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Majorana bound state parity exchanges in planar Josephson junctions

Varsha Subramanyan,1 Jukka I. Väyrynen ,2 Alex Levchenko,3 and Smitha Vishveshwara1

1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

3Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

(Received 3 April 2023; revised 1 December 2023; accepted 22 January 2024; published 14 February 2024)

We describe a scheme to exchange fermion parity between two pairs of Majorana bound states mediated by
coupling with a centralized quantum dot. We formulate such a scheme for Majorana bound states nucleated
in the Josephson vortices formed in a fourfold crossroads junction of planar topological superconductors in
the presence of a perpendicular magnetic field. This platform yields several advantages to the execution of our
scheme as compared to similar ideas proposed in wire geometries, including control over the positions of the
Majorana bound states (MBS) and hence a tunable coupling with the quantum dot. We show that moving the
MBS along the junctions through voltage pulses can facilitate parity exchange via a two-step process, with
intermediate projective measurements of the quantum dot charge. Thus we formulate a way to achieve single
qubit operations for MBS in extended Josephson junctions through projective measurements of quantum dot
charge. We also discuss the physical viability of our scheme with a particular focus on changes in quantum dot
energy levels as a measurable indicator of the success of the scheme.

DOI: 10.1103/PhysRevB.109.054511

I. INTRODUCTION

The heightened pursuit for material platforms to host ro-
bust qubits and scalable schemes for achieving error-resistant
quantum computing has elicited a surge of experimental
and theoretical advances in condensed matter physics. In
the realm of topologically protected qubits, Majorana bound
states (MBS) in topological superconducting setups continue
offering promise as front-runners [1]. The original nanowire
geometries, while facing setbacks, laid down the foundations
for integrating the fields of condensed matter, material physics
and quantum information science in designing viable plat-
forms, and computational schemes [2–9]. Lately, extended
junctions have become popular platforms to host MBS even
at low magnetic field strengths [10–14]. Early proposals in-
volve proximity-induced superconductivity on the surface of
topological insulators in two dimensions and three dimen-
sions with an externally applied magnetic field resulting in
spatially separated MBS nucleating in Josephson vortices
[2,10,11,14–23].

While the manipulation of MBS cannot achieve a universal
set of topologically protected quantum gates, the primary step
in all these efforts is to construct effective gate operations by
braiding the Majorana, followed by reliable readout mecha-
nisms for the same. Schemes for performing gate operations
involve two approaches: braiding via the physical motion of
MBS and measurement-based braiding over stationary MBS
[24,25]. While these directions have been thoroughly explored
in the nanowire context, to ensure progress, it is imperative
that these schemes be innovatively adapted to a range of MBS
settings [26–29].

Here we propose a scheme for MBS braiding and related
fermion parity qubit operations that cater to the chal-
lenges and virtues of extended topological Josephson junction

geometries. The scheme involves shuttling multiple MBS
along such junctions towards a quantum dot that forms a parity
measurement apparatus, thus forming a hybrid between the
two gate operation approaches [30–33]. In what follows, we
first outline the scheme. We next detail the physics of Joseph-
son junction vortices as a natural pathway for nucleating
MBS and efficiently manipulating them via the application
of magnetic field pulses and local currents. We then discuss
the workings of the quantum dot as relevant to our scheme.
Finally, we bring these components together to present the
specific manipulations and measurements that together form
a controlled scheme for parity qubit operations.

II. OUTLINE OF SCHEME

The MBS-based scheme forming the core of this work is
as follows. Our geometry consists of a four-point crossroads
formed by four extended junctions between superconducting
islands as shown in Fig. 1. Each of the four junctions has
sufficient magnetic flux to nucleate at least one Majorana
bound state (MBS). The center of the crossroads has a quan-
tum dot that can be coupled to each of these four MBS.
The extended junctions provide smooth channels for shuttling
MBS via application of local voltage/current pulses across
the bordering superconductors. The proximity of each MBS
to the central dot controls the tunnel coupling between them.
Coulomb blockade physics within the dot serves to dictate
transfer of electrons between pairs of MBS and the dot as well
as to act as a readout.

