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Pairing from repulsion in a two-dimensional Fermi gas with soft-core interactions
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We investigate a model many-body system of spinless Fermi gas in two dimensions, where the bare two-body
interaction is repulsive and takes the form of a soft-core disk potential. We obtain the zero-temperature phase dia-
gram of this model by numerical functional renormalization group (FRG), which retains the effective interaction
vertices in all channels to provide a detailed picture of how Cooper pairing emerges under the renormalization
flow. The repulsion drives the system to a series of superfluid states with higher angular momentum pairing, for
example in the f - and h-wave channels instead of the p-wave channel. This is in sharp contrast to the original
Kohn-Luttinger mechanism where pairing of very large angular momenta and exponentially small transition
temperature was predicted. We trace the stabilization and enhancement of f - and h-wave pairing back to the
momentum dependence of the bare interaction. A perturbative calculation is carried out to show that while the
second-order Kohn-Luttinger diagrams provide a qualitative understanding of the onsets of the various superfluid
phases, they are unable to accurately capture the phase boundaries predicted by FRG. Our findings suggest that
tuning the shape of the interaction potential offers a promising route to achieve stronger “pairing glue” and to
realize nontrivial superfluid phases in repulsive Fermi gases beyond the scope of the original Kohn-Luttinger
analysis.
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I. INTRODUCTION

It remains a longstanding goal to realize non-s-wave
superfluids in ultracold Fermi gases. For example, the conven-
tional wisdom to realize the px + ipy state in spin-polarized
(single-species) Fermi gases is to bring it close to a p-wave
Feshbach resonance, where the p-wave interaction between
two fermionic atoms becomes attractive [1–4]. Unfortunately,
this effort has been hampered by severe three-body losses
near the resonance. Despite the recent success in improving
the gas lifetime in one- and three-dimensional optical lattices
[5–8], it remains a challenge to suppress the atom loss. In this
paper, we explore an alternative route that does not require p-
or higher-wave resonances. In particular, we address the fol-
lowing questions: Is there room for superfluidity in polarized
Fermi gases if the bare interaction is purely repulsive? If so, in
which parameter regimes is the superfluid transition tempera-
ture Tc enhanced and thus more accessible by experiments?

Central to these questions is the issue of “pairing glue”
in a repulsive Fermi liquid. The term “pairing glue” is of-
ten used in the literature on quantum materials and it refers
to the microscopic mechanism that binds the fermions into
Cooper pairs [9,10]. It is well known that in most conventional
s-wave superconductors, phonons act as the glue [11]. On
the other hand, while there is no consensus yet, spin fluctu-
ations are likely responsible for the d-wave pairs observed
in cuprate superconductors, or the putative d-wave superfluid
phase of the repulsive Fermi-Hubbard model (for a review,

see, for instance, [12,13]). For continuum gases of spinless
fermions, however, neither lattice vibration nor spin fluctu-
ation is present, so only density fluctuation can step in to
make the glue. Since the system cannot remain a Fermi liquid
down to zero temperature, it is long believed that many-body
effects will turn the repulsive bare interaction into an attrac-
tive effective interaction in certain pairing channels. In other
words, the force between two fermions may flip sign under
renormalization [14].

A well-known example is the Kohn-Luttinger (KL) mecha-
nism discovered by Kohn and Luttinger back in 1965 [15,16].
They showed that for spin-1/2 fermions in three dimensions
(3D) with weak short-range repulsive interactions, the ef-
fective interaction �� in the �th angular momentum channel
always turns attractive for sufficiently high partial waves, e.g.,
some odd � � 1. This means that a repulsive Fermi liquid is
always unstable against pairing (there may be other competing

