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Two-dimensional phase-fluctuating superconductivity in bulk crystalline NdO0.5F0.5BiS2
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We present a combined growth and transport study of superconducting single-crystalline NdO0.5F0.5BiS2.
Evidence of two-dimensional superconductivity with significant phase fluctuations of preformed Cooper pairs
preceding the superconducting transition is reported. This result is based on three key observations. (1) The
resistive superconducting transition temperature Tc (defined by resistivity ρ → 0) increases with increasing
disorder. (2) As T → Tc, the conductivity diverges significantly faster than what is expected from Gaussian
fluctuations in two and three dimensions. (3) Non-Ohmic resistance behavior is observed in the superconducting
state. Altogether, our observations are consistent with a temperature regime of phase-fluctuating superconduc-
tivity. The crystal structure with magnetic ordering tendencies in the NdO0.5F0.5 layers and (super)conductivity
in the BiS2 layers is likely responsible for the two-dimensional phase fluctuations. As such, NdO0.5F0.5BiS2 falls
into the class of unconventional “laminar” bulk superconductors that include cuprate materials and 4Hb-TaS2.

DOI: 10.1103/PhysRevB.109.054516

I. INTRODUCTION

Conventional superconductivity is well described by the
Bardeen-Cooper-Schrieffer [1] (BCS) theory or its strong-
coupling extensions [2]. The superconducting condensate
constitutes a macroscopic wave function, � = � exp(iφ),
with a pairing amplitude � and phase φ. Pairing of
Fermi-liquid quasiparticles [3] and phase coherence emerge
simultaneously below the critical temperature Tc. Phase stiff-
ness is particularly pronounced in the limit where the Fermi
energy is much larger than the pairing amplitude. BCS super-
conductors have no nodes in their energy gap and are typically
insensitive to nonmagnetic impurities [4].

Unconventional superconductivity in its broadest sense
refers to the superconducting behavior that departs from
the conventional BCS theory. In the dirty limit toward
the superconductor-insulator transition as due to disorder
or lowering of the dimensionality, even conventional s-
wave superconductors exhibit a pseudogap at temperatures
much higher than Tc (see, e.g., Ref. [5] and references
therein). This originates in the presence of superconducting
islands that fail to achieve global phase coherence across
the system [6–9]. In very disordered NbN [5,10] and TiN
[11] thin films, for example, phase-fluctuating Cooper pairs
exist prior to the superconducting transition, resulting in
superconducting correlations present well above Tc. Other
examples are high-temperature cuprate [12,13] and iron-based
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[14,15] superconductors, where unconventional superconduc-
tivity arises from pairing of non-Fermi-liquid quasiparticles
[16–19]. Cuprates [20,21] and some iron pnictides [22–24]
exhibit nodal superconductivity and are sensitive to nonmag-
netic impurities [25–27], while cuprate superconductors are
intrinsically disordered [28,29].

The design principles of unconventional superconductivity
remain to be an active field of research. Confining materials
in two dimensions is a common route to explore unconven-
tional superconductivity [30]. However, in bulk crystals, it is
challenging to completely decouple superconductivity along
one direction. Even very tetragonal crystal structure can host
finite interlayer Josephson coupling [31].

Here, we provide an improved growth procedure for
NdO0.5F0.5BiS2 leading to large high-quality single crystals.
The observed paraconductivity exhibits strong deviation from
the Gaussian fluctuation theory. This, combined with the
observation of non-Ohmic I-V characteristics and a strong
disorder dependence of the superconducting transition tem-
perature, provides evidence consistent with two-dimensional
phase-fluctuating superconductivity in NdO0.5F0.5BiS2. This
dimensional reduction is likely linked to the magnetic order-
ing tendency of the NdO0.5F0.5 layers that in turn decouple the
superconducting BiS2 layers.

