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Monte Carlo solver and renormalization of Migdal-Eliashberg spin chain
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Motivated by the recently developed classical spin model for the Migdal-Eliashberg theory, we develop
numerical and analytical methods based on this spin-chain representation and apply these methods to the
Bogoliubov-Tomachov-Morel-Anderson pairing potential, which incorporates the phonon-mediated attraction
and Coulomb repulsion. We show that the Monte Carlo method with heat bath updates can efficiently obtain the
gap functions even for the situations challenging for the iterative solvers, suggesting an unprecedented robust
approach for solving the full nonlinear Migdal-Eliashberg theory. Moreover, we derive the renormalization
of all the couplings by tracing out the high-frequency spins in the partition function. The derived analytical
renormalization equations produce the well-known μ∗ effect for the Bogoliubov-Tomachov-Morel-Anderson
pairing potential and can be generalized to other superconductivity problems. We further point out that several
interesting features (e.g., sign changing in the frequency-dependent gap function) can be intuitively understood
using the classical spin-chain representation for Migdal-Eliasherg theory. Our results show the advantage of
using the spin-chain representation for solving Migdal-Eliashberg theory and provide new ways for tackling
general superconductivity problems.
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I. INTRODUCTION

Superconductivity is one of the most important quantum
phenomena in materials and offers several applications in
modern technology. The conventional superconductors can be
explained by the phonon-mediated attraction between elec-
trons, i.e., the Bardeen-Cooper-Schrieffer (BCS) theory [1].
The most successful theory predicting phonon-mediated su-
perconductivity is the Migdal-Eliashberg (ME) theory [2,3],
which incorporates the retardation effect and the dynami-
cal dependence of the phonon-mediated pairing potential.
Remarkably, phonon-mediated superconductivity can persist
even if the Coulomb repulsion is stronger than phonon-
mediated attraction [4], resulting in superconductivity from
overall repulsive interaction. The phonon-mediated supercon-
ductivity applies to a wide range of quantum materials. For
example, it has been proposed that phonons can provide suffi-
ciently strong attractive interactions that support observable
superconductivity in graphene-based materials [5–15]. The
phonon-induced superconductivity in graphene [5–15] would
depend crucially on the details of band structures and doping
since both the electron-phonon coupling and the Coulomb
repulsion would be sensitively dependent on these details, and
may even be unknown in the moiré structures in general be-
cause of strain, relaxation, and twist angle disorder. This may
be a possible explanation for why graphene superconductivity
is not generically observed in all nominally similar samples
as well as why Tc varies from 20 mK to 2 K depending on the
details [16–25].
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Recently, Yuzbashyan and Altshuler pointed out that the
ME theory can be mapped to a classical spin chain (see
Fig. 1), bringing new insights to the well-established ME the-
ory [26–28]. Solving the self-consistent Eliashberg equation is
equivalent to finding the ground state of the corresponding
classical spin chain. This mapping is useful because it sug-
gests that one can study the superconductivity problems with
the tools developed for classical spins. In addition, this spin-
chain representation may provide a further understanding of
results in ME theory. The main goal of this work is to explore
possible new methods for the ME classical spin model.

In this work, we develop methods for the ME spin chain
model and apply these methods to the Bogoliubov-Tomachov-
Morel-Anderson potential [4,29] (which describes the in-
terplay between phonon-mediated attraction and Coulomb

FIG. 1. Ground state of Migdal-Eliashberg spin model with
phonon-mediated attraction. (a) Normal state spin texture, cor-
responding to T > Tc. (b) Superconducting state spin texture,
corresponding to T < Tc. The transverse components of spins are
related to the anomalous correlation.
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repulsion) as a case study. We show that Monte Carlo (MC)
simulations with heat bath updates give accurate solutions
even for situations that are difficult for the conventional it-
erative solvers. We also derive renormalization of couplings
for the ME theory by tracing out the high-energy spins. This
spin-decimation renormalization produces the celebrated μ∗
effect [4] and provides a systematic framework for supercon-
ductivity with general pairing potentials. We further point out
that several features of superconductivity can be understood
intuitively within the spin model. Our results suggest several
advantages of using the ME classical spin model.

The rest of the paper is organized as follows: We dis-
cuss the mapping between ME theory and the classical spin
chain in Sec. II. In Sec. III, we introduce the MC method
with heat bath updates, which efficiently solve the Eliashberg
equations. Then, we apply this new numerical solver to the
Bogoliubov-Tomachov-Morel-Anderson pairing potential in
Sec. IV. We further derive the renormalization of couplings in
Sec. V. Finally, we discuss several technical issues and future
directions in Sec. VI. In the appendices, we discuss the MC
implementations with both heat bath and Metropolis updates
(Appendix A), iterative solvers (Appendix B), and derivation
for the spin-decimation renormalization (Appendix C).

II. CLASSICAL SPIN MODEL

We review the mapping between ME theory and classical
spin chain following Ref. [26] in this section. First, we sketch
the derivation of ME theory and then discuss the mapping.
Then, we discuss the superconducting transition in the classi-
cal spin representation.