instabilities as well), albeit the corresponding Tc ∝ e−α�4
, with

α some constant, is exponentially small [15]. Fay and Layzer
generalized the KL analysis for large � to include small �. In
the dilute limit, regardless of the strength of the interactions,
they found that the dominant instability is toward a p-wave
superfluid with � = 1 [17]. Kagan and Chubukov reached the
same conclusion and computed the Tc [18]. The KL effect in
two dimensions (2D) requires a more delicate analysis beyond
second-order perturbation theory, but, as shown by Chubukov
[19], the dominant pairing instability remains in the p-wave
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FIG. 1. The FRG phase diagram of a repulsive Fermi gas in
2D: the superfluid phases resemble four fingers of a hand (with the
thumb � = 1 missing). The Cooper pair angular momentum is � = 3
( f wave), 5 (h wave), 7, and 9, respectively. The model and the
dimensionless interaction strength g are defined in Sec. II, and the
interaction range R is measured in 1/kF , the inverse Fermi momen-
tum. The empty circles mark the phase boundaries, and the “critical
scale” �c in false color gives a rough estimate of the superfluid Tc.

channel. We stress that all these results were obtained for
spin-1/2 fermions where the bare interaction is replaced by
a pseudopotential that can be parametrized by the s-wave
scattering length a [15].

The main goal of this paper is to understand how repulsion
drives pairing in spinless Fermi gas in two dimensions from
the modern perspective of functional renormalization group
(FRG). We focus on a simple model of bare interaction in
the form of the disk potential given by Eq. (1), which is
often referred to as the square (or step function) potential
in quantum mechanics textbooks. In order to go beyond the
aforementioned KL analysis, we treat the many-body prob-
lem using FRG which goes beyond leading-order perturbation
theory and retains the interaction vertices in all (e.g., pairing,
density wave, and Pomeranchuk) channels. We solve the FRG
flow equation numerically to obtain the full phase diagram
and compare the transition temperature in different parame-
ter regions. The main results are summarized in Fig. 1. We
observe that, surprisingly, the behaviors of this system differ
significantly from the classical KL results outlined in the
preceding paragraph. For instance, f -wave or h-wave (instead
of p-wave) superfluid states are stabilized and their transition
temperatures are not exponentially small.

To gain further understanding of the numerical FRG result,
we also carry out a perturbative calculation which becomes
accurate in the dilute (low-density) limit. We show that evalu-
ation of the so-called KL diagrams for our model yields results
in qualitative agreement with FRG. The perturbative calcula-
tion enables us to see how and when the effective interaction
�� turns negative, and why it differs significantly from the
well-known KL physics in spin-1/2 systems. The calculation
also illustrates the limitations of perturbation theory. For ex-
ample, the predicted phase boundaries (see Fig. 10) deviate
significantly from the FRG phase diagram (Fig. 1), which is

much more accurate because it includes many-body processes
well beyond the KL diagrams.

The bare potential given by Eq. (1), as a simple model
to elucidate the intriguing many-body physics, may not be
easily realized in experiments. Our model choice, however,
is not arbitrary and, in fact, is inspired by the interaction
potential in Rydberg-dressed Fermi gases which recently be-
came available in experiments [20]. In Ref. [21], three of
us discovered that an f -wave superfluid naturally emerges in
these systems even when the bare Rydberg-dressed interaction
is repulsive. The disk potential here retains the soft-core part
of Rydberg-dressed potential, but discards its long-range tail.
By comparing the phase diagrams of the two models, one
makes an important observation: it is the repulsive core, rather
than the long-range tail, that is crucial to f -wave pairing.
The current model also features a much richer phase diagram.
The perturbative analysis (Sec. IV) and its comparison against
FRG are also new results beyond the scope of Ref. [21].

Our results for the model given by Eq. (1) makes it clear
that the shape of the bare interaction matters to enhance the
pairing glue in repulsive Fermi gases. A nice feature of the
disk potential V (r) is that its Fourier transform v(q) develops
oscillations and becomes attractive for a certain range of mo-
menta; see Eq. (3). This is in contrast to previous works on
spin-1/2 Fermi gases, where v(q) is usually assumed to be a
constant u. Under renormalization, these attractive segments
of v(q) feed to the flow of the effective interaction �� toward
negative values, eventually leading to a slew of superfluid
phases with � = 3, 5, 7, 9, . . . in Fig. 1 (this feature is absent
in Ref. [21]). In the original KL picture [15], the effective
interaction between two fermions acquires a long-range os-
cillatory part because of the sharp Fermi surface, which is
related to the Friedel oscillations in real space. In our case,
we have not only a sharp Fermi surface (a step function
in momentum space), but also a sharp two-body interaction
potential (a step function in real space). This double whammy
also partly explains why the Tc of these superfluid phases is
not exponentially small as in the original KL analysis. To our
knowledge, the importance of the interaction shape has not
received a lot of attention in the literature. We hope the model
study presented here can stimulate new ideas to engineer
stronger pairing glues by shaping the bare interactions. Our
results suggest that this is a promising route to observe higher
angular momentum pairing in repulsive Fermi gases.

