [25,30,36,66,67], which makes the result (2),
given that it appears already in the linear approximation, even
more striking. We would like to emphasize that the results of
Ref. [57] are valid in only the perturbative regime, ζ � 1.
Naturally, there are still questions which remain unanswered,
such as the one about the fate of this nondissipative ampli-
tude mode when ζ ∼ 1, especially in the regime of gapless
superconductivity [58]. Last, we note that similar findings
were recently reported in the context of a problem in which
a clean superconductor is coupled to a strongly driven cavity

[68], where the external electromagnetic field in the cavity
pushes the frequency of the Higgs mode below the gap edge
and causes the order parameter dynamics to become periodic
in time.

In Ref. [57] the out-of-equilibrium dynamics in the s-
wave superconductor was induced by a sudden, albeit small,
change in the pairing strength. In this paper we consider
a realistic situation in which the out-of-equilibrium dynam-
ics is induced by an external electromagnetic ac field and
compute the frequency dependence of the amplitude Higgs
mode. We show that the resonance frequency at which this
mode is excited is, indeed, smaller than 2�. At the same
time, by evaluating the single-particle density of states we
demonstrate that it remains above the single-particle threshold
�th = �(1 − ζ 2/3)3/2. These results are in general agreement
with those of Ref. [57]. In addition we compute the third har-
monic contribution to the current in the pump-probe setup as a
function of the probe frequency assuming the pump frequency
has been tuned to the vicinity of the resonance amplitude
mode frequency. We find that the largest contribution to the
third harmonic is governed by the amplitude mode. We also
find that the third harmonic contribution to the current is
suppressed with an increase in the magnetic scattering rate.
We think that this particular result may shed some light on
the physical origin of the energy scale corresponding to the
resonant frequency of the amplitude mode. We emphasize
that our present findings are generally applicable for arbitrary
values of the dimensionless parameter ζ . However, the effects
associated with the formation of the Yu-Shiba-Rusinov bound
states are not included in our forthcoming discussion and will
be considered separately.

II. BASIC EQUATIONS

In what follows we consider a disordered BCS super-
conductor in the diffusive limit � � 1/τ , where τ is the
relaxation time due to scattering on potential impurities. It
is clear that in the presence of the magnetic impurities this
condition can always be fulfilled. At the same time we will
assume that τ � τs.

The central quantity for our analysis is the Green’s function
defined on the Keldysh contour:

Ǧ(t, t ′) =
(

ĜR(t, t ′) ĜK (t, t ′)
0 ĜA(t, t ′)

)
. (3)

Each component of the matrix function Ǧ is a 4×4 matrix and
Nambu and spin subspaces [60,69]. The Green’s function (3)
can be found by solving the Usadel equation for disordered
superconductors, which corresponds to a spatially homoge-
neous configuration of the Q matrix at the saddle point of the
nonlinear σ model [70,71]:

i
(
�̌3∂t Ǧ + ∂t ′Ǧ�̌3

) + [�̌, Ǧ]

+ i

6τs
[(ρ̂3 ⊗ σ̂i )Ǧ(ρ̂3 ⊗ σ̂i ) ◦, Ǧ] = −iD[Q̌ǦQ̌ ◦, Ǧ]. (4)

Here D = v2
F τ/3 is the diffusion coefficient, Q̌(t ) = (γ̂0 ⊗

�̂3)A(t ), A(t ) is proportional to an external vector potential,
�̌3 = γ̂0 ⊗ �̂3 is diagonal in the Keldysh subspace, γ̂0 is
the unit Pauli matrix in the Keldysh space, �̂3 = ρ̂3 ⊗ σ̂0,
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(Ǎ ◦ B̌)(t, t ′) = ∫
dt1Ǎ(t, t1)B̌(t1, t ′), and ρ̂n and σ̂m (n, m =

1, 2, 3) are the Pauli matrices acting in the Nambu and spin
subspaces, respectively. Function Ǧ must satisfy the normal-
ization condition

Ǧ ◦ Ǧ = 1̌, (5)

and the third term in this equation should be understood
as [�̌, Ǧ] = �̌(r, t )Ǧ(r; t, t ′) − Ǧ(r; t, t ′)�̌(r, t ′), where the
matrix �̌(r, t ) = �(r, t )(γ̂0 ⊗ iρ̂2 ⊗ σ0) is diagonal in the
Keldysh space. The pairing field must be computed self-
consistently from

�(t ) = πλ

2
Tr{[γ̂1 ⊗ (ρ̂1 − iρ̂2) ⊗ σ̂0]Ǧ(t, t )}. (6)

Here λ is the dimensionless pairing strength, and γ̂1 is the first
Pauli matrix acting in the Keldysh subspace. We would like to
emphasize that Eq. (4) was found by performing exact averag-
ing over potential and magnetic disorder configurations. The
only approximation that we have made is similar to one made
in Refs. [60,61] for the contribution from scattering on mag-
netic impurities. This approximation is justified in the limit
τ � τs. In other words, the spatially homogeneous solution
of (4) is applicable within the validity of the self-consistent
Born approximation.

A. Ground state

The expressions for the components of Ǧ(t, t ′) in the
ground state are found by solving the Usadel equation (4)
when the external field is set to zero:

i(�̌3∂t Ǧ + ∂t ′ Ǧ�̌3) + [�̌, Ǧ]

+ i

6τs

3∑
a=1

[(ρ̂3 ⊗ σ̂a)Ǧ(ρ̂3 ⊗ σ̂a) ◦, Ǧ] = 0. (7)

Performing the Fourier transform for the first term, we find

i(�̌3∂t Ǧ + ∂t ′ Ǧ�̌3) =
∫

εdε

2π
(�̌3Ǧε − Ǧε�̌3)e−iε(t−t ′ ). (8)

As is well known, at equilibrium the Keldysh sub-block ĜK

can always be chosen to be

ĜK
ε = (

ĜR
ε − ĜA

ε

)
tanh

( ε

2T

)
. (9)

From the normalization condition (5) we find

ĜR
ε ĜR

ε = 1̂, ĜA
ε ĜA

ε = 1̂, ĜR
ε ĜK

ε + ĜK
ε ĜA

ε = 0. (10)

Below we will determine each of these Green’s functions
separately.