A. Mapping to classical spins

To derive the ME theory, we consider electron-phonon
models, such as the Holstein model. As shown in Ref. [26],
the precise form of phonon dispersion or the electron-phonon
interaction is not crucial for the derivation. The first step is
integrating out the phonons in the imaginary-time path inte-
gral formalism, which generates a dynamical fermion-fermion
pairing interaction with nontrivial frequency dependence. In
the BCS theory, the full dynamical dependence of the pairing
interaction is simplified by an effective instantaneous attrac-
tive interaction (corresponding to a constant in the frequency
domain). Here, we keep the full frequency dependence. Next,
we employ the Hubbard-Stratonovich decoupling for the pair-
ing interaction and then integrate out the fermionic fields.
After averaging over the spatial degrees of freedom, the ME
free energy functional per site is given by [26]:

fME = − 2πν0T
∑

n

√
(ωn + �n)2 + |�n|2

+ ν0T 2
∑
n,m

[
�∗

n(V −1)n,m�m + �∗
n (V −1)n,m�m

]
, (1)

where ν0 is the density of states, ωn = πT (2n + 1) is the
fermionic Matsubara frequency, n is an integer, T denotes
the physical temperature, V −1 is the inverse pairing inter-
action, �n is a real-valued field associated with the normal
electron correlation (e.g., 〈c†

↑c↑〉), and � is a complex-valued

field associated with the anomalous electron correlation (e.g.,
〈c↓c↑〉). The ME equations can be derived by minimizing fME:

�n = πT
∑

m

Vn,m
�m√

(ωm + �m)2 + |�m|2
, (2a)

�n = πT
∑

m

Vn,m
ωm + �m√

(ωm + �m)2 + |�m|2
, (2b)

where V is the pairing potential.
As pointed out by Yuzbashyan and Altshuler [26], fME can

be mapped to a spin model. First, we introduce the anomalous
(Fn) and normal (Gn) Green functions as follows:

Fn = �n√
(ωn + �n)2 + |�n|2

, (3)

Gn = ωn + �n√
(ωn + �n)2 + |�n|2

. (4)

Since |Fn|2 + G2
n = 1, we can parametrize Fn = Sx

n + iSy
n and

Gn = Sz
n, where �Sn = (Sx

n, Sy
n, Sz

n) is a unit vector with three
components. Using the spin representation and Eq. (2), fME

can be rewritten. One can easily check that∑
n,m

{�∗
n[V −1]n,m�m + �n[V −1]n,m�m} = π2

∑
n,m

Vn,m �Sn · �Sm,

(5)∑
n

√
(ωn + �n)2 + |�n|2 =

∑
n

[Fn�
∗
n + Gn(ωn + �n)]

=
∑

n

ωnSz
n + πT

∑
n,m

Vn,m �Sn · �Sm.

(6)

With the above equations, the spin Hamiltonian for ME theory
is given by [26]

Hspin ≡ fME

ν0T
= −2π

∑
n

ωnSz
n − π2T

∑
n,m

Vn,m �Sn · �Sm. (7)

The partition function of ME theory now becomes Z =∫
D[�,�,�∗]e−Hspin/δ , where δ is the level spacing acting

as an effective temperature for the spin model (but not the
physical temperature T ). With δ → 0, solving the Eliashberg
equations [Eq. (2)] becomes equivalent to finding the ground
state of Hspin. The first term of Hspin is a site-dependent Zee-
man field; the second term describes a long-range classical
Heisenberg interaction. Vn,m depends on specific model inter-
action.

Here, we discuss the procedures of extracting the super-
conducting gap function via classical spins. First, the gap
function is defined by �(ωn) ≡ �n = �n/Zn, where Zn =
1 + �n/ωn. With classical spins, we can parametrize �Sn =
(sin θn cos φn, sin θn sin φn, cos θn). The amplitude of gap
function is |�(ωn)| = |�n|/Zn = |ωn tan θn|, and arg �(ωn) =
sgn(ωn)φn. In a superconducting state, the spin chain has finite
transverse spin components, i.e., sin θn 
= 0.

B. Superconducting transition in classical spin representation

To study the superconducting transition in the classical spin
representation, we consider the phonon-mediated attraction
Vn,m = g2/[(ωn − ωm)2 + �2], where g is the electron-phonon
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coupling and � is the characteristic phonon frequency. The
dimensionless parameter is given by λ = g2/�2. For λ = 0,
the ground state of Hspin is described by �Sn = sgn(ωn)ẑ (fully
polarized along the local Zeeman field directions) which cor-
responds to the normal state. The ferromagnetic interaction
and the local Zeeman field are compatible for spins with
|n| � 1 where the local Zeeman field strongly pin the spins
along the ẑ (−ẑ) direction for n � 1 (n � −1). However,
there is frustration between two interactions for spins close to
n = 0: The local Zeeman fields favor �S1 = −�S0 = ẑ, while the
ferromagnetic interaction tends to align �S0 and �S1. The compe-
tition between the local Zeeman fields and the ferromagnetic
interaction results in a finite transverse component (on the xy
plane), indicating superconductivity.

The competition between the local Zeeman fields (ωn) and
the ferromagnetic interaction (Vn,m) can be understood intu-
itively through a minimal two-spin toy model for ME theory,
which is described by

H2 = −E0(Sz
+ − Sz

−) − J �S+ · �S−, (8)

where E0 > 0, J > 0, and �S+ (�S−) denotes the spin coupled
to the positive (negative) Zeeman field. Without loss of gener-
ality, we assume the spins are in the xz plane (i.e., setting the
polar angles to zero). The spins can be fully described by the
azimuthal angles θ+ and θ−. We find that the ground state of
H2 can be described by θ+ = θ and θ− = π − θ , where

θ =
{

cos−1
(E0

2J

)
for J > E0/2,

0 for J � E0/2.
(9)

This simple model shows two phases; canted spins with the
same transverse component and spins polarized along the
local Zeeman fields. The former case corresponds to a super-
conducting state, while the latter case corresponds to a normal
state. Interestingly, this two-spin model predicts superconduc-
tivity for J � 2E0, a finite critical value of J . Connecting to
the phonon-mediated pairing potential, J is analogous to the
Vn,n−1, which increases as T decreases. Thus, increasing J is
equivalent to decreasing T , and this toy model captures the
superconducting transition.

III. MONTE CARLO SIMULATION
WITH HEAT BATH UPDATES

To obtain the ground state of Hspin [given by Eq. (7)],
we employ the MC method with heat bath updates [30]. We
briefly discuss the ideas of heat bath updates in the following,
and leave the detailed implementation to Appendix A.