For a pair of MBS γi and γ j , as commonly done, we
can define the complex fermion operator �i j = 1

2 (γi − iγ j )
[34]. The occupation number of this nonlocal electronic
state N̂i j = �

†
i j�i j has two eigenvalues (0 and 1) and defines
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FIG. 1. (a) Four-point crossroads junction of p + ip supercon-
ducting islands separated by an insulator. Each junction is penetrated
by sufficient magnetic flux so as to host at least one MBS (red dots).
The central quantum dot (in yellow) couples to the MBS in each junc-
tion. The junction MBS is formed by hybridizing chiral Majorana
boundary states circulating the superconducting islands (red arrows).
(b) Depiction of MBS motion within a particular junction when a
biasing voltage pulse is applied. For magnetic flux � out of the page,
and positive voltage V across A and B, the MBS will traverse in the
negative y direction.

the parity Pi j = 2N̂i j − 1 = (−1)N̂i j of that pair of MBS. Since
we have four MBS in our system, the corresponding Hilbert
space is four dimensional and the three possible ways of
choosing the pairs of complex fermions correspond to differ-
ent basis choices for the Hilbert space. In this work, parity
exchanges take place between pairs of MBS mediated by the
quantum dot, which is tuned to a regime of operation where
it is treated as a two-level system that can be occupied or
unoccupied.

Our scheme consists of two stages. First, a pair of MBS
with parity 1 (say γi and γ j) are coupled to the quantum
dot, with the interaction resulting in a change in their parity
through repeated measurements of the quantum dot occupa-
tion. Secondly, a different pair of MBS (that is, at least one
of the two MBS is different from γi and γ j) are coupled to
the quantum dot, with this interaction resulting in changing
their nonlocal parity to 1. As a specific example, we con-
sider two canonical charge transfers—(a) parity transfer from
|1〉12|0〉34 to |0〉12|1〉34 and (b) parity transfer from |1〉12|0〉34
to |0〉13|1〉24 = 1√

2
(|0〉12|1〉34 − i|1〉12|0〉34) [35,36]. All other

combinations would be trivial variations or combinations of
these two transformations. While the interaction of any two
MBS with the quantum dot would be a nondestructive fusion
process, the two-step process described here produces a net
rotation in the four-dimensional Hilbert space of qubits, as
described by the Ivanov unitaries [36]. Thus non-Abelian ro-
tation is achieved here.Observation of such parity exchanges
would correspond to landmark demonstrations of parity qubit
manipulation and non-Abelian rotations in the degenerate
qubit subspace.

III. MBS IN THE EXTENDED JUNCTIONS

We model the extended junction geometry of Fig. 1 in the
framework of the Bogoliubov–de Gennes (BdG) Hamiltonian
for a spinless two-dimensional topological superconductor

[22,37,38], given by

H =
(− 1

2m∗ ∇2 − μ �̂

�̂† 1
2m∗ ∇2 + μ

)
. (1)

The px + ipy chiral pairing operator is of the form
�̂ = i �(r)

kF
eiϕ(r)/2(−i∂x + ∂y)eiϕ(r)/2, where ϕ(r) denotes the

superconducting phase.
To first focus on a single extended junction, say, be-

tween islands A and B, each island has a low-energy chiral
Majorana state running along the boundaries of the supercon-
ductor (indicated in red in Fig. 1). The Josephson coupling
between islands can be described by an effective Hamiltonian
obtained by projecting onto the space spanned by their re-
spective chiral dispersive Majorana edge modes [10,18]. This
effective Hamiltonian is given by

Ĥedge = 1

2

∫
ds(ψA ψB)

(
iv∂s −iW (s)

iW (s) −iv∂s

)(
ψA

ψB

)
.