1. Retarded and advanced Green’s functions

Let us discuss an equation for the retarded matrix function
ĜR

ε first. From the form of the Usadel equation, we look for
the solution for this function in the form

ĜR
ε = gR

ε �̂3 + f R
ε �̂2. (11)

Here we introduced the matrix �̂2 = iρ̂2 ⊗ σ̂0. Inserting this
expression into Eq. (7) yields(

ε + igR
ε

2τs

)
f R
ε −

(
� − i f R

ε

2τs

)
gR

ε = 0. (12)

This equation is supplemented by the normalization
condition (gR

ε )2 − ( f R
ε )2 = 1. We can use the following

standard parametrization for the functions gR
ε = cosh θε

and f R
ε = sinh θε . Introducing auxiliary variables ε̃ = ε +

(i/2τs) cosh θε and �̃ε = � − (i/2τs) sinh θε , we employ the
normalization condition to write down the formal solution of
(12):

cosh θε = uε√
u2

ε − 1
, sinh θε = 1√

u2
ε − 1

, uε = ε̃

�̃ε

.

(13)
Note that in the limit ε � �, it is implied that uR(A)

ε = ±sgnε.
Equations (13) are not a solution, just another parametriza-

tion of the Green’s functions (11). The actual solution of
the Usadel equation determines the dependence of gR

ε and
f R
ε on energy ε; hence, u is a function of ε as well. The

equation which allows one to compute the dependence of uε

on ε reads

uε

(
1 − 1

τs�

1√
1 − u2

ε

)
= ε

�
. (14)

Thus, in what follows, we assume that the solution of Eq. (14)
is known and will work with the retarded and advanced
Green’s functions:

ĜR
ε =

(
uε√

u2
ε − 1

�̂3 + 1√
u2

ε − 1
�̂2

)
sgn(ε),

ĜA
ε = −�̂3

(
ĜR

ε

)†
�̂3 = −uεsgn(ε)√

u2
ε − 1

�̂3 − sgn(ε)√
u2

ε − 1
�̂2. (15)

Here uε = u∗
ε implies complex conjugation. Equation (14) can

easily be solved, which allows one to compute the single-
particle density of states (DOS) per spin,

ν(ε)

ν0
= Re

uε√
u2

ε − 1
, (16)

and the value of the order parameter at a given temperature:

� = λ

∫ ωD

−ωD

dε
(

f R
ε − f A

ε

)
tanh

( ε

2T

)
. (17)

Here (16) ν0 is the electron DOS per spin projection at the
Fermi level in the normal state, and ωD is the Debye fre-
quency. We present plots of ν(ε) and � for various values
of ζ = 1/τs� in Fig. 1.

B. Application of an external electromagnetic field

Having computed the Green’s function in the ground state,
we now look for the correction to the Green’s function due
to an application of external field. We represent the external
vector potential as a superposition of two monochromatic
waves,

A(t ) = A�1 ei�1t + A�2 ei�2t + c.c. (18)

Our calculation will closely follow the path of Refs. [23,37].
Specifically, we consider a correction to the Green’s function
Ǧε ,

Ǧ(ε, ε′) = 2π Ǧεδ(ε − ε′) + ǧ1(ε, ε′), (19)

054520-3



YANTAO LI AND MAXIM DZERO PHYSICAL REVIEW B 109, 054520 (2024)

0 0.5 1 1.5
ε/2Δ

0

2

4

6

ν(
ε)

/ν
0

 ζ = 0.00
 ζ = 0.02
 ζ = 0.06
 ζ = 0.08
 ζ = 0.12

0 0.2 0.4 0.6 0.8 1
2/(τsΔ0)

0

0.2

0.4

0.6

0.8

1

Δ/
Δ 0

FIG. 1. Left: Single-particle density of states per spin as a function of energy (16) evaluated for various values of the dimensionless
parameter ζ = 1/τs�. Right: Order parameter � as a function of the disorder scattering rate 1/τs.

and a correction to the order parameter, �̌(t ) = �̌ + �̌1(t ).
The value of the unperturbed order parameter �̌ must be
computed self-consistently using Eq. (6). Also, from the nor-
malization condition it follows that the components of ǧ1 must
satisfy

Ǧε ǧ1(ε, ε′) + ǧ1(ε, ε′)Ǧε′ = 0. (20)

In the ground state we assume that the order parameter is
real. Under the action of the external field it may acquire an
imaginary part. That is why the most general form of the three
Keldysh blocks in the matrix Green’s function ǧ1 must be of
the form

ĝ1(ε, ε′) = g1(ε, ε′)�̂3 + f1(ε, ε′)�̂2. (21)

Note that due to the matrix form of (21), the corresponding
matrix form of �̂1 is the same as that of �̂.

Now we go back to Eq. (4) and insert (19) into the left-hand
side of that equation. We keep the terms linear in ǧ1, and after
performing the Fourier transformation we obtain

(ε�̌3 + �̌)ǧ1(ε, ε′) − ǧ1(ε, ε′)(ε′�̌3 + �̌)

+ �̌1(ε′ − ε)Ǧε′ − Ǧε�̌1(ε′ − ε)

+ i

6τs

∑
a

�̌aǦε�̌aǧ1(ε, ε′)− i

6τs

∑
a

ǧ1(ε, ε′)�̌aǦε′�̌a

= −2π iD
∑
μν

(Q̌ν Ǧε+�ν
Q̌μǦε′ − ǦεQ̌ν Ǧε′−�μ

Q̌μ)

× δ(ε′ − ε − �ν+μ), (22)

where �̌a = (γ̂0 ⊗ ρ̂3 ⊗ σ̂a), �ν,μ = ±�1,2, and �ν+μ =
�ν + �μ.

Some rearrangements of the few terms in this equation are
in order. Let us first look at the third and fourth terms on the
left-hand side of this equation: They have the same structure
as the one on the right-hand side. From the expression on the
right-hand side, we note that the electromagnetic field will
have an effect only when

ε′ − ε = �ν+μ. (23)

In other words, �̌1(ε′ − ε) is nonzero only when (23) holds.
Then we use this observation to rewrite the third and fourth

terms as

�̌1(ε′ − ε)Ǧε′ − Ǧε�̌1(ε′ − ε)

= 2π
∑
νμ

[�̌1(�ν+μ)Ǧε′ − Ǧε�̌1(�ν+μ)]

× δ(ε′ − ε − �ν+μ). (24)

The remaining terms on the left-hand side can be simpli-
fied. Indeed, when τs → ∞, it is easy to see that (ε�̌3 + �̌) ∝
[Ǧε]τs→∞. Taking these expressions into account, we can now
rewrite (22) as follows:

�̌ε ǧ1(ε, ε′) − ǧ1(ε, ε′)�̌ε′

= 2π
∑
νμ

[ŘQ(ε, ε′) + Ř�(ε, ε′)]δ(ε′ − ε − �ν+μ).