Consider a single spin-flip update at a given site i. The
probability distribution function can be written as

p(θi, φi ) = 1

Zi
e−βHi , (10)

where Hi = − �H (eff)
i · �Si is the local Hamiltonian that de-

scribes the effective Zeeman coupling on site i, β = 1/T is
an artificial inverse temperature used in the MC simulations
(not the physical temperature), and Zi is the local partition
function associated with Hi. The source of �H (eff)

i includes both
the Zeeman field 2πωnẑ and the couplings from the neighbors
2π2T

∑
m 
=i Vi,m �Sm.

It is convenient to work in the local frame where �H (eff)
i

points to the +ẑ direction, with the probability distribution of
the local coordinates {θ̃i, φ̃i} being

p(θ̃i, φ̃i ) = 1

Zi
eβH (eff)

i cos θ̃i , (11)

where H (eff)
i ≡ | �H (eff)

i |.
As a result, we can sample {θ̃i, φ̃i} according to two ran-

dom numbers {r1, r2} drawn from a uniform distribution in
the range [0, 1]:

r1 =
∫ 2π

0
dφ

∫ θ̃i

0
sin θdθ p(θ̃i, φ̃i ), (12a)

r2 = φ̃i/(2π ). (12b)

The solutions of Eqs. (12a) and (12b) are given by [30]:

cos θ̃i = 1

βH (eff)
i

ln
[
r1e−βH (eff)

i + (1 − r1)eβH (eff)
i

]
, (13a)

φ̃i = 2πr2. (13b)

Finally, we need to perform a rotation to obtain the spin �Si in
the laboratory frame:

R �̃Si = �Si, (14)

where R is the rotation matrix such that

Rẑ = �H (eff)
i /H (eff)

i . (15)

In the simulation, a unit MC sweep consists of 2N such
heat bath updates (2N is the number of sites), each performed
on a random site i. To obtain the ground state, we reduce
the artificial MC temperature from sweep-n to sweep-(n + 1)
according to

Tn+1 = αTn, (16)

where the parameter α is chosen such that the first 1/4 of the
total MC sweeps are used to anneal from an initial tempera-
ture T0 to the target artificial temperature T f (T0 = 0.1� and
T f = 10−10� in this work), and the rest 3/4 of the MC sweeps
are used to further equilibrate the ground state at T f . For all the
cases we have tested in this work, 500 sweeps of heat-bath up-
dates are sufficient for achieving accurate gap functions. Note
that the typical Metropolis updates no longer work at very
low temperatures, where the proposed new configurations are
rejected in most cases, causing the spin configurations to be
stuck in local minima. In contrast, the heat-bath updates have
a 100% acceptance ratio at arbitrarily low temperatures. See
Appendix A for a discussion.

In Fig. 2, we plot Tc as the function of λ and com-
pare the well-known asymptotic formulas [31,32]. The MC
simulations with heat-bath updates solves the full nonlinear
ME equations without linearizing equations. Furthermore, our
method is very efficient for general pairing potentials, includ-
ing the situations that are difficult for the iterative solvers
(including the damped scheme [33] and moving average, see
Appendix B). We also find that the heat-bath updates are
much more efficient than the Metropolis updates (with or
without over-relaxation updates [34]). See Appendix A for a
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FIG. 2. Extracted Tc from Migdal-Eliashberg spin model. The
blue dots are obtained using MC simulations with heat- bath updates.
The number of spins (2N) varies with the temperature, and the
frequency cutoff � = 2πT (N + 1/2) is at least 7�. The red dashed
line denotes the asymptotic formula Tc/� = 0.1827

√
λ for λ � 1

[31,32]. Inset: Tc in the logarithmic scale. The black dashed line
denotes the asymptotic formula Tc/� = 0.252e−1/λ for λ � 1 [32].

discussion. Thus, the MC simulations with heat bath updates
is suitable for studying complicated pairing potential, such as
the γ model [35,36] and the potentials featuring complicated
frequency dependence, e.g., Refs. [37,38].

IV. APPLICATION TO BOGOLIUBOV-TOMACHOV-
MOREL-ANDERSON PAIRING POTENTIAL

In this section, we apply the heat bath MC method to a
superconductivity problem with phonon-mediated attraction
and Coulomb repulsion. The goal is to demonstrate the ad-
vantage of MC simulations with heat bath updates. We also
discuss how to understand the results from the ME spin-chain
perspective.

We are interested in the interplay between the phonon-
mediated pairing and Coulomb repulsion, which can be
described by the Bogoliubov-Tomachov-Morel-Anderson
pairing potential given by [4,29,31,32,39]

Vn,m = −μ + g2

(ωn − ωm)2 + �2
, (17)

where g is the electron-phonon coupling, � is the charac-
teristic phonon frequency, and μ > 0 encodes the repulsive
instantaneous Coulomb interaction (constant in frequency
domain). The dimensionless coupling for phonon-mediated
attraction is λ = g2/�2. Note that the form of Eq. (17) is based
on the naive continuation of the saddle point equations de-
rived with an attractive pairing interaction. A more careful
derivation incorporating the Coulomb repulsion can be found
in Ref. [40]. Conventionally, the −μ term only enters Eq. (2a),
corresponding to a constant all-to-all antiferromagnetic trans-
verse spin-spin interaction. We have checked numerically
(with iterative solvers) that ignoring the SzSz interaction in the
μ term does not change the gap function. This is because the
solution always satisfies the favorable spin configuration due
to the constant all-to-all z-component (Ising-like) spin-spin
interaction. In fact,

∑
n Sz

n = 0 is a manifestation of time-
reversal symmetry. Thus, we use the isotropic Heisenberg
interaction in the MC simulations with the heat bath updates.