II. MODEL AND BARE INTERACTION

Our model is a spin-polarized (spinless) Fermi gas in 2D
with the short-range interaction potential

V (r) = V0θ (R − r). (1)

Here, r is the distance between two fermions, θ (x) is the
Heaviside step function, R is the radius of the disk, and V0 > 0
is the interaction strength. In the limit of large V0, V (r) gives
the hard-disk potential (not hard sphere because we are in
2D). For this reason, we shall call Eq. (1) the soft-core disk
potential. Let kF be the Fermi momentum and m the mass of
the fermion, then the density of state is N = m/2π h̄2 (we will
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FIG. 2. The bare interaction �
(1)
� in angular momentum channel

� = 1 (blue), 3 (orange), and 5 (green), all being repulsive. �
(1)
�

is defined in Eq. (5) for two fermions on the Fermi surface and
measured in units of (2πR2V0).

set h̄ = 1 hereafter). We define dimensionless parameter

g = (2πR2V0)N , (2)

which measures the strength of interaction. Another indepen-
dent dimensionless parameter is kF R, which measures the
range of the interaction in units of 1/kF . In Ref. [21], similar
parameters were defined for the Rydberg-dressed Fermi gases.

Let us look at the bare interaction in more detail. The
Fourier transform of V (r) is given by the Bessel function,

v(q) = 2πV0R2 J1(qR)

qR
, (3)

with q = |q|, and q is the momentum. The function v(q) is a
damped oscillation and turns negative repeatedly. For exam-
ple, its first negative minimum is at x = qR = 5.136, where
J1(x)/x = −0.06614. Again, it is useful to compare it to the
Meijer G-function discussed in Ref. [21], which only has one
negative minimum. For pairing, the relevant bare interaction
is between two fermions on the Fermi surface at momen-
tum pF and p′

F , respectively, i.e., v(|pF − p′
F |). Let φ be the

angle between pF and p′
F ; then, the bare interaction can be

written as

�(1)(φ) = v

(
2kF

∣∣∣∣ sin
φ

2

∣∣∣∣
)

. (4)

Here the superscript of �(1) emphasizes that this is the
leading-order (to the order of V0) contribution from the per-
spective of perturbation theory. We can decompose �(1)(φ)
into angular momentum channels by defining

�
(1)
� =

∫
dφ�(1)(φ) cos(�φ), � = 1, 3, 5, . . . . (5)

Only odd-� values are taken because we are dealing with
spinless fermions. The integral in Eq. (5) can be evaluated
analytically by exploiting the properties of Bessel functions.
The results are plotted in Fig. 2 for � = 1, 3, 5. We observe
that �

(1)
� are all positive. This is as expected, for the bare

repulsion does not directly lead to Cooper pairing (to the
order of V0). We need many-body effects to induce effective
attraction to overcome the bare repulsion.