(25)

Here we introduce the following matrix functions:

ŘQ(ε, ε′) = iD(ǦεQ̌ν Ǧε′−�μ
Q̌μ − Q̌ν Ǧε+�ν

Q̌μǦε′ ),

Ř�(ε, ε′) = Ǧε�̌1(�ν+μ) − �̌1(�ν+μ)Ǧε′ ,

�̌ε = ε�̌3 + �̌ + i

6τs

3∑
a=1

�̌aǦε�̌a. (26)

It is easy to check that in the limit τs → ∞ this equation coin-
cides with the corresponding equations in [23,37]. Note that
the expression for �̌ε has a nonzero Keldysh block which
is not present in the case of potential disorder. We have to
consider the solution of this equation for retarded, advanced,
and Keldysh sub-blocks separately.

1. Correction to the retarded and advanced Green’s functions

For the retarded and advanced blocks on the left-hand side
of (25) we obtain

[�̌ε ǧ1(ε, ε′) − ǧ1(ε, ε′)�̌ε′]R(A) = [(ζε + ζε′ )Ĝε ĝ1(ε, ε′)]R(A).

(27)

Here we introduce the functions

ζ R
ε = sgn(ε)�̃ε

√
u2

ε − 1, ζ A
ε = −[

ζ (R)
ε

]∗
(28)
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because they allow us to simplify the resulting expressions by
employing the normalization condition. It then follows that

ĝR(A)
1 (ε, ε′) = 2π

∑
νμ

[
ĜεR̂Q(ε, ε′) + ĜεR̂�(ε, ε′)

ζε + ζε′

]R(A)

× δ(ε′ − ε − �ν+μ). (29)

We would like to note that, generally, Eq. (14) has two com-
plex conjugate roots, so one needs to make sure that the root
with the correct sign for the imaginary part is chosen such that
the retarded function in (28) is analytic in the upper half plane
of the complex variable ε̃.

2. Correction to the Keldysh Green’s function

Next, we need to compute a correction to the remaining
(Keldysh) block. Correcting the Keldysh block of the Green’s
function is important since it determines the correction to the
order parameter (6):

�1(t ) = πλ

2

∫
dε

2π

∫
dε′

2π
Tr

{−�̂2ĝK
1 (ε, ε′)

}
e−i(ε−ε′ )t . (30)

The function ĝK
1 (ε, ε′) is itself proportional to �1, which will

ultimately allow us to compute the pairing susceptibility. The
frequency at which the susceptibility diverges determines the
frequency of the amplitude (Higgs) mode ωHiggs. Therefore,
we will be able to directly verify whether ωHiggs and 2� are
equal to each other or not.

For the Keldysh component ĝK
1 (ε, ε′) from (25) we find

N̂R
ε ĝK

1 (ε, ε′) − ĝK
1 (ε, ε′)N̂A

ε′

= 2π
∑
νμ

[
R̂K

Q(ε, ε′) + R̂K
�(ε, ε′)

]
δ(ε′ − ε − �ν+μ)

+ ĝR
1 (ε, ε′)�̂K

ε′ − �̂K
ε ĝA

1 (ε, ε′), (31)

where Ňε = ε�̌3 + �̌ and �̌ε = �̌ε − Ňε . The last two terms
on the right-hand side of this equation appear explicitly due to
scattering on paramagnetic impurities since �̂K

ε |τs→∞ = 0.
In order to solve (31) we again use the normalization con-

dition (20), which for the Keldysh components reads

ĜR
ε ĝK

1 (ε, ε′) + ĜK
ε ĝA

1 (ε, ε′) + ĝR
1 (ε, ε′)ĜK

ε′ + ĝK
1 (ε, ε′)ĜA

ε′ = 0.

(32)

We look for the solution of Eq. (31) in the form

ĝK
1 (ε, ε′) = ĝK

1,reg(ε, ε′) + ĝK
1,an(ε, ε′). (33)

The first term, dubbed a regular term since it does not affect
the single-particle distribution function in (33), is defined
similarly to (9):

ĝK
1,reg(ε, ε′) = ĝR

1 (ε, ε′)nε′ − nε ĝA
1 (ε, ε′), (34)

where we use the shorthand notation

nε = tanh

(
ε

2T

)
. (35)

It is straightforward to verify that ĝK
1,reg(ε, ε′) satisfies the

normalization condition (32). As a result, it is clear that
ĝK

1,an(ε, ε′) must satisfy

ĜR
ε ĝK

1,an(ε, ε′) + ĝK
1,an(ε, ε′)ĜA

ε′ = 0. (36)

We now insert (33) into Eq. (31), and after some algebra (see
Appendix A) we find

ĝK
1,an(ε, ε′) = 2π

∑
νμ

ρ̂Q(ε, ε′) + ρ̂�(ε, ε′)
ζ R
ε + ζ A

ε′
δ(ε′ − ε − �ν+μ).

(37)
The expressions for the matrix functions ρ̂Q(ε, ε′) and
ρ̂�(ε, ε′) are

ρ̂�(ε, ε′) = [
ĜR

ε �̂1(�ν+μ)ĜA
ε′ − �̂1(�ν+μ)

]
(nε′ − nε ),

ρ̂Q(ε, ε′) = iD
[
ĜR

ε Q̂ν ĜR
ε+�ν

Q̂μĜA
ε′ − Q̂ν ĜR

ε+�ν
Q̂μ

]
× (nε′ − nε+�ν

)

− iD
[
ĜR

ε Q̂ν ĜA
ε+�ν

Q̂μĜA
ε′ − Q̂ν ĜA

ε+�ν
Q̂μ

]
× (nε − nε+�ν

). (38)

Having computed ĝK
1 (ε, ε′), we can directly insert it into the

self-consistency equation and compute the resonant frequency
of the amplitude Higgs mode.

III. AMPLITUDE HIGGS MODE

We will analyze the self-consistency Eq. (30), which con-
tains two contributions:

�1(t ) = πλ

2

∫ ∞

−∞

dε

2π

∫ ∞

−∞

dε′

2π
Tr

{
(−�̂2)

[
ĝK

1,reg(ε, ε′)

+ ĝK
1,an(ε, ε′)

]}
ei(ε′−ε)t . (39)

Without loss of generality, here we consider the case when
�1 = 0 and �2 = �. This case is analogous to a setup in
which a superconductor is prepared in a state which carries
nonzero supercurrent. Thus, we will need to focus only on
computing the Fourier component �1(�) = |δ��|ei�t . In the
limit τs → ∞ the amplitude |δ��| has a maximum at �res =
2�, which corresponds to the excitation of the amplitude
Higgs mode [23].