The existence of superconductivity is determined by λ −
μ∗ [4], where μ∗ is the renormalized Coulomb repulsion
at the energy scale ∼�. Intuitively, the Coulomb repulsion
in the Cooper channel is marginally irrelevant, resulting in
μ∗ = μ0/(1 + μ0 ln(�0/�

∗)), where μ0 is the bare Coulomb
potential, �0 is the bare energy cutoff, and �∗ is the cutoff
in the renormalized theory. However, the μ∗ effect is not the
entire story. The Coulomb repulsion guarantees that the gap
function changes sign (apart from the overall phase) at some
frequency [4,38,41].

In the spin model, the Coulomb repulsion corresponds to
a constant all-to-all antiferromagnetic Heisenberg interaction.
Such an interaction can be rewritten as Hμ = μ| ∑n

�Sn|2,
which tends to minimize |∑n

�Sn|.
∑

n Sz
n is generically zero

because the local Zeeman fields in Hspin favor configurations
with

∑
n Sz

n = 0, suggesting the irrelevance of the z com-
ponent of the constant all-to-all antiferromagnetic spin-spin
interaction. There is a competition between the phonon-
mediated attraction (power-law ferromagnetic interaction)
and the instantaneous Coulomb repulsion (constant all-to-all
antiferromagnetic interaction). A possible solution is to form
domains with opposite directions of the transverse compo-
nents, corresponding to the well-established sign changing of
the gap function [4]. In this case, the transverse spins mostly
align (due to ferromagnetic interaction) except for those spins
near the domain walls, and the total transverse spin compo-
nents are reduced due to the constant all-to-all antiferromag-
netic interaction. Analyzing ME theory in terms of classical
spins provides an intuitive understanding of the well-known
sign changing of gap function in the presence of repulsion.

In Fig. 3, we compute the superconducting gap using heat
bath MC method with λ = g2/�2 = 0.64, T = 0.01�, and
various representative values of μ. Choosing a different T
does not change the qualitative results as long as T is below
the transition temperature with μ = 0. The gap functions ex-
hibit zeros (denoted by ω̃) accompanied by sign changing. The
results show superconductivity for μ < μc = 1.4, which is
much larger than λ = 0.64 used in the calculations. Using the
ME spin-chain model, we explicitly establish the well-known
result of phonon-mediated superconductivity [4]: There is a
threshold value of λ, for a given μ, below which supercon-
ductivity is absent. The reverse is also true that, for a given λ,
there is a threshold value of μ above which superconductivity
vanishes. Note that the critical value μc here corresponds
to T = 0.01� rather than for T = 0. As a result, we obtain
μ∗

c ≈ 0.18, which is much smaller than λ = 0.64.
As discussed previously, the competition between phonon-

mediated attraction (power-law ferromagnetic interaction)
and Coulomb repulsion (constant all-to-all antiferromagnetic
interaction) can be examined through the total transverse am-
plitude S⊥

tot ≡ |∑n(Sx
nx̂ + Sy

nŷ)|. In Fig. 4(a), we show that
S⊥

tot decreases as μ increases, consistent with our intuition
that a large μ favors S⊥

tot = 0. Note that S⊥
tot = 0 does not

necessarily mean
∑

n �n = 0. We also study the evolution of
the frequency, ω̃, associated with the zero in �n. In Fig. 4(b),
we find that the |ω̃| decreases and then converges to a small
frequency (2πT ×20.5 = 1.3509�) as μ increases to μc. The
qualitative trend of ω̃ is similar to the zero-temperature study
in Ref. [38] except that ω̃ does not approach zero in our
finite-temperature calculations.
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FIG. 3. Frequency-dependent order parameter. We plot �(ωn)
for λ = 0.64, T = 0.01�, N = 2000 (i.e., � = 125.7�), and sev-
eral values of μ. (a) Order parameters with μ = 0, 0.01, 0.05, and
0.1. The gap function changes sign for μ > 0, and ω̃ (frequency
corresponding to the zero in �) shrinks as μ increases. (b) Order
parameters with μ = 0.6, 0.8, 1, 1.2, 1.4. All the results are obtained
by the MC simulation with heat bath updates.

FIG. 4. Fine features of order parameter. (a) The total transverse
spin component, S⊥

tot ≡ | ∑n
�S⊥

n |, as a function of μ. (b) The fre-
quency associated with the zero in the order parameters, ω̃, as a
function of μ. (Only the positive zero is shown.) Superconductivity
is full suppressed at μ = 1.4. All the results are obtained by the MC
simulation with heat bath updates.

V. RENORMALIZATION OF SPIN MODEL

The spin-chain representation of ME theory allows for an
explicit derivation of renormalization of parameters. In the
spin model, the positions of the spins represent Matsubara
frequencies. Thus, integrating out the high frequencies is
equivalent to tracing out the classical Heisenberg spins at the
boundaries. In the following, we show renormalization for
Hspin by decimation of the boundary high-frequency spins,
which can be done analytically within some approximations.

First, we discuss the decimation procedure for one spin.
For a spin at site n, the equation of motion is governed by the
effective Hamiltonian Hn = − �Hn · �Sn, where

�Hn = 2πωnẑ + 2π2T
∑
m 
=n

Vn,m �Sm. (18)

In the partition function, we can integrate out the site n and
obtain the correction to spin Hamiltonian [42],

δH = −β−1 ln sinh(β| �Hn|) + β−1 ln(β| �Hn|), (19)

where β = δ−1 is the effective inverse temperature of the
classical spin chain (not the inverse physical temperature), and
δ is the level spacing of the physical system. After taking β →
∞, δH = −| �Hn|. In most cases, the local Zeeman field term
(2πωnẑ) of �Hn dominates. Thus, we can derive the correction
to the Hamiltonian, ignoring the O(|ωn|−2) contributions. See
Appendix C for derivations.