II. METHODS

High-quality single crystals of NdO0.5F0.5BiS2 were grown
using CsCl/KCl flux [32]. The starting materials Nd, Bi,
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FIG. 1. Crystal structure and x-ray diffraction (XRD) results of NdO0.5F0.5BiS2. (a) Crystal structure of NdO0.5F0.5BiS2. (b) Representative
high-energy (100 keV) XRD mapping of the Bragg reflections in the (h, k, −1) plane. (c) XRD pattern of a NdO0.5F0.5BiS2 single crystal
measured with copper Kα x rays. The θ -2θ scan shows that the surface normal of the crystal is along the (0, 0, l ) direction. The inset displays
the line cut of the (0,0,2) Bragg peak from the high-energy XRD data.

Nd2O3, NdF3, Bi2O3, Bi2S3, and S were mixed in a nominal
stoichiometric ratio, and the molar ratio of flux CsCl/KCl was
CsCl : KCl = 5 : 3. Weighing and grinding of the raw mate-
rials were carried out in an argon atmosphere. The starting
materials (0.8 g) and flux (5 g) were mixed and sealed in
a high vacuum quartz tube. The inner surface of the quartz
tube was coated with a carbon film to stop the flux from
corroding the quartz tube. A sealed quartz tube was heated
to 800 ◦C, for 10 h, before being cooled to 600 ◦C at a rate
of 0.5 ◦C/h. Finally, we furnace-cooled the sample to room
temperature. By removing residual flux with distilled water,
we obtained high-quality single crystals. The thickness and
lateral size of the crystals are, respectively, 10–100 µm and
∼6 mm. The volume of our crystals is therefore 3–5 times
larger than previously reported [33,34].

We performed high-energy (100 keV) x-ray diffraction
experiments on our single crystal of NdO0.5F0.5BiS2 at the
P21.1 beamline at PETRA III (DESY), and the single-crystal
Cu Kα (8.04 keV) x-ray diffraction was performed on the
Bruker D8 advance XRD spectrometer, which gives us robust
evidence for high sample quality. Resistivity measurements
were carried out on a Quantum Design (QD) physical prop-
erty measurement system (PPMS) with a constant DC current
of 1 mA. Voltage-current characteristics were measured in a
commercial PPMS. We used a Keithley 6220 precision current
source to supply the current and the corresponding voltage
was measured using Keithley 2182 nanovoltmeters equipped
with preamplifiers [35–37].

III. RESULTS

The layered P4/nmm structure of NdO0.5F0.5BiS2 (space
group No. 129) is shown in Fig. 1(a). The structure is com-
posed of alternately stacked superconducting BiS2 bilayers
and magnetic NdO0.5F0.5 layers [38]. High-energy (100 keV)
x-ray diffraction recorded at room temperature reveals excel-
lent (single) crystallinity. Bragg features within the (h, k,−1)
scattering plane are shown in Fig. 1(b). In Fig. 1(c), we show
Cu Kα (8.04 keV) x-ray diffraction data along the reciprocal

out-of-plane (0, 0, �) direction. Also here high crystallinity
and the absence of impurity phases are observed. The inset
of Fig. 1(c) displays the (0,0,2) Bragg reflection measure
with 100 keV photons. The Bragg peak width corresponds
to an out-of-plane correlation length ξc � 125 Å, indicating
excellent stacking order.

The temperature dependence of the in-plane resistivity ρab,
shown in Fig. 2(a), is consistent with previous reports [33,34].
Even within the same growth batch, slightly different residual
resistivity ρ0 values are found. Motivated by the resistivity
plateau in the temperature range 80–140 K, we define the
resistivity ratio as RR = ρ(300 K)/ρ(140 K). Generally, we
find ρ0 ∼ 500–550 µ
 cm and RR = 1–1.4 across our grown
samples. The low RR values suggest that NdO0.5F0.5BiS2 is
a disordered superconductor. The superconducting transition
temperature (defined by the temperature below which the
resistance is indistinguishable from zero) varies in the range
Tc = 3.5–5 K. In fact, Tc and RR appear to anticorrelate; see
Fig. 2(c), where data from Refs. [33,34,39] are also shown.
Samples with lower RR and higher ρ0 values have a higher
transition temperature.