III. MAIN RESULTS FROM FRG

We analyze the interacting fermion problem using func-
tional renormalization group (FRG) [22,23]. Technical details
of the FRG approach to 2D continuum Fermi gases can be
found in Refs. [21,24], and our implementation here follows
Ref. [21] closely. For examples of FRG applied to Fermi gases
on optical lattices, see Refs. [25–27]. We obtain the zero-
temperature phase diagram using the following procedure.
Starting from an ultraviolet scale �UV , where the effec-
tive interaction equals the antisymmetrized bare interaction,
we slowly slide down the momentum scale � → � − δ�

by successively integrating out the higher-energy, shorter-
wavelength fluctuations. The result is a set of coupled flow
equations, e.g., for the self-energy 
,

∂�
1′,1 = −
∑

2

S2�1′,2;1,2, (6)

and for the four-fermion vertex �,

∂��1′,2′;1,2 =
∑
3,4

(G3S4 + S3G4)

[
1

2
�1′,2′;3,4�3,4;1,2

− �1′,4;1,3�3,2′;4,2 + �2′,4;1,3�3,1′;4,2

]
. (7)

Here, 1,2 (1′, 2′) label the incoming (outgoing) legs of the
effective interaction �, and we have used the shorthand no-
tation 1 ≡ (ω1, p1) to denote the fermion frequency ω and
momentum p. The sum in Eqs. (6) and (7) includes integration
over frequency and momentum, e.g.,

∑
3

(. . . ) =
∫

dω3d2p3

(2π )3
(. . . ).

Equations (6) and (7) can be represented diagrammatically.
The first term inside the square bracket in Eq. (7) gives
the BCS diagram in the particle-particle channel, while the
second (third) term gives the ZS (ZS′) diagram in the particle-
hole channel. Here, ZS stands for zero sound [14]. The term
(G3S4 + S3G4) on the right-hand side of Eq. (7) is the analog
of the polarization bubble, but it has a crucial difference as it
involves two scale-dependent Green functions defined by

Gω,p = θ (|ξp| − �)

iω − ξp − 
ω,p
, Sω,p = δ(|ξp| − �)

iω − ξp − 
ω,p
, (8)

where ξp = p2/2m − EF , with EF the Fermi energy. We stress
that G, S, 
, and � all depend on the sliding scale �, even
though we have suppressed the � dependence in our notation
for brevity.

The FRG flow equations are formally exact, but in prac-
tice they must be truncated and approximated in order for
the numerical calculation to become feasible. Higher-order
contributions have been dropped from Eqs. (6) and (7). We
further neglect the frequency dependence of � and drop 
,
which is typically not necessary to reveal the leading instabil-
ities. Finally, we project the momenta radially onto the Fermi
surface because the angular dependence is most relevant, and
accordingly we discretize the Fermi surface evenly into N
patches. Then, � is reduced to a three-dimensional array,

�1′,2′;1,2 → �(p′
F1, p′

F2, pF1) → �i, j,k .
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Here, only three-momentum variables are needed thanks
to the conservation of the total momentum, and i, j, k =
1, 2, . . . , N are the patch indices giving the angular position
on the circular Fermi surface. We stress that similar truncation
and approximation schemes have been extensively employed
and benchmarked in the application of FRG to correlated
electrons. For a detailed assessment and justification of these
steps, the readers may consult the review given in Ref. [22].
In principle, one can systematically include higher-order di-
agrams and take into account the frequency dependences.
These improvements, however, come with a steep increase in
the requirement of computing resources.

Even with these simplifications, the computation remains
heavy. For example, for an angular grid with N = 128, �

contains N3, roughly 2 million, elements. We call them run-
ning couplings because they undergo nontrivial evolutions as
� is reduced. Among all the running couplings, the largest
absolute value is denoted as

�max = max|�i, j,k|.
From �, we also construct the channel matrix for BCS pairing,

VBCS(p′, p) = �(p′,−p′, p), (9)

and the channel matrix for charge density wave (CDW) order
with wave vector q,

V q
CDW(p′, p) = �(p + q/2, p′ − q/2, p − q/2). (10)

Another example is the Pomeranchuck channel,

VPOM(p′, p) = �(p, p′, p), (11)

the instability of which points to spontaneous deformation of
the Fermi surface. With these approximations, the flow equa-
tion (7) is solved numerically by sliding � on a logarithmic
grid from the ultraviolet (UV) scale �UV = EF down to a very
small infrared (IR) scale, e.g., �IR = 0.01EF . Typically, we
have hundreds of grid points along the � axis, and at each
RG step, the most time-consuming part is the summation over
internal lines, i.e.,

∑
3,4 in Eq. (7). The calculation is checked

to ensure that the result does not change upon further refining
the angular or � grids.