After tracing out the boundary spins (i.e., n = −N and n =
N − 1 sites), the corrections to Hspin are described by

δHspin = − 2π2T
∑

n

(
V z

n,N−1 − V z
n,−N

)
Sz

n

− π3T 2

�

∑
n,m

(V ⊥
n,N−1V

⊥
m,N−1 + V ⊥

n,−NV ⊥
m,−N )�S⊥

n · �S⊥
m ,

(20)

where the sites n, m ∈ {−N + 1, . . . , N − 2}, �S⊥
n ≡ Sx

nx̂ +
Sy

nŷ, and � = |ω−N | = ωN−1 is the original frequency cutoff.
The superscripts z and ⊥ in V denote the interaction of z
and transverse components, respectively. Before tracing out
spins, the spin-spin interaction is isotropic, i.e., V z

n,m = V ⊥
n,m.

After tracing out the spins, V z
n,m and V ⊥

n,m become unequal,
and single-ion anisotropy terms [e.g., D(Sz

n)2] are created.
We have checked numerically that the single-ion anisotropy
terms generate O(�−2) correction, which we ignore in this
work. Equation (20) applies for general pairing potentials (as
long as |ωn| � |Vn,m|) and indicates a systematic procedure
of reducing the number of Matsubara frequencies in solving
Eliashberg equations.

In Fig. 5, we apply the analytical results to the Bogoliubov-
Tomachov-Morel-Anderson pairing potential [Eq. (17)] and
plot the renormalized parameters as well as the gap func-
tions using the renormalized equations through iteration.
The results suggest that the low-frequency gap functions
can be reliably extracted using the derived renormalized
parameters with a reduced number of sites (frequencies),
implying a reduction of computational complexity for ME
theory. The spin-decimation renormalization is similar to the
folding procedure in solving Eliashberg equations for phonon-
mediated superconductivity [39] except that renormalization
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FIG. 5. Renormalized couplings from decimation of spins based on Eq. (20). λ = 0.64 and T = 0.01� are used in these plots. μ = 0
is used in (a)–(c), and μ = 0.5 is used in (d)–(f). We integrate out the high-energy spins with 2πT (N0 − 1/2) < |ωn| � 2πT (Ni − 1/2),
where N0 = 250 and Ni = 1000. (a), (d) Comparison between the bare and renormalized frequencies. (b), (e) Comparison between bare and
renormalized pairing interactions. The black dashed line in (e) represents the Coulomb potential estimated by −μ∗ = −0.5/(1 + 0.5 ln 4) =
−0.2953. (c), (f) Comparison between solutions from bare and renormalized couplings. The blue lines are obtained by solving the Eliashberg
equation with the bare interaction and N = 1000; the red circles are obtained by solving the renormalized Eliashberg equation with the
renormalized interaction and N = 250.

of ωn is also taken into account (albeit small compared
to ωn in this case) in our spin-decimation renormalization
procedure.

To connect our results to the renormalization group equa-
tions, we consider T → 0 and derive the corresponding flow
equations as follows:

dωn

d�
= −1

2

(
V z

n,N−1 − V z
n,−N

)
, (21a)

dV ⊥
n,m

d�
= − 1

2�
(V ⊥

n,N−1V
⊥

m,N−1 + V ⊥
n,−NV ⊥

m,−N ), (21b)

where we have used d� = 2πT with T → 0. Note that these
flow equations are of the poor man’s scaling type, i.e., the
cutoff is not rescaled. We emphasize that Eq. (21) is general
and applies to pairings beyond the phonon-mediated super-
conductivity.

Now, we examine the Bogoliubov-Tomachov-Morel-
Anderson pairing potential. The right-hand side of Eq. (21a)
is proportional to �−3 for phonon-mediated attraction, in-
dicating a very weak renormalization in ωn as shown in
Figs. 5(a) and 5(d). The result validates the absence of
renormalization in ωn in the conventional folding treatment
for phonon-mediated superconductivity [39]. For |n|, |m| �
N and |ωn − ωm| � �, Eq. (21b) is reduced to dμ/d� =
μ2/�, reproducing marginally irrelevant flow and the famous
μ∗ formula [4], μ∗ = μ/(1 + μ log(�/�∗)), where �∗ and
μ∗ denote the new cutoff and the corresponding renormalized
Coulomb pseudopotential. In fact, the renormalization of the
dynamical phonon-mediated attraction is quite weak as shown
in Fig. 5, where the primary renormalization is the μ∗ effect.
Moreover, the renormalization of μ in Fig. 5(e) agrees with
the μ∗ formula. The above findings indicate that the spin-

decimation renormalization procedure not only captures the
μ∗ effect but also provides a systematic framework for flows
of coupling constants in general pairing Hamiltonian, includ-
ing more complicated potentials, e.g., the γ model [35,36].
For example, we expect nontrivial renormalization in ωn and
Vn,m for a sufficiently small exponent γ in the γ model.

VI. DISCUSSION

We have shown two approaches for studying the ME theory
with classical spin-chain representation. First, we point out
that the MC simulation with heat bath updates is efficient and
reliable in obtaining solutions for all the parameters we have
considered in this work. This new MC solver for ME theory
can outperform the iterative solvers at large system sizes
and with complicated pairing potentials. We have also de-
rived renormalization of the couplings with the decimation of
high-frequency spins, providing a systematic framework that
reproduces the μ∗ effect [4] for the Bogoliubov-Tomachov-
Morel-Anderson pairing potential [4,29]. Remarkably, both
methods are not limited to the specific pairing potential
studied in this work, but are applicable to general supercon-
ductivity problems with arbitrary pairing potentials.