In what follows, we describe results on one of our samples.
In Fig. 2(b), the low-temperature resistivity is plotted as a
function of T 1.5 and T 2 (see inset). We find that the T 1.5

dependence describes the resistivity over a wider temperature
range. A fit to ρn = ρ0 + AT 1.5 yields ρ0 = 529 µ
 cm and
A = 0.0449 µ
 cm K−1.5.

Next, we turn to observations of paraconductivity. Our
analysis assumes the applicability of the Matthiessen rule
[40]. That is, σ = σsc + σqp, where for zero magnetic field
σqp = 1/ρn refers to the normal-state quasiparticle transport
and σsc is the conductivity from short-lived superconduct-
ing Cooper pairs or phase-fluctuating superconductivity. With
σ = 1/ρ, we infer the conductivity from superconducting
fluctuations: σsc = σ − σqp. In Fig. 3(a), we compare σsc

for NbN [35], Pr2−xCexCuO4 (PCCO) [41], La2−xSrxCuO4

(LSCO) [42], and NdO0.5F0.5BiS2 (NOFBS) as a function
of distance ε = (T − Tc)/Tc to the superconducting transi-
tion temperature Tc. For NbN, PCCO, and LSCO, σsc scales
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[39]

FIG. 2. In-plane resistivity ρab of NdO0.5F0.5BiS2 versus temperature. (a) Temperature dependence of ρab with the transition temperature Tc

indicated. Inset shows a resistivity versus temperature for three different samples. Dashed lines indicate extrapolations to estimate the residual
resistivity ρ0. (b) Low-temperature resistivity plotted as a function of T 1.5. Inset shows the same data plotted versus T 2. (c) Superconducting
transition temperature versus the resistivity ratio defined by ρ(300 K)/ρ(140 K). Red points denote data from this work and black points
represent literature values as indicated [33,34,39].

with ε−1 for ε → 0 as expected from standard Gaussian
fluctuations in two-dimensional systems. In fact, for NbN
the expected σsc = e2/(16h̄dε) is observed over more than
one order of magnitude in ε [43]. For NdO0.5F0.5BiS2, the
σsc = e2/(16h̄dε) scaling is found for intermediate values of
ε. However, as ε → 0, strong deviation from the ε−1 scaling
is observed with much faster divergence.

This unconventional behavior of the superconducting
fluctuations led us to investigate the I-V characteristics. Fig-
ure 3(b) shows I-V curves in a double logarithmic scale for
various temperatures as indicated. For T > T ∗ ≈ 5 K, the
standard Ohmic (I ∝ V ) behavior is found. Inside the super-
conducting state, however, we find deviation from the Ohmic
behavior below a critical current Ic ∼ 1 mA. For T < T ∗
and I < Ic, the I-V curves can be described by a power-law
dependence, I ∝ V −p. With decreasing temperatures below
Tc, the exponent p increases; see Fig. 3(c). Such temperature

dependence of p is observed for two-dimensional supercon-
ductivity hosted by, for example, monolayer FeSe [46] or the
interface between SrTiO3 and LaAlO3 [47].

IV. DISCUSSION

The T 1.5 dependence of the normal-state resistivity ob-
served in NdO0.5F0.5BiS2 could originate from proximity
to a magnetic quantum critical point. It is known that
CeO0.5F0.5BiS2 orders ferromagnetically and exhibits a lower
superconducting transition temperature [48–51]. It is there-
fore not inconceivable that NdO0.5F0.5BiS2 hosts critical spin
fluctuations that generate the non-Fermi-liquid behavior [52].
It is also not uncommon to find superconductivity around
such a magnetic quantum critical point [18,53]. In addition,
there are a few examples of unconventional superconduc-
tivity emerging from ρ ∼ AT 1.5 non-Fermi liquids such as