Using the expressions for the regular and anomalous con-
tributions to the Keldysh component of the Green’s functions
from the previous section, the self-consistency equation for
the Fourier component �1(�) can be cast in the following
simple form:

�1(�) = 2iδWQ

(
Breg(�) + Ban(�)

Areg(�) + Aan(�)

)
. (40)

Here δWQ = DA0A�. Functions Areg(�) and Aan(�) are de-
fined according to

Areg(�) =
∫ ∞

−∞
dε

(
1 + gR

ε gR
ε+� + f R

ε f R
ε+�

ζ R
ε + ζ R

ε+�

)
nε+�

−
∫ ∞

−∞
dε

(
1+ gA

ε gA
ε+� + f A

ε f A
ε+�

ζ A
ε + ζ A

ε+�

− f R
ε − f A

ε

�

)
nε,

Aan(�) =
∫ ∞

−∞

(nε − nε+�)

ζ R
ε + ζ A

ε+�

(
1 + gR

ε gA
ε+� + f R

ε f A
ε+�

)
dε.

(41)

The term ∝ ( f R
ε − f A

ε ) in the expression for Areg(�) replaces
the contribution from 1/λ by virtue of the self-consistency
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condition at equilibrium. The expression for Aan(�) involves a
combination of retarded and advanced Green’s functions and
therefore has poles in both the upper and lower half planes of
the complex variable ε. That is not so for Areg(�), in which
all contributions containing retarded and advanced functions
can be separated from each other. Therefore, in the expres-
sion for Areg(�) we can reduce the integration over ε to the
summation over the fermionic Matsubara frequencies ωl =
πT (2l + 1) (l = 0,±1, . . . ) by using the series representation
tanh x = ∑

l 2x/[π2(l + 1/2)2 + x2]. Subsequent integration
in the upper or lower complex half plane with respect to
complex ε then yields

∫ ∞

−∞
GR(A)(ε) tanh

(
ε

2T

)
dε = ±4π iT

∞∑
l=0

G(±iωl ). (42)

The corresponding expressions for the Green’s functions are
listed in Appendix B.

Last, we also find the following expressions for functions
Breg(�) and Ban(�):

Breg(�) =
∫ ∞

−∞
dε

(
gR

ε + gR
ε+�

ζ R
ε + ζ R

ε+�

)(
gR

ε f R
ε+� + f R

ε gR
ε+�

)
nε+�

−
∫ ∞

−∞
dε

(
gA

ε + gA
ε+�

ζ A
ε + ζ A

ε+�

)(
gA

ε f A
ε+� + f A

ε gA
ε+�

)
nε,

Ban(�) =
∫ ∞

−∞
dε

(nε − nε+�)

ζ R
ε + ζ A

ε+�

(
gR

ε + gA
ε+�

)
× (

gR
ε f A

ε+� + f R
ε gA

ε+�

)
. (43)

As discussed above, in order to compute the frequency de-
pendence of Breg(�) we convert the integral over ε into
the summation over the fermionic Matsubara frequencies. In
passing we note that expressions (41) and (43) match the
corresponding formulas in Refs. [23,37], and therefore, we
expect to recover their results in the limit ζ → 0. The results
of the numerical calculation of the frequency dependence of
functions Areg(�) + Aan(�) and Breg(�) + Ban(�) are given
in Figs. 6 and 7 in Appendix B.

Having computed these functions, we can now compute the
amplitude of the resonant Higgs mode using Eq. (40). The
results of the numerical calculation are presented in Fig. 2.
We immediately observe that with a small increase in the
strength of magnetic scattering, the frequency of the resonant
mode moves to the left, i.e., �res(ζ �= 0) < 2�. This result
qualitatively agrees with that of Ref. [57]. We also see that the
amplitude mode |�1(�)| decreases with an increase in ζ . This
result goes beyond the perturbative one of Ref. [57], where
the amplitude of the periodic oscillations was proportional
to ζ . Therefore, we expect that the amplitude Higgs mode
will be significantly suppressed before the gapless state is
reached. The importance of our result �res < 2� lies in the
fact that, according to Ref. [57], in this case the dynamics of
the amplitude mode becomes dissipationless; i.e., �1(t ) will
periodically vary in time on a timescale t � τe-e. In order to
show this explicitly within the confines of the present theo-
retical framework, we will have to determine the dynamics of
the order parameter by solving the Usadel equation using (19)

0.5 0.75 1 1.25 1.5

Ω/2Δ
0

20

40

60

|Δ
1(Ω

)| 
/ δ
W
Q

 ζ = 0.00
 ζ = 0.02
 ζ = 0.06
 ζ = 0.08
 ζ = 0.11

FIG. 2. Frequency dependence of the amplitude mode �1(�).
The frequency � is shown in units of the pairing amplitude �

for various values of the dimensionless parameter ζ = 1/τs�. The
amplitude mode has a maximum for ζ = 0 at �res = 2�. As we
increase the value of the magnetic disorder parameter ζ the value
of the resonant frequency shifts below 2�. Note that the amplitude
of the resonant Higgs mode decreases with increasing strength of the
magnetic disorder.

as an initial condition. This is an arduous task which we leave
for future studies.

IV. CURRENT INDUCED BY AN EXTERNAL
ELECTROMAGNETIC FIELD

In this section we discuss the current induced by external
electromagnetic radiation. Our main motivation is to get in-
sight into the origin of the shift in the resonance frequency
from its value 2� in a disordered superconductor without
magnetic impurities. We consider a time-dependent external
electric field

E(t ) = E� cos(�t ) + Eωp cos(ωpt ). (44)

The first term here describes the “pump field” E�, while the
second one is the “probe field” Eωp . The vector potential A(t )
has the same form as (44), with the corresponding Fourier
components given by

A� = − iE�

�
, Aω = − iEω

ω
. (45)

Here we use the units h̄ = e = c = 1. The expression for the
electric current can be compactly written as

j(ω) = −Q(ω,ω′)Aω′ , (46)

where Q(ω,ω′) is the response kernel (we refer the reader to
Appendix C for details):

Q(ω,ω′) = πσD

4i

∫ ∞

−∞

dε

2π

∫ ∞

−∞

dε′

2π

× Tr{�̂3ĜR(ε, ε′ − ω′)�̂3ĜK (ε′, ε + ω)

+ ĜK (ε, ε′ − ω′)�̂3ĜA(ε′, ε + ω)�̂3}. (47)
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FIG. 3. Plots of the real (main plot) and imaginary (inset) parts of the functions Q(reg1)
3 (�,ωp) (left panel) and Q(reg2)

3 (�, ωp) (right panel)
as a function of the probe frequency with the value of the pump frequency fixed to � = 0.895� for various values of the dimensionless
parameter ζ . Note that for the wide range of frequencies |Q(reg1)

3 | � |Q(reg2)
3 |. Both functions are given in units of δWQσD.

It is straightforward to verify that in the limit of very weak
electromagnetic field we recover the familiar expression for
the current [62].