Besides the results summarized above, we also emphasize
several new insights from the classical spin representation of
ME theory. First, we have constructed a minimal two-spin
model capturing the superconducting transition, providing an
intuitive way to understand the superconducting transition.
Second, the sign changing of the gap function in the presence
of Coulomb repulsion can be easily understood in the spin
model because the constant all-to-all antiferromagnetic
interaction from Coulomb repulsion tends to minimize the
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total transverse spin components. The sign changing is not
immediately transparent in the self-consistent nonlinear
Eliashberg equations but is apparent in the classical
spin representation. Third, the spin model provides a
natural way to understand the irrelevance of the constant
all-to-all antiferromagnetic Ising spin-spin interaction (i.e.,∑

n,m μSz
nSz

m) in the problem with the Bogoliubov-Tomachov-
Morel-Anderson pairing potential. Last, the renormalization
group equations [Eq. (21)] from spin decimation can be used
for the search for unconventional superconductivity, showing
another advantage of using the classical spin model.

Now, we discuss several limitations in the numerical and
analytical methods. First, the heat bath update described in
this paper cannot be directly used for Hamiltonians that in-
clude single-ion anisotropy terms, e.g., D(Sz

n)2. In such a
case, the heat-bath method needs complicated modifications
to numerically sample the local probability distribution for
{θi, φi} (see Appendix A for a discussion). This is why we in-
corporate the Coulomb repulsion as a Heisenberg interaction
rather than an XX interaction (as commonly seen in literature
[31,39]). Note that the gap function is unaffected by a constant
antiferromagnetic all-to-all SzSz interaction for the Coulomb
repulsion. Another issue is that the spacing of Matsubara
frequencies scales as T , suggesting that it is difficult to tackle
the problems numerically in the zero-temperature limit with
a finite frequency cutoff. With respect to the spin-decimation
renormalization, we assume that the local Zeeman field term
(i.e., 2πωn) is much stronger than the rest of the terms, and the
O(�−2) contributions are ignored. Thus, Eqs. (20) and (21)
might acquire corrections when � is sufficiently small.

We conclude by discussing several interesting future di-
rections. It is desirable to develop an efficient MC algorithm
for ME spin model that is compatible with the single-ion
anisotropy term in the spins. A good candidate is the event-
chain MC algorithm [43,44], which has demonstrated high
efficiency in several classical spin problems [45,46]. In this
work, we focus only on the solution of even-frequency
superconductivity. It might be interesting to explore the
odd-frequency superconductivity [47] with spin-chain-based
methods. Finally, the idea of mapping the saddle point equa-
tions to classical Hamiltonian might be applicable to other
many-body problems.
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APPENDIX A: MONTE CARLO SIMULATIONS

1. Heat-bath update

A pseudocode of the heat-bath update is shown in
Algorithm I, which mainly follows Ref. [30]. As we have
shown in this paper, the heat bath method is highly efficient in
obtaining the ground state of the classical spin Hamiltonian,
which has a 100% acceptance ratio at arbitrarily low tempera-
ture (the fake temperature T in MC simulations). In contrast,
the conventional Metropolis update has practically zero

acceptance ratio at low temperatures, which significantly
slows down the evolution of the spin configurations towards
the ground state.

We note that, the heat bath method is not without lim-
itations, especially when the local Hamiltonian includes
terms beyond the local effective Zeeman-field description.
For example, when the full Hamiltonian includes single-ion
anisotropy, then the local Hamiltonian should be written as

Hi = − �H (eff)
i · �Si + �Si · (Ai �Si ), (A1)

where Ai is a 3×3 symmetric matrix. When Ai ∝
Diag(1, 1, 0), a local XX interaction is realized, which is
relevant to the interaction terms generated under the spin-
decimation renormalization.

In principle, we can still design the heat-bath update in the
presence of a nonzero Ai matrix. However, there is no longer
a simple frame rotation, as mentioned in Sec. III, that could
help us complete the integrals for the cumulative marginal
distribution functions for {θi, φi} in analytical form. As a
result, the sampling of {θi, φi} has to be done numerically.

One way is to perform numerical integration. Then we
can use bisection method to find {θi, φi} for given random
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numbers {r1, r2}, since the cumulative distribution function is
monotonic in its arguments. This would require a lot of com-
putation of the numerical integration, where a high precision
is necessary to maintain the monotonicity. For a number of n
integration steps, the heat- bath update is a factor of n slower.
In this case, a highly optimized code is required to reach the
ground state with realistic time cost.

Another way is to sample {θ̃i, φ̃i} using an extra layer of
Metropolis updates. In other words, given the local probability
distribution, a series of Metropolis updates are performed at
site i until {θ̃i, φ̃i} satisfy the Boltzmann distribution deter-
mined by the Hamiltonian (A1). Similarly to the numerical
integration scheme, the extra Metropolis update on top of the
heat-bath method would significantly slow down the code, and
a highly optimized code is desired for this method to work.

2. Metropolis update

In a typical Metropolis update, one proposes a new spin
configuration randomly distributed on the S2 sphere. The
acceptance of the update is controlled by a probability
min(e−�E/T , 1), where �E is the energy difference and T
is the MC temperature. The Metropolis update can be applied
to a general spectra of Hamiltonians, as long as the energy
difference �E can be evaluated numerically. However, at
small T , most of the proposed states have �E > 0, that leads
to a negligible acceptance ratio. In other words, the Metropolis
update often get stuck at low-T , which is insufficient for the
purpose of obtaining the ground state.

We compare the numerical results of heat bath and
Metropolis updates in the following. First, we plot the energy
evolution as a function of MC sweeps. In Fig. 6(a), the energy
converges after 130 MC sweeps with heat-bath updates. In
contrast, the MC simulation with Metropolis updates does not
achieve convergence of energy even after 20 000 MC sweeps,
as we show in Fig. 6, suggesting the inefficiency of Metropolis
updates in the ME classical spin model.