FIG. 3. Unconventional paraconductivity and voltage-current characteristics. Panel (a) compares paraconductivity plotted as σsc d ε [see
Eq. (1)] versus ε = (T − Tc )/Tc for NdO0.5F0.5BiS2, Pr2−xCexCuO4 [41], La2−xSrxCuO4 [42], and NbN [35]. (b) V-I curves in log-log scale
for temperatures as indicated. Dotted lines are power-law V ∼ I p scaling with p adjusted to fit the data. (c) Temperature dependence of p for
NdO0.5F0.5BiS2 (red points), compared with results on La1.875Ba0.125CuO4 (black points) [44], monolayer FeSe (blue points) [46], 1T-MoS2

(green points) [45], and LaAlO3/SrTiO3 interface (magenta points) [47].
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in KFe2As2 in the dirty limit [23], CsFe2As2 [24], and
YFe2Ge2 [19]. In these three materials [19,23,24] as well as
our NdO0.5F0.5BiS2 samples, we find no apparent correlation
between the scattering coefficient A and Tc. This is in con-
trast to electron-doped cuprates where a positive correlation
between A in ρ ∼ AT and Tc has been found [54].

The crystal structure with BiS2 bilayers separated by
NdF0.5O0.5 layers makes a potential host for two-dimensional
electronic orders. A large resistivity anisotropy ρc/ρab ≈
1500 has been reported for Pr1.05O0.82F0.18Bi1.03S2 [55], sug-
gesting two-dimensional electronic structure [56]. ARPES
experiments on NdO0.5F0.5BiS2 have demonstrated that the
band structure is highly two-dimensional [57]. Electronic two-
dimensionality can be enhanced further when neighboring
layers host different orders. In 4Hb-TaS2 [58] superconductiv-
ity is sandwiched by Mott insulating layers. Another example
is La1.875Ba0.125CuO4 [44], where alternating stripe order is
believed to quench the c-axis Josephson coupling. Super-
conductivity in NdO0.5F0.5BiS2 is likely confined within the
BiS2 layers and the ground state involves magnetism in the
NdF0.5O0.5 layers. In fact, a density functional theory study of
NdO0.5F0.5BiS2 claims two possible magnetic ground states at
low temperatures [59]. Therefore, NdO0.5F0.5BiS2 is expected
to host highly two-dimensional superconductivity.

Upon approaching the superconducting transition tem-
perature, the coherence length ξ diverges and substantially
exceeds the out-of-plane lattice parameter and the electronic
mean free path �. As discussed above, NdO0.5F0.5BiS2 may
belong to the class of highly resistive two-dimensional su-
perconductors. Such superconductors are expected to display
Gaussian fluctuations. In this case, the conductivity from
short-lived Cooper pairs is expected to show a power-law
divergence:

σsc � e2

16h̄d

1

ε
, (1)

where h̄ and e are, respectively, the reduced Planck constant
and the elementary charge [60]. The length scale that con-
fines superconductivity in two dimensions is labeled d . For
film systems, d is typically defined as the film thickness.
Two-dimensional superconductivity emerges when the out-of-
plane superconducting coherence length ξ c

sc exceeds d . In this
limit, Gaussian fluctuations provide the conductivity channel
expressed in Eq. (1), namely, σscdε ∼ e2/(16h̄), a constant as
a function of ε. Plotted in Fig. 3(a) are σscdε from data on a
NbN film [35] with film thickness d � 100 Å, Pr2−xCexCuO4

[41], and La2−xSrxCuO4 [42], which are all independent of
ε. To reach this numerical consistency for cuprates (films or
crystals), d is made comparable to the layer spacing c/2 ∼ 6
Å. The c-axis coherence length ξ c

sc is typically much shorter
than the ab-plane coherence length ξ ab

sc in cuprates, yet c/2 �
ξ c

sc (∼8 Å and ∼7 Å, respectively, for PCCO and LSCO [61]).
In contrast, NbN presents strongly coupled s-wave supercon-
ductivity with an isotropic coherence length, which is larger
than the film thickness d .