To detect possible many-body instabilities of the inter-
acting Fermi gas, we monitor the flow of � and look for
signs of divergence as � → 0. For example, a clear signal
of divergence is when �max quickly exceeds a large threshold
such as 100EF at some “critical value” � = �c. In such cases,
we record �c and use it as an estimate of the Tc of the
corresponding broken-symmetry phase. In other cases (see
Fig. 5), the flow continues smoothly down to �IR, indicat-
ing that the Fermi liquid is stable down to this temperature
scale, within the approximation and numerical precision of
our calculation. The channel matrices defined above provide
a systematic way to identify the broken-symmetry phases. In
each channel ch ∈ {BCS, CDW, POM, . . . } and at each RG
step, we diagonalize the channel matrix Vch and record its
most negative eigenvalue �ch

min (for density waves, we also
vary q to seek the lowest eigenvalue among all q). The leading
divergence can be easily identified by comparing all �ch

min as �

is reduced. The eigenvector of the most divergent �ch
min reveals

the orbital symmetry of the incipient order.
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FIG. 3. The FRG flow for parameter g = 4 and kF R = 2. Upper
panel: the most negative eigenvalue, �min, in the BCS, Pomer-
anchuck, and CDW channel. As the sliding RG scale � is reduced
from �UV, BCS becomes the leading instability. Lower panel: the
eigenvector fBCS(φ) corresponding to the BCS instability, with φ

going from 0◦ to 360◦ around the Fermi surface. Its nodal structure
shows f -wave pairing with angular momentum � = 3 (see main
text).

Figure 3 shows the competition of the BCS, CDW, and
Pomeranchuck channels for interaction strength g = 4 and
interaction range kF R = 2. We observe from the upper panel
that long before �IR is reached, the BCS channel (in blue)
develops into the leading divergence, with the other two chan-
nels trailing behind. The polar plot in the lower panel shows
the eigenvector for �BCS

min as a function of φ as it varies from
0 to 2π around the Fermi surface. It features six nodes and
can be fit nicely by fBCS(φ) = A cos(3φ − φ0). The evidence
unambiguously points to an � = 3, or f -wave, superfluid
phase. Another example is shown in Fig. 4 for g = 6 and
kF R = 5. While the flow looks rather similar to Fig. 2 and the
leading instability remains in the BCS channel (upper panel),
the eigenvector (lower panel) tells a different story. The orbital
symmetry in this case is clearly different, suggesting an � = 5,
or h-wave superfluid instead. Yet another example is shown in
Fig. 5. Here, none of the channel matrix eigenvalues develop
divergence as �IR is reached.

A similar FRG analysis can be performed for other param-
eter values on the (g, R) plane, and the results are summarized
in the phase diagram shown in Fig. 1. The most striking
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FIG. 4. Evidence of h-wave pairing from FRG for parameter
g = 6 and kF R = 5. Upper panel: the competition between the BCS,
Pomeranchuck, and CDW instability. Lower panel: the eigenvector
fBCS(φ) can be fit by A cos(5φ − φ0), pointing clearly to h-wave
pairing with � = 5.

feature of the phase diagram is a series of superfluid phases
with Cooper pair angular momentum � = 3, 5, 7, 9. The
empty circles mark the phase boundary, and the background
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FIG. 5. Absence of long-range order for parameter g = 3 and
kF R = 4. In contrast to Figs. 3 and 4, no divergence is visible as
� is reduced down to �IR.

3 4 5 6 7 8 9 10

kFR

−6

−4

−2

0

2n
d

lo
w
es

t
ei

ge
nv

al
ue

of
V

B
C

S

3

5

7

9

� ,
pa

ir
an

gu
la

r
m

om
en

tu
m

FIG. 6. Detecting the phase transitions along the vertical cut g =
9 using two independent measures: (a) the pair angular momentum �

extracted from fBCS(φ), in blue; and (b) the second lowest eigenvalue
of the BCS channel matrix VBCS (rescaled by 103), in magenta. The
phase boundaries from the two methods agree with each other.

false color shows the critical scale �c serving as a rough
estimate of the Tc of each ordered phase. The overall shape of
the phase diagram resembles a hand with the index, middle,
ring, and little finger. Note that the p-wave superfluid with
� = 1, or the “thumb,” is missing.