Next, we examine the states obtained from two methods.
In Fig. 7, we plot the order parameters extracted from the
heat-bath updates after 500 MC sweeps (red line) and the
Metropolis updates after 20 0000 MC sweeps (blue line). It is
clear that the MC simulation with heat bath updates gives an
accurate solution, while the order parameters extracted from
the Metropolis updates are far from being satisfactory.

There are possibly a few ways to improve the Metropolis
method. In fact, we have tried combining the Metropolis up-
dates with over-relaxation [34], but the results are still much
worse than the heat-bath updates. Instead of sampling the S2

sphere, one can also design new spin configurations in a small
cone whose center overlaps with the current spin direction,
then accept/reject using the Metropolis scheme. While such
updates should clearly increase the acceptance ratio, the size
of the cone must be small enough at low T , and as a result the
evolution of the spin configurations would not be very fast.

APPENDIX B: ITERATIVE SOLVERS

In superconductivity literature, the conventional solvers for
the ME equations are based on iterative methods, which can
be implemented straightforwardly. In this section, we discuss

FIG. 6. Energy evolution with heat bath and Metropolis updates.
We plot (E − Efinal )/N , where Efinal is the final energy during the
MC simulation. N = 1000, g = 0.8�, μ = 0, and T = 0.01 � are
used in the MC simulations. (a) MC with heat bath updates. The
thermal annealing parameters are T0 = 0.1 � and T f = 10−10 �. The
energy converges after 130 MC sweeps. Inset: The energy evolution
between 300 and 500 MC sweeps. (b) MC with Metropolis updates.
The thermal annealing parameters are T0 = 0.1 � and T f = 10−3 �.
The energy is evolving during the entire MC simulation. Inset: The
energy evolution between 18 000 and 20 000 MC sweeps.

several variants of iterative solvers and compare the per-
formance with the Bogoliubov-Tomachov-Morel-Anderson
pairing potential [4,29].

FIG. 7. Order parameters from different MC methods. The blue
line indicates the result from the MC simulation with Metropolis
updates; the red line indicates the result from the MC simulation
with heat-bath updates. We consider N = 1000, g = 0.8 �, and
T = 0.01 �. 2×104 MC sweeps are performed for the Metropolis
updates. 500 MC sweeps are performed for the heat-bath updates.
It is clear that the MC simulation with heat-bath updates is signifi-
cantly better than the MC simulation with Metropolis updates. The
heat-bath results are consistent with the gap function obtained from
iterative solvers.
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1. Standard iteration

We consider an equation of interest given by x = f (x),
where x is a variable and f (x) is some function of x. This
equation can, in principle, be solved through iteration. As-
suming an initial ansatz x = x0, we compute the right-hand
side f (x0) and then choose x1 = f (x0). Then, we keep iterat-
ing the equation with xM+1 = f (xM ), where M is a positive
integer indicating the iteration time. The iteration stops when
|xM+1 − xM | < ε, where ε is the error.

For ME theory, we define the error,

ε =

√√√√√ N−1∑
j=−N

⎡
⎣

(
� j − �

(new)
j

||� j ||

)2

+
(

� j − �
(new)
j

||�||

)2
⎤
⎦,

(B1)

where ||A|| denotes the Euclidean norm of the array A.

2. Moving average

The standard iteration procedure does not guarantee con-
vergence because the result after iteration might overshoot,
causing divergence in the iteration. One improved method is
using xM+1 = (1 − w)xM + w f (xM ) in each update, where w

is a weighting parameter between 0 and 1. This scheme is in
the spirit of the moving average (also known as exponentially
weighted average), which effectively averages over the recent
1/w outcomes. This scheme tends to smooth out the runaway
iteration flows in the conventional iteration scheme. Thus, the
moving-average scheme can achieve convergence for most of
the cases. However, the number of iterations can be large.

3. “Damping” scheme

Another scheme is discussed in Chubukov et al. [33] and is
called “damping” iteration, which averages all the previous
outcomes from the iteration. This can be implemented by
using xM+1 = M

M+1 xM + 1
M+1 f (xM ). This scheme can achieve

convergence for most of the cases. However, the number of
iterations can be extremely large, depending on the problem.

4. Comparison

For the easy cases (e.g., μ = 0 and T � Tc), all three
iterative solvers can achieve answers with high accuracy, and
the standard iterative solver is the most efficient. However,
the standard iterative scheme fails to converge for the hard
cases (e.g., μ > 0 or T ≈ Tc). In Fig. 8, we plot the errors as
functions of iteration, defined by Eq. (B1), for three different
iteration schemes. We find that the standard iteration solver
fails to converge, while the moving average and damped
scheme gradually achieve convergence as the errors decrease
continuously. The results suggest that the standard iterative
solver is less reliable than the other two methods, and the
moving average scheme is more efficient than the damped
scheme. Meanwhile, there is practically no convergence issue
in the heat bath MC simulations, and we find that the MC
simulation with heat bath updates is much more efficient than
all the iterative methods discussed above for the hard cases.

We note that, all the methods considered in this paper,
including the heat-bath MC method, can in principle produce

FIG. 8. Comparison of errors in different iterative schemes.
N = 2000, g = 0.8�, μ = �, and T = 0.01� are used. The black
circles are obtained from the standard iteration; the red squares are
obtained from the iteration with moving average (with w = 0.25,
equivalent to averaging over four outcomes); the blue triangles are
obtained from the iteration with damped scheme, i.e., average over
all the previous outcomes.

metastable solutions instead of the true ground states. In all
cases, we can start with different initial conditions and test if
there are lower energy solutions, which may not always be
enough. In this regard, the heat-bath MC method is more reli-
able once we combine it with other standard tricks developed
for the classical spin problems. For instance, we have already
incorporated the annealing scheme (slowly reducing temper-
ature) in our MC updates so it is less likely to be trapped in
local minima. For highly frustrated cases (e.g., spin- glass type
of interactions), the combination of heat bath, over relaxation,
and parallel tempering MC methods is also shown to work
[48].