A. Third harmonic term in the current

We are mainly interested in the calculation of the third
harmonic. One would generally expect the third harmonic
component of the kernel to display a feature (e.g., a cusp) at
ωp = �, and we are interested in whether this feature remains
at � or shifts below �, similar to the resonance frequency �res

discussed above.
The response kernel for the third harmonic must be of the

order of O(A2). It is convenient to write it as the sum of three

terms:

Q3 = Q(an)
3 + Q(reg1)

3 + Q(reg2)
3 . (48)

Here the first term is the anomalous one defined by ĝK
1,an,

and it describes the effects associated with the nonequilibrium
effects on the distribution function:

Q(an)
3 (ω,ω′) = σD

8i

∫ ∞

−∞
Tr

{
ĝK

1,an(E , E + ω − ω′)

× ( ˆ̃GR
E−ω′ + ˆ̃GA

E+ω

)}
dE . (49)

The remaining two terms can be classified as regular terms
since they involve the distribution functions in equilibrium:

Q(reg1)
3 (ω,ω′) = σD

8i

∫ ∞

−∞
Tr

{
ĝR

1 (E , E + ω − ω′)
[ ˆ̃GR

E−ω′nE+ω−ω′ + ˆ̃GR
E+ωnE+ω

]}
dE

− σD

8i

∫ ∞

−∞
Tr

{
ĝA

1 (E , E + ω − ω′)
[ ˆ̃GA

E−ω′nE−ω′ + ˆ̃GA
E+ωnE

]}
dE ,

Q(reg2)
3 (ω,ω′) = σD

8i

∫ ∞

−∞
Tr

{
ĝR

1 (E , E + ω − ω′) ˆ̃GA
E+ω

}
(nE+ω−ω′ − nE+ω )dE

+ σD

8i

∫ ∞

−∞
Tr

{
ĝA

1 (E , E + ω − ω′) ˆ̃GR
E−ω′

}
(nE − nE−ω′ )dE . (50)

We would like to remind the reader that nE , Eq. (35), is not
a single-particle Fermi distribution function; however, it is
related to it by nE = 1 − 2nF (E ). The reason for considering
two terms in (50) separately is purely technical: The integral
over energies in Q(reg1)

3 can be converted into the summations
over the fermionic Matsubara frequencies just like what was
been done in the calculation of �1(�). Hence, we expect that
this function will exhibit monotonic behavior as a function of
ω′ for fixed ω.

We first proceed with the numerical calculation of the ker-
nel Q3. In expressions (38) we set �ν = �μ = � and �ν+μ =
2�. This implies that ĝK

1,an is nonzero provided ω − ω′ = 2�.

Since, by definition, ω′ = ωp [see Eq. (46)], it follows that
ω = 2� + ωp. We evaluate the dependence of Q(an)

3 , Q(reg1)
3 ,

and Q(reg2)
3 on the probe frequency ωp at low temperatures

T = 10−5� and for � ∼ �. The dependence of the complex
functions Q(reg1)

3 and Q(reg2)
3 on the probe frequency is shown

in Fig. 3, and the dependence of Q(an)
3 is presented in Fig. 4.

Interestingly, we also observe that the real part of Q(reg1)
3

significantly exceeds that of Q(reg2)
3 , while the imaginary parts

are comparable to each other. This observation confirms our
earlier expectations that the dominant contribution to both of
these functions comes from the terms proportional to �1 [37].
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FIG. 4. Plots of the real (left panel) and imaginary (right panel) parts of the function Q(an)
3 (�, ωp) as a function of the probe frequency ωp

for several values of the dimensionless parameter ζ . The value of the pump frequency is fixed to � = 0.895�. Both functions are given in
units of δWQσD. For both plots we set �1(2�) = 12δWQ.

In addition, we observe a cusplike feature in the dependence
of Re[Q(an)

3 ] (and a “weak discontinuity” in Im[Q(an)
3 ]) at

ωp ≈ � for ζ = 0, which shifts to smaller values and is almost
completely smeared away at larger values of ζ (Fig. 4). A
more detailed analysis of the third harmonic contribution to
the current will be carried out when the experimental data
become available.

V. DISCUSSION

Our main finding—the reduction of the resonance fre-
quency �res below 2�—requires further discussion. At first
glance it seems that the decrease in the resonance frequency
(Figs. 2 and 5) and the qualitatively similar finding in Ref. [57]
for the frequency of the Higgs mode ωHiggs = 2�

√
1 − ζ 2

emerge from the mathematics. We believe, however, that the

0 0.1 0.2 0.3
ζ

0.4

0.6

0.8

1

Δ
th

 / Δ
Ω

res
 / 2Δ

FIG. 5. The dependence of the single-particle threshold energy
�th = �(1 − ζ 2/3)3/2 and the resonant frequency of the amplitude
Higgs mode �res in units of 2�. The frequency of the resonance
mode remains above the single-particle threshold energy but below
the pair excitation energy 2�. In the regime of collisionless dynamics
these results imply that the dynamics of the amplitude mode remains
dissipationless on a timescale much shorter than the timescale for the
two-particle collisions.

approach we used in this paper allows us to give a clear
physical interpretation of this result. Our calculation for the
third harmonic of the electric current can be used to give a
more intuitive interpretation of the reduction in �res. We first
recall that in diffusive superconductors even in the absence
of magnetic disorder the third harmonic generating current
is mostly dominated by the amplitude Higgs mode [37]. We
recall also that in the linear approximation the superfluid stiff-
ness is directly proportional to the pairing amplitude and with
an increase of magnetic scattering it decreases more slowly
than the single-particle threshold energy (Fig. 5). Therefore,
we are led to conclude that the nonlinear suppression of the
superfluid stiffness and the reduction in the frequency of the
amplitude Higgs mode are two correlated effects; i.e., the
reduction of the superfluid stiffness through the nonlinear cou-
pling to the external electromagnetic field is reflected in the
decrease of the resonant frequency. In this regard we suggest
that in addition to the two energy scales �th(ζ ) and �(ζ ), for
a complete description of a conventional superconductor with
weak magnetic impurities we need to consider an additional
energy scale, �res(ζ ). Last, we mention that a similar effect,
the reduction of the frequency of the amplitude Higgs mode
below 2�, was discussed for various situations [68,72] which
are manifestly different from our mechanism, so the underly-
ing physical processes responsible for this reduction are most
likely different as well.