The phase boundaries (empty circles) in Fig. 1 are de-
termined numerically as follows. In the first method, we
decompose the eigenvector fBCS(φ) corresponding to �BCS

min in
the basis {cos(�φ)} with odd � � 1. We find that there is only
one dominant � component in each superfluid phase, and the
value of � jumps at the phase boundaries to form a terrace
as kF R is varied along a vertical cut at constant g = 9 (in
blue, Fig. 6). In the next method, we plot the second most
negative eigenvalue of VBCS (in magenta, Fig. 6). The idea
is that as a phase boundary is approached, say going from
the f -wave to the h-wave phase, the lowest two eigenvalues
of VBCS are expected to become degenerate. Thus, the second
lowest eigenvalue will take a dip whenever a phase boundary
is crossed. Figure 6 shows that the phase boundaries deter-
mined from these two independent measures agree well with
each other. And there is no indication of phase coexistence.

We stress that the empty circles in Fig. 1 represent only part
of the phase boundaries. For small g or large R, the critical
scale �c is pushed down toward �IR, making it challenging
to reliably determine the phase boundary using the methods
outlined above. For this reason, only well-resolved data points
are presented. For example, both the f - and h-wave superflu-
ids persist to lower-g values with significantly reduced Tc, and
their phase boundaries are expected to extend to the left as
well. Superfluid phases with � > 9 may exist at larger g and
R values (not shown in Fig. 1); they are not well resolved due
to the limitation of our angular grid and the diminishing Tc

values.
Despite the apparent simplicity of our model, the phase

diagram in Fig. 1 is quite rich. Let us recall that generalizing
the Kohn-Luttinger analysis to spin-1/2 Fermi gas with short-
range repulsion in 2D predicts a p-wave superfluid state [19],
which has gone missing in our case. It is also worthwhile to
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FIG. 7. The four Kohn-Luttinger diagrams as the second-order
contributions to the effective interaction. From left to right are D1,
D2, D3, and D4.

compare Fig. 1 to the phase diagram of the Rydberg-dressed
Fermi gas in 2D, which harbors an f -wave superfluid that
becomes intertwined with, and eventually yields to, a CDW
as the interaction range is increased [21]. Here, we do not
see a CDW phase because it is pushed to very high-g val-
ues, g > 15, according to the random phase approximation.
Instead, we see the emergence of a series of superfluid phases
with higher angular momentum pairing.

Since the FRG calculation involves delicate interplays of
particle-particle and particle-hole fluctuations on a sliding
momentum/energy scale, one might wish a simpler “expla-
nation” of how the bare repulsion is turned into a pairing glue.
In the next section, we shed more light on these phases using
perturbation theory.

IV. INSIGHTS FROM PERTURBATION THEORY

The superfluid phases occupy a large portion of the pa-
rameter space in Fig. 1. A perturbation expansion in power
series of V0 will not be justified everywhere, e.g., when V0 or
g is large. However, it is well recognized that in the dilute,
low-density limit (corresponding to small kF R), a perturbative
expansion is possible even for large g [28]. With these caveats
in mind, our main objective in this section is to look for the
trends (rather than the exact numbers) suggested by perturba-
tion theory.

To the first order of V0, the effective interaction is given
by the bare repulsion in Eq. (4). As shown in Fig. 2, all
its angular components �

(1)
� are positive. For kF R � 2, �

(1)
�=1

dominates, with all other components negligibly small. To
order V 2

0 , the corrections to the effective interaction in the
Cooper channel consist of four contributions, shown in Fig. 7,
often referred to as the Kohn-Luttinger diagrams [15]. They
are vertex functions describing a fermion pair (p,−p) being
scattered to (p′,−p′) that involves two bare interactions (wavy
lines) and two internal fermion propagators (solid lines). The
first diagram contains a particle-hole bubble,

D1 = −i
∫

d2kdω

(2π )3
v(q)v(q)G0(k)G0(k + q).