APPENDIX C: DERIVATION OF SPIN-DECIMATION
RENORMALIZATION

Now, we provide derivations of the spin-decimation renor-
malization discussed in Sec. V. We consider the parition
function of the classical spin model described by

Z =
⎡
⎣ N−1∏

j=−N

∫
d�i

4π

⎤
⎦e−βHspin[�S−N ,...,�SN−1], (C1)

where �i is the solid angle and β is the inverse temperature of
the classical spin model. (Note that β is related to the inverse
level spacing as discussed earlier.) Our goal is to integrating
out the solid angles �−N and �N−1 and derive the renormal-
ized spins chains.

To simplify the calculations, we first consider a toy model
of spins given by

H0 = −�h · �S0 −
M∑

n=1

Jn �S0 · �Sn

= −
(

�h +
M∑

n=1

Jn �Sn

)
· �S0 ≡ − �H0 · �S0. (C2)
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Our goal is to derive the effective Hamiltonian after integrating out �S0. The partition function is given by [42]

Z0 =
∫

d�0

4π
e−βH0 =

∫
d�0

4π
eβ �H0·�S0 =

∫ 2π

0

dφ

2π

∫ 1

−1

d cos θ0

2
eβ| �H0| cos θ0 = sinh(β| �H0|)

β| �H0|
, (C3)

where we have set the z axis along the vector �V . The effective Hamiltonian is defined by

Heff = − β−1 ln Z0 = −β−1 ln sinh(β| �H0|) + β−1 ln(β| �H0|). (C4)

We are interested in the limits β � 1 and |�h| � ∑
n Jn. The effective Hamiltonian becomes

Heff ≈ − | �H0| = −|�h +
∑

n

Jn �Sn| = −h

(
1 + h−2

∣∣∣∣∣
∑

n

Jn �Sn

∣∣∣∣∣ + 2h−1
∑

n

Jn �Sn · êh

)1/2

(C5)

≈ − h −
∑

n

Jn �Sn · êh − 1

2
h−1

⎡
⎣

∣∣∣∣∣
∑

n

Jn �Sn

∣∣∣∣∣
2

−
(∑

n

Jn �Sn · êh

)2
⎤
⎦ + O(h−2), (C6)

where h ≡ |�h| and êh is the unit vector along �h. We have used
√

1 + x ≈ 1 + x/2 − x2/8 for x � 1. Without loss of generality,
we select êh = ẑ. The effective Hamiltonian becomes

Heff ≈ −h −
∑

n

JnSz
n − 1

2h

∑
n,n′

JnJn′
(
Sx

nSx
n′ + Sy

nSy
n′
)
. (C7)

The effective Hamiltonian contribute to a Zeeman field term along z direction and a transverse spin-spin interaction for all the
spins coupled to �S0.

In this work, we consider the ME spin model described by

Hspin = −2π
∑

n

ωnSz
n − π2T

∑
n,m

Vn,m �Sn · �Sm. (C8)

For the nth spin in the ME spin chain, the dynamics is govern by the Hamiltonian as follows:

Hn = −2πωnSz
n − 2π2T

⎡
⎣∑

m 
=n

Vmn �Sm

⎤
⎦ · �Sn. (C9)

Note that there is a factor of 2 in the second term.
Now, we are in the position to derive the correction to Hspin after integrating out the boundary spins at −N and N − 1. The

partition function is given by

Z =
⎡
⎣ N−1∏

j=−N

∫
d�i

4π

⎤
⎦e−βHspin[�S−N ,...,�SN−1] (C10)

≈
⎡
⎣ N−2∏

j=−N

∫
d�i

4π

⎤
⎦e−βHspin[�S−N ,...,�SN−1=0]e

−β[−2πωN−1−2π2T
∑N−2

n=−N Vn,N−1Sz
n− (π2T )2

πωN−1

∑
n,m Vn,N−1Vm,N−1 �S⊥

n ·�S⊥
m ] (C11)

≈
⎡
⎣ N−2∏

j=−N+1

∫
d�i

4π

⎤
⎦e−βHspin[�S−N =0,...,�SN−1=0]e

−β[−2πωN−1−2π2T
∑N−2

n=−N Vn,N−1Sz
n− (π2T )2

πωN−1

∑
n,m Vn,N−1Vm,N−1 �S⊥

n ·�S⊥
m ]

× e−β[−(2π |ω−N |−2π2TVN−1,−N )+2π2T
∑N−2

n=−N+1 V−N,nSz
n− (π2T )2

π |ω−N |
∑

n,m Vn,−NVm,−N �S⊥
n ·�S⊥

m +O(|ω−N |−2 )] (C12)

∝
⎡
⎣ N−2∏

j=−N+1

∫
d�i

4π

⎤
⎦e−βHspin[�S−N =0,...,�SN−1=0]e−β[−2π2T

∑
n (Vn,N−1−Vn,−N )Sz

n− π4T 2

π�

∑
n,m (Vn,N−1Vm,N−1+Vn,−NVm,−N )�S⊥

n ·�S⊥
m ], (C13)

where we have used ωN−1 = |ω−N | = �. Several approxi-
mations are used in the derivations. First, we drop O(�−2)
contributions. Second, we ignore the single-ion anisotropy
term, i.e., D(Sz

−N+1)2. It is reasonable to omit the O(�−2)

contributions as long as � is much larger than other en-
ergy scales. We have checked numerically that the single-ion
anisotropy terms give O(�−2) contributions, which we ignore
in this work.
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