However, we also have to mention that the dependence of
�res on ζ does not match that of ωHiggs on ζ . The origin of
this discrepancy is not clear to us at this point. In order to gain
further insight we will have to compute the time dependence
of the pairing amplitude �(t ) after the electromagnetic pulse
by directly solving the Usadel equation (4). From the form of
the Usadel equation it is clear that the magnetic impurities
do not lead to relaxation; therefore, we will need to check
only if the magnetic impurities lead to the suppression of
the dephasing processes which render the order parameter
dynamics dissipationless. Given the fact that scattering on
magnetic impurities leads to the smearing of the square-root
singularity in the single particle density of states (Fig. 1), it
is indeed likely that the dynamics of the amplitude mode will
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exhibit periodic oscillations. Last, we limited our discussion
to the self-consistent Born approximation and did not consider
the bound states which form on magnetic impurities. On a
technical level, this requires a modification of the Usadel
equation [62,73,74]. We will consider the effects associated
with the bound states, including the dynamics of the pairing
amplitude and third harmonic of the current, in a separate
publication.

VI. CONCLUSIONS

We considered a problem of the nonlinear response of
conventional (BCS) superconductors contaminated by weak
magnetic impurities to the external time-dependent elec-
tromagnetic field. Specifically, we computed the resonant
frequency of the amplitude mode and third harmonic contribu-
tion to the electric current. Our main result is that the resonant
frequency remains below the pair excitation threshold 2� with
an increase in scattering due to magnetic disorder. We attribute

this shift to the nonlinear suppression of the superfluid density.
Taken together with the results of Ref. [57], our present find-
ings unambiguously suggest that the dynamics of the pairing
amplitude should remain periodic in time. We also found that
with an increase in magnetic scattering the third harmonic is
suppressed along with the amplitude of the resonant mode.
We attribute this effect to the nonlinear suppression of the
superfluid density.
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APPENDIX A: DERIVATION OF THE EXPRESSION FOR ĝK
1,an(ε, ε′ )

In this Appendix we provide the details of the derivation of Eq. (37) in the main text. Our starting point is Eq. (31). Let us
first consider only terms which contain ĝK

1,reg(ε, ε′):

N̂R
ε ĝK

1,reg(ε, ε′) − ĝK
1,reg(ε, ε′)N̂A

ε′ = (
N̂R

ε ĝR
1 − ĝR

1N̂A
ε′
)
nε′ − nε

(
N̂R

ε ĝA
1 − ĝA

1N̂A
ε′
)

= (
N̂R

ε ĝR
1 − ĝR

1N̂R
ε′
)
nε′ − nε

(
N̂A

ε ĝA
1 − ĝA

1N̂A
ε′
) + gR

1

(
N̂R

ε′ − N̂A
ε′
)
nε′ − nε

(
N̂R

ε − N̂A
ε

)
gA

1. (A1)

If we now look at Eq. (25), we note that �̌ε has only a nonzero Keldysh component. We have(
N̂R

ε ĝR
1 − ĝR

1N̂R
ε′
)
nε′ − nε

(
N̂A

ε ĝA
1 − ĝA

1N̂A
ε′
)

= 2π
∑
νμ

[
R̂R

Q(ε, ε′)nε′ − nεR̂A
Q(ε, ε′) + R̂R

�(ε, ε′)nε′ − nεR̂A
�(ε, ε′)

]
δ(ε′ − ε − �ν+μ)

≡ P̂R(ε, ε′)nε′ − nεP̂A(ε, ε′). (A2)

Here P̂R(A)(ε, ε′) are used to keep the expressions as compact as possible. Let us now consider the remaining two terms in (A1):

ĝR
1 (ε, ε′)

(
N̂R

ε′ − N̂A
ε′
)
nε′ − nε

(
N̂R

ε − N̂A
ε

)
ĝA

1 (ε, ε′)

= ĝR
1 (ε, ε′)

[(
gR

ε′ − gA
ε′
)
�̂3 − (

f R
ε′ − f A

ε′
)
�̂2

] inε′

2τs
− inε

2τs

[(
gR

ε − gA
ε

)
�̂3 − (

f R
ε − f A

ε

)
�̂2

]
ĝA

1 (ε, ε′)

= ĝR
1 (ε, ε′)�̂K

ε′ − �̂K
ε ĝA

1 (ε, ε′), (A3)

where we take into account formula (9) in the main text. Therefore, we find that

N̂R
ε ĝK

1,reg(ε, ε′) − ĝK
1,reg(ε, ε′)N̂A

ε′ = P̂R(ε, ε′)nε′ − nεP̂A(ε, ε′) + ĝR
1 (ε, ε′)�̂K

ε′ − �̂K
ε ĝA

1 (ε, ε′). (A4)

We now insert this expression into Eq. (31). The terms which contain �̌ε cancel out, and we obtain

N̂R
ε ĝK

1,an(ε, ε′) − ĝK
1,an(ε, ε′)N̂A

ε′ = P̂K (ε, ε′) − P̂R(ε, ε′)nε′ + nεP̂A(ε, ε′). (A5)

Interestingly, this equation has the same form as the one for the case of nonmagnetic disorder. Let us now simplify the expression
on the right-hand side of Eq. (A5):

P̂K
� (ε, ε′) − P̂R

�(ε, ε′)nε′ + nεP̂A
�(ε, ε′) = 2π

∑
νμ

(nε − nε′ )
[
ĜR

ε �̂1(�ν+μ) − �̂1(�ν+μ)ĜA
ε′
]
δ(ε′ − ε − �ν+μ). (A6)
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FIG. 6. Frequency dependence of the real and imaginary parts of the function A(�) = Areg(�) + Aan(�). The frequency is shown in units
of the pairing amplitude � for various values of the dimensionless parameter ζ = 1/τs�.

In passing we note that this result matches the corresponding expressions in Refs. [23,37]. For the remaining contribution we
find

P̂K
Q (ε, ε′) − P̂R

Q(ε, ε′)nε′ + nεP̂A
Q(ε, ε′) = 2π iD

∑
νμ

[
Q̂ν ĜR

ε+�ν
Q̂μĜA

ε′ − ĜR
ε Q̂ν ĜR

ε+�ν
Q̂μ

]
(nε′ − nε+�ν

)δ(ε′ − ε − �ν+μ)

− 2π iD
∑
νμ

[
Q̂ν ĜA

ε+�ν
Q̂μĜA

ε′ − ĜR
ε Q̂ν ĜA

ε+�ν
Q̂μ

]
(nε − nε+�ν

)δ(ε′ − ε − �ν+μ),

(A7)

which is also in agreement with the results of Refs. [23,37]. Finally, we represent

N̂R
ε ĝK

1,an(ε, ε′) − ĝK
1,an(ε, ε′)N̂A

ε′ = (
ζ R
ε + ζ A

ε′
)
ĜR

ε ĝK
1 (ε, ε′) (A8)

and solve the resulting equation for ĝK
1,an(ε, ε′) by employing the normalization condition. This yields (37) in the main text.