As can be seen in Fig. 3(a), σsc obtained on our bulk
crystals of NdO0.5F0.5BiS2 shows strikingly different de-
pendence on ε, when the out-of-plane lattice correlation
length ξc is taken as the confining length scale, i.e., d =
ξc = 125 Å. It follows standard two-dimensional Gaussian

fluctuations for ε > 0.2, whereas significant deviation from
σsc ∼ ε−1 is observed for ε < 0.2. In NdO0.5F0.5BiS2, σsc

grows rapidly as T approaches Tc and eventually an approx-
imately σsc ∼ ε−3 power-law growth emerges in the ε → 0
limit. This strongly suggests the existence of non-Gaussian
fluctuations. Phase fluctuations from preformed Cooper pairs
are a possible source for this sudden rise of σsc. This implies
that NdO0.5F0.5BiS2 displays both amplitude- and phase-
fluctuating superconductivity above Tc. As the contribution
of phase fluctuations to the conductivity decays faster as ε

increases, Gaussian fluctuations dominate for ε > 0.2. Con-
versely, phase fluctuations are the dominant contribution as
ε → 0. This corroborates our observation of non-Ohmic V-I
behavior that is commonly observed in phase-fluctuating two-
dimensional superconductors.

Superconductivity is often sensitive to disorder. For exam-
ple, in monolayer FeSe two-dimensional superconductivity
emerges only in the clean limit [46]. On the contrary, in
NbN films the phase fluctuating regime is reached in the limit
where disorder localizes the electronic wave functions [10].
Moreover, in thin films of several soft metals such as Al
and Sn, larger Tc has been observed for higher sheet resis-
tance [62–66]. The same phenomenon is also reported in bulk
aluminum-copper alloy [67]. Also in NdO0.5F0.5BiS2, higher
residual resistivity seems to favor unconventional supercon-
ductivity. The value of ρ0 ∼ 500–550 µ
 cm of our samples
is smaller but the same order of magnitude as those found in
La2−xBaxCuO4 [68] and underdoped Ba(Fe1−xCox )2As2 [69],
and an order of magnitude smaller than observed in under-
doped cuprates [70]. In NdO0.5F0.5BiS2 as well as NbN and
TaS2 [71], the large sheet resistance stems likely from chem-
ical disorder. The corresponding localization of the electronic
wave functions may affect the superconducting properties
including Tc. We find in our samples that the smaller the
RR and the larger the ρ0, the higher the Tc. Mechanisms for
enhancing Tc by disorder in unconventional as well as conven-
tional superconductors have been proposed [72–76] and such
enhancement has been observed in La1.875Ba0.125CuO4 [77]
and the simple metals mentioned above [62–67].

It is also worth noting that phase fluctuations above Tc

are expected to occur in strongly coupled superconductors.
Scanning tunneling spectroscopy experiments indicate that
2�/(kBTc) = 16.8 with � being the superconducting pairing
amplitude for NdO0.5F0.5BiS2 [34,78]. This ratio is more than
four times larger than expected from the weak-coupling BCS
theory. Hence it is reasonable to assume a strong-coupling
scenario for NdO0.5F0.5BiS2. All this evidence combined
points to strong-coupling superconductivity with unusually
large fluctuations of preformed Cooper pairs in bulk crys-
talline NdO0.5F0.5BiS2.

V. CONCLUSION

In summary, we have successfully grown large high-quality
single crystals of NdO0.5F0.5BiS2. The single-crystal quality
has been demonstrated through x-ray diffraction measure-
ments. Resistivity scales with T 1.5 before entering the regime
of superconducting fluctuations. The observations of non-
Ohmic I-V characteristics, non-Gaussian superconducting
fluctuations, and disorder dependence of the superconducting
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transition provide evidence of a two-dimensional phase-
fluctuating regime above the transition temperature. This
dimensional reduction is likely due to magnetic ordering ten-
dencies in the NdO0.5F0.5 layers that effectively decouple the
superconducting BiS2 layers.
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