Here, for spin-polarized fermions, the factor 2 associated with
the fermion bubble is absent, but the negative sign is retained.
G0 is the bare fermion Green function at T = 0 (different from
the scale-dependent Green function in the previous section),
the 4-momentum k = (ω, k), and, similarly, q = (�, q) with
the momentum transfer q = p′ − p. The second diagram con-
tains the vertex correction,

D2 = i
∫

d2kdω

(2π )3
v(q)v(−p − k)G0(k)G0(k + q).

FIG. 8. The second-order contribution to the effective interac-
tion, �(2)(φ). It is defined in Eq. (12) and contains the contributions
from four Kohn-Luttinger diagrams, D1 to D4. Most noticeably, D1

turns negative (attractive). The black curve is the total sum of all four
diagrams; kF R = 2.5.

The third diagram is very similar to the second,

D3 = i
∫

d2kdω

(2π )3
v(q)v(p′ − k)G0(k)G0(k + q).

And the fourth diagram is the exchange scattering,

D4 = i
∫

d2kdω

(2π )3
v(p − k)v(p′ − k)G0(k)G0(k − p − p′).

To evaluate these diagrams, first the ω integral is carried out
analytically, then the integration over k is computed numeri-
cally.

The second-order contribution to the effective interaction
is given by summing over D1 to D4 for p and p′ on the Fermi
surface. In unit of (2πV0R2), the result can be organized into

�(2)(φ) = π

g

4∑
i=1

Di. (12)

As an example, the function �(2)(φ) for the case of RkF =
2.5 is plotted in Fig. 8. We find that the contribution for
diagram D1 (the red curve) turns negative for a significant
range of φ values, e.g., φ < π , while in the same region,
the contributions from D2 + D3 (in green) and D4 (in blue)
remain positive. As a result, the total sum (the black curve)
develops oscillations with φ. This clearly shows that den-
sity fluctuations as captured by D1 play an important role in
making the pairing glue. We can further decompose �(2)(φ)
into angular momentum channels, the resulting �

(2)
� for � = 1

(blue square), � = 3 (orange circle), � = 5 (green triangle),
and � = 7 (red plus) are shown in Fig. 9. One observes that as
R is increased, all components eventually turn attractive. For
� = 3, the effect is most pronounced around R ∼ 3.7/kF .

Now we can combine the second-order contribution �
(2)
�

with the bare repulsion �
(1)
� . We ask at what critical values

g = gc the total effective interaction turns attractive, i.e.,

�
(0)
� + gc

π
�

(2)
� = 0. (13)
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FIG. 9. The second-order contribution to pairing interaction �
(2)
�

in angular momentum channel � = 1, 3, 5, and 7. They all become
attractive for sufficiently large kF R.

Solving this equation for gc, we arrive at the perturbative
phase diagram in Fig. 10, where the phase boundaries of the
� = 1, 3, 5, 7 superfluid are plotted using the same symbols
as in Fig. 9. The unconventional Cooper pairing discovered
here is, to some degree, parallel to the high partial-wave
pairing in the particle-hole (or density wave) channel pre-
dicted for fermionic systems with soft-core interactions [29].
One crucial difference is that the high partial-wave pairing in
the particle-particle (superfluid) channel only requires time-
reversal or parity symmetries of the Fermi surface, whereas
the corresponding particle-hole pairing requires Fermi surface
nesting effects in addition [29].