APPENDIX B: GREEN’S FUNCTIONS IN THE MATSUBARA REPRESENTATION

In this Appendix we provide the expressions for the Green’s functions in the Matsubara representation. After making the
substitution ε → iωl , it follows that gR(A)

ε → gωl , gR(A)
ε+� → gωl −i�, f R(A)

ε → i fiωl , and f R(A)
ε+� → i fωl −i�. Introducing

ω̃l = ωl + gωl

2τs
, �̃l = � − fωl

2τs
, (B1)

and uωl = ω̃l/�̃l , from the normalization condition g2
ωl

+ f 2
ωl

= 1 we find gωl = uωl /
√

u2
ωl

+ 1 and fωl = 1/
√

u2
ωl

+ 1. The

function uωl is found by solving the nonlinear equation [58]:⎛
⎜⎝1 − 1

τs�

1√
u2

ωl
+ 1

⎞
⎟⎠uωl = ωl

�
. (B2)

We note that uωl = −u−ωl . Using this property, we can now cast the expressions for functions Areg(�) and Breg(�) into the
following form:

Areg(�) = 8πT
∞∑

l=0

(
1 + gωl gωl +i� − fωl fωl +i�

ζωl + ζωl +i�
− fωl

�

)
, Breg(�) = 8π iT

∞∑
l=0

(
gωl + gωl +i�

ζωl + ζωl +i�

)
(gωl fωl +i� + fωl gωl +i�).

(B3)
When temperatures are close to absolute zero, we can convert the summation over l to integration:

2πT
∞∑

l=0

→
∫ ∞

0
dωl . (B4)
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FIG. 7. Frequency dependence of the real and imaginary parts of the function B(�) = Breg(�) + Ban(�). The frequency is shown in units
of the pairing amplitude � for various values of the dimensionless parameter ζ = 1/τs�.

The results of the numerical calculations of functions Areg(�) and Breg(�) are shown in Figs. 6 and 7. Note that the cusplike
feature when ζ = 0 in both the real and imaginary parts at � ≈ 2� moves to smaller values of �/2� with an increase in the
values of ζ .

APPENDIX C: ELECTROMAGNETIC FIELD RESPONSE KERNEL

The expression for the current can be derived from the same effective action of the nonlinear σ model which was used to
derive the Usadel equation (4). Following the path of Refs. [70,71] by varying the corresponding part of the effective action with
respect to the quantum component of the gradient vector potential A(q)(t ) for the electric current, we find

j(t ) = iπσD

4

∫ ∞

−∞
dt1Tr{ĜR(t, t1) ˆ̃GK (t1, t ) + ĜK (t, t1) ˆ̃GA(t1, t )}A(t1). (C1)

Here we introduce the compact notation ˆ̃G(t, t ′) = �̂3Ĝ(t, t ′)�̂3, σD = 2e2ν0D is the Drude conductivity, and at the intermediate
stages of the calculation we use the normalization condition (5). Performing the Fourier transformation in (C1) yields

j(ω) = −Q(ω,ω′)Aω′ , (C2)

where the kernel Q(ω,ω′) is determined from

Q(ω,ω′) = πσD

4i

∫ ∞

−∞

dε

2π

∫ ∞

−∞

dε′

2π
Tr{ ˆ̃GR(ε, ε′ − ω′)ĜK (ε′, ε + ω) + ĜK (ε, ε′ − ω′) ˆ̃GA(ε′, ε + ω)}, (C3)

which coincides with Eq. (47) in the main text. Taking into account (19) and (44), it is clear that there are many contributions to
the kernel. For example, if we limit ourselves to the linear approximation, then using the first term in (19), we readily obtain

Q(ω,ω′) = −2πδ(ω − ω′)
[

iσD

8

∫ ∞

−∞
dETr

{ ˆ̃GR
E ĜK

E+ω + ĜK
E

ˆ̃GA
E+ω

}]
, (C4)

which matches the corresponding expression in [62].
As stated in the main text, we will focus on computing the third harmonic contribution to the current. This means that in

expression (C3) we need to single out the contributions which contain terms linear in ǧ1(ε, ε′):

Q3(ω,ω′) = σD

8i

∫ ∞

−∞
dETr

{ ˆ̃GR
E ĝK

1 (E + ω′, E + ω) + ĝR
1 (E , E + ω − ω′) ˆ̃GK

E+ω

+ ĝK
1 (E , E + ω − ω′) ˆ̃GA

E+ω + ˆ̃GK
E ĝA

1 (E + ω′, E + ω)
}
. (C5)

At this point it proves convenient to change the integration variable from E to ε = E + ω′ in the first and fourth terms under the
integral, so that all functions ĝ1 have the same arguments:

Q3(ω,ω′) = σD

8i

∫ ∞

−∞
dETr

{ ˆ̃GR
E−ω′ ĝK

1 (E , E + ω − ω′) + ĝR
1 (E , E + ω − ω′) ˆ̃GK

E+ω

+ ĝK
1 (E , E + ω − ω′) ˆ̃GA

E+ω + ˆ̃GK
E−ω′ ĝA

1 (E , E + ω)
}
. (C6)
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Using the ansatz (33), we can immediately separate the contribution which contains the function ĝK
1,an, and then that term defines

Q(an)
3 (ω,ω′), Eq. (49), in the main text. In the second step we also separate the terms which contain the products of retarded

and advanced Green’s functions, which define Q(reg1)
3 (ω,ω′), Eq. (50). Finally, the remaining term contains the products of the

advanced and retarded Green’s functions, Q(reg2)
3 (ω,ω′).

APPENDIX D: THIRD HARMONIC CONTRIBUTION TO THE CURRENT

In this Appendix we provide the expressions for the third harmonic contribution of the response kernel Q3(2�,ωp).

1. Anomalous contribution

We start with the anomalous contribution Q(an)
3 , which is given by the sum of the following two functions:

Q(an)
3,Q (�,ωp) = πσD

4i

∫ ∞

−∞

iδWQdE

ζ R
E + ζ A

E+2�

Tr
{[( ˆ̃GR

E+� − ĜR
E

ˆ̃GR
E+�ĜA

E+2�

)
(nE+� − nE+2�)

+ ( ˆ̃GA
E+� − ĜR

E
ˆ̃GA

E+�ĜA
E+2�

)
(nE − nE+�)

]( ˆ̃GR
E−ωp

+ ˆ̃GA
E+2�+ωp

)}
,

Q(an)
3,� (�,ωp) = πσD

4i
�1(2�)

∫ ∞

−∞

(nE − nE+2�)

ζ R
E + ζ A

E+2�

× Tr
{(

�̂2 − ĜR
E �̂2ĜA

E+2�

)( ˆ̃GR
E−ωp

+ ˆ̃GA
E+2�+ωp

)}
dE . (D1)

Note that the second contribution has a prefactor �1(2�)/δWQ � 1 (Fig. 2), and therefore, we may expect that Q(an)
3,� will

significantly exceed Q(an)
3,Q in a range of frequencies when � ∼ �. The traces of the matrices entering into these expressions

can be computed in a straightforward manner. To make the expressions below as compact as possible, we will use the notations
E ′ = E − ωp and E ′′ = E + 2� + ωp. Recall that �̂2�̂2 = −1̂ and �̂3�̂2 = �̂1. It then follows that

Q(an)
3,� (�,ωp) = iπσD�1(2�)

∫ ∞

−∞

(nE+2� − nE )

ζ R
E + ζ A

E+2�

{(
gR

E f A
E+2� + f R

E gA
E+2�

)(
gR

E ′ + gA
E ′′

)
+ (

gR
E gA

E+2� + f R
E f A

E+2� + 1
)(

f R
E ′ + f A

E ′′
)}

dE . (D2)

A similar, although much lengthier, expression is found for Q(an)
3,Q :

Q(an)
3,Q (�,ωp) = −πσDδWQ

∫ ∞

−∞

(nE+� − nE+2�)

ζ R
E + ζ A

E+2�

{
GRA

E ′E ′′
[

f R
E+�

(
gR

E f A
E+2� + f R

E gA
E+2�

)
+ gR

E+�

(
gR

E gA
E+2� + f R

E f A
E+2� − 1

)] + F RA
E ′E ′′

[
f R
E+�

(
gR

E gA
E+2� + f R

E f A
E+2� + 1

)
+ gR

E+�

(
gR

E f A
E+2� + f R

E gA
E+2�

)]}
dE − πσDδWQ

∫ ∞

−∞

(nE − nE+�)

ζ R
E + ζ A

E+2�

{
GRA

E ′E ′′
[

f A
E+�

× (
gR

E f A
E+2� + f R

E gA
E+2�

) + gA
E+�

(
gR

E gA
E+2� + f R

E f A
E+2� − 1

)] + F RA
E ′E ′′

[
f A
E+�

× (
gR

E gA
E+2� + f R

E f A
E+2� + 1

) + gA
E+�

(
gR

E f A
E+2� + f R

E gA
E+2�

)]}
dE . (D3)

Here we use the shorthand notations GRA
E ′E ′′ = gR

E ′ + gA
E ′′ and F RA

E ′E ′′ = f R
E ′ + f A

E ′′ . At temperatures close to absolute zero in order
to simplify the numerical calculations we can approximate nE+� − nE+2� ≈ 2[ϑ (−E − 2�) − ϑ (−E − �)] [here ϑ (x) is the
step function], which for positive values of � is nonzero only when E ∈ [−2�,−�]. Analogously, the second integral in (D3) is
nonzero for E ∈ [−�, 0]. We use these expressions to compute the dependence of Q(an)

3 (�,ωp) on ωp for fixed �. In Fig. 8 we
show the dependence on the probe frequency of the two terms which contribute to Q(an)

3 = Q(an)
3,� + Q(an)

3,Q . Given the definition

(37), the first term Q(an)
3,� is determined by ρ̂� and therefore is proportional to �1(2�), while the remaining term Q(an)

3,Q must then

be proportional to δWQ. Note that Q(an)
3,� and Q(an)

3,Q enter with opposite signs.

2. Regular contribution

The regular contribution to the kernel is given by expressions (50). We start by considering the following expression:

Q(reg1,R)
3 (ω,ω′) = σD

8i

∫ ∞

−∞
Tr

{
ĝR

1 (E , E + ω − ω′)
[ ˆ̃GR

E−ω′nE+ω−ω′ + ˆ̃GR
E+ωnE+ω

]}
dE . (D4)

054520-12



AMPLITUDE HIGGS MODE IN SUPERCONDUCTORS WITH … PHYSICAL REVIEW B 109, 054520 (2024)

0 1 2 3 4
ω

p
 / Δ

-150

-100

-50

0

50

Re[Q
3,Δ

(an)
], ζ = 0.05

Re[Q
3,Δ

(an)
], ζ = 0.12

Re[Q
3,Δ

(an)
], ζ = 0.24

0 1 2 3 4
ω

p
/Δ

-80

-40

0

40

Im
[Q

3
, Δ

(a
n
) ]

1 2 3 4
ω

p
 / Δ

-10

0

10

20

30

40

50

Re[Q
3,Q

(an)
], ζ = 0.05

Re[Q
3,Q

(an)
], ζ = 0.12

Re[Q
3,Q

(an)
], ζ = 0.24

0 1 2 3 4
ω

p
/Δ

0

15

30

45

Im
[Q

3
,Q

(a
n
) ]

FIG. 8. Plots of the real (main plot) and imaginary (inset) parts of the functions Q(an)
3,� (�, ωp) (left panel) and Q(an)

3,Q (�, ωp) (right panel) as a
function of the probe frequency with the value of the pump frequency fixed to � = 0.895� for various values of the dimensionless parameter
ζ . Both functions are given in units of δWQσD. Note that function Q(an)

3,Q reaches its maximum values at ωp ≈ �th.

Using the definitions (26) from the main text, after some tedious algebraic manipulations similar to the ones used in the derivation
of (D3) we find

Tr
{
ĝR

1 (E , E + 2�) ˆ̃GR
E−ωp

} = − 8π iδWQ

ζ R
E + ζ R

E+2�

{
gR

E+�gR
E−ωp

(
gR

E gR
E+2� + f R

E f R
E+2� − 1

) + f R
E+� f R

E−ωp

(
gR

E gR
E+2� + f R

E f R
E+2� + 1

)
+ (

gR
E f R

E+2� + f R
E gR

E+2�

)(
gR

E+� f R
E−ωp

+ f R
E+�gR

E−ωp

)}
+ 8π i�1(2�)

ζ R
E + ζ R

E+2�

{
f R
E−ωp

(
gR

E gR
E+2� + f R

E f R
E+2� + 1

) + gR
E−ωp

(
gR

E f R
E+2� + f R

E gR
E+2�

)}
. (D5)

A similar expression can be easily obtained for the second term in (D4) by replacing gR
E−ωp

with gR
E+2�+ωp

and f R
E−ωp

with

f R
E+2�+ωp

. Since expression (D4) contains the functions which are analytic in the upper half plane of the complex variable E , we
replace the integral over E with the summation over the fermionic Matsubara frequencies just like above. We repeat the same
procedure for the term which contains only the advanced functions. Finally, essentially the same type of trace as in (D5) needs
to be computed in order to evaluate Q(reg2,R)

3 (ω,ω′). We will not list the resulting expression here. The dependence of these
functions on ωp is presented in Fig. 3 in the main text.
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