Now we are in a position to compare Fig. 10 to Fig. 1.
According to the second-order perturbation theory, p-wave

FIG. 10. The onset of superfluid phases with � = 1 (blue), 3 (or-
ange), 5 (green), and 7 (red) according to second-order perturbation
theory. The data points represent the critical value gc. For fixed kF R,
pairing occurs for g > gc.

pairing (blue square in Fig. 10) is pushed toward large g and
R values. This is mainly because the bare interaction �

(1)
�=1

is large and positive, and therefore rather hard to overcome.
Another reason is that �

(2)
�=1 only becomes negative when

R > 2.4, as shown in Fig. 9. Note that according to FRG,
which contains many more diagrams to higher order, p-wave
pairing is actually absent from the phase diagram. The onset
of f -wave pairing (orange circles) in Fig. 10 is roughly con-
sistent with the FRG phase boundary, except for large R. It is
stabilized within the window between kF R ∼ 2 and kF R ∼ 4,
where the bare repulsion �

(1)
�=3 is not particularly strong, but

�
(2)
�=3 already turns negative. For these reasons, the onset of

the f -wave superfluid requires much a smaller gc than the p
wave. In short, perturbation theory correctly predicts that the
f -wave superfluid is preferred over the p wave in our model.
Pairing with larger � moves successively to larger R and lower
gc, and the relative positions of the � = 3, 5, 7 lobes from
Fig. 10 are roughly in line with Fig. 1.

In summary, it is fair to say that the perturbative calculation
above captures some of the rough features of the FRG phase
diagram. On the one hand, it is able to pinpoint certain micro-
scopic processes (e.g., D1 to D4) that work together to turn the
effective interaction attractive, i.e., to provide the pairing glue.
On the other hand, the details of Fig. 10 differ significantly
from Fig. 1. This is not surprising, for the perturbation results
are not reliable at higher kF R values.

V. SUMMARY AND OUTLOOK

We have presented evidence for superfluid phases with
Cooper pair angular momentum � = 3, 5, 7, 9 in a model
system of spin-polarized fermions with short-range repulsive
interactions. Our main goal is to elucidate how the repulsion
is turned into glue that binds the fermions into Cooper pairs.
While FRG provides the full picture and more accurate re-
sults, some of the trends and gross features can already be
appreciated from perturbative considerations. According to
our calculation, it is inaccurate to only credit density fluc-
tuations such as diagram D1 for providing the glue because
other processes also contribute to the renormalization of the
effective interaction, e.g., to the second-order correction �

(2)
� .

Comparing the phase diagram shown in Fig. 1 with the case of
Rydberg-dressed Fermi gas [21] clearly shows that the form of
the bare interaction matters.

These considerations naturally lead to the open question:
assuming that we can engineer arbitrary v(r) using the tricks
of atomic molecular and optical physics, which kind of bare
repulsive interaction v(r) offers the best route toward super-
fluid with a reasonably high Tc? A heuristic argument is that
we would like v(r) to have sharp features, so that its Fourier
transform v(q) will acquire negative segments which could
be potentially advantageous to pairing. While this intuition
serves us well by inspiring the choice of Eq. (1) in the present
work, it must be kept in mind that this is not a first-order
effect. For example, in our example, to the first order of V0, all
�

(1)
� > 0; one must carefully compute the effective interaction

by taking many-body processes into account. Roughly speak-
ing, higher angular momentum (rather than p-wave) pairing
is preferred because there is less bare repulsion to overcome,
and it can take better advantage of the oscillation of �(2)(φ)
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around the Fermi surface. It may be challenging to realize the
simple model and the phases predicted here in near future
experiments. But the lessons learned from the case study,
including the general trend and the underlying mechanism,
can benefit the ongoing effort to engineer stronger pair glue in
repulsive Fermi gases.

Previously, f -wave pairing was discussed, for example, in
the context of superfluid helium 3 [30,31] as well as cold
atoms on an optical lattice [32], but in those cases it is sta-
bilized by very different mechanisms. We stress that in the
present work, the bare interaction is repulsive and the system
is two dimensional. This differs from previous studies on
Rydberg-dressed Fermi gas in 3D with attractive interactions
[33] including the appearance of high partial wave pairing
[34] by coupling to a nD state. In our case, pairing beyond the
f wave (with � � 5) requires a larger value of kF R, i.e., away
from the dilute limit. It remains an open problem regarding
what happens if we generalize the model to spin-1/2 Fermi
gases, where the effect of long-range potentials on pairing has

been discussed [35,36]. Whether the f -wave pairing found
here can lead to a topological superfluid state is another ques-
tion left for future study.
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