(2)

Here ψA(s) and ψB(s) are chiral Majorana
fermions on the boundaries of island A and B and
W (s) = 	(L − s)	(s)m cos( φ(s)

2 ) is the Josephson coupling
term between the chiral Majoranas in the junction region
0 < s < L of length L [22,38]. The superconducting
phase difference between the islands is given by
φ(s) = ϕR(s) − ϕL(s) and the variable s is the coordinate
along the boundaries of the islands. A small magnetic flux
�AB is now applied in the junction region. Since the Josephson
coupling is only present in the region 0 < s < L, we will use
the coordinate y for junction AB to focus on this region.

In the short junction limit [39] (when the length L of the
junction is shorter than the Josephson coherence length or
equivalently Jc the Josephson current density is much less than
�0/2πμ0L2H for junctions of width H), the gauge-invariant
superconducting phase difference is φ(y) = 2π �

�0

y
L + φ0 de-

fined up to a constant φ0. In general this constant could be
determined by external phase bias (voltage/current/flux in a
solenoid) between the two superconductors. Josephson vor-
tices trapping MBS are obtained whenever φ(y) is an odd
multiple of π [10,11,18,22,38]. Therefore, the number of
MBS in each junction is given by the integer number of flux
quanta in that junction. In this limit, the Josephson vortex
solution takes the form of a large soliton [40]. In the back-
ground of such soliton states, the zero energy eigenstates of
Eq. (2) are MBS solutions of the form ( f [φ(y)], g[φ(y)])T .
Here, the functions f (y) and g(y) are of the form f (y) =
A sinh[

∫ y cos φ(y′)dy′] − B cosh[
∫ y cos φ(y′)dy′] and g(y) =

A cosh[
∫ y cos φ(y′)dy′] − B sinh[

∫ y cos φ(y′)dy′], with spe-
cific constants determined by boundary conditions and
external flux quanta (if any) penetrating the islands.

In the presence of dc voltage V applied across two islands
[11,38] (say A and B) for time �t , the form of the phase
difference across the junction is modified by the ac Joseph-
son effect to include an additional term of 2π

�0
V t . This phase

difference across the junction gives rise to mobile solitonic
Majorana states ( f [ky + ωt], g[ky + ωt])T , where k = 2π

L
�
�0

and ω = 2π
�0

V . The velocity of the MBS is thus vφ = V L
�

. The
time dependent nature of the problem modifies the zero energy
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eigenstates of Eq. (2) to include a modified “boosted” mass
factor m → m√

1−(vφ/v)2
. Crucially, we see that the application

of voltage bias across the junction results in the traversal of
the MBS along the junction. For a magnetic field pointing up-
wards from the plane of the islands, and positive voltage bias
V , this setup corresponds to the vortices in the AB junction
moving in the −ŷ direction [see Fig. 1(b)]. The reversal of any
of these features—direction of magnetic field, sign of voltage,
or application of voltage on B instead of A—would result in
the MBS moving in the opposite direction. It is notable that
very high voltages (equivalently, high velocities) can result in
the destruction of the MBS through quasiparticle poisoning
or hybridization effects. Therefore, it is necessary to pick
appropriate voltages that ensure adiabatic transport of MBS
to maintain topologically nontrivial ground states.

In the crossroads setup, we assume all four islands to be
initially at the same external voltage/common ground. Thus
applying voltage V on island A affects both φAB as well as φAD.

This voltage pulse results in MBS in the AB junction moving
in the −ŷ direction and those in the AD junction moving in
the −x̂ direction. We also assume that the phase difference at
the center of the junction is not an odd multiple of π so that
no MBS is nucleated in the center of the crossroads junction.
The system can be tuned out of such a parameter regime by
the application of a small bias voltage on any of the islands.
We use the convention described here to exchange nonlocal
MBS fermion parity. In each case, we start with total fermion
parity being odd −γ1γ2γ3γ4 = −1, with all four MBS being
uncoupled to the dot. The dot itself is unoccupied.

IV. MBS-QUANTUM DOT INTERACTION

Turning to the physics of the central quantum dot, we
assume the standard associated single-particle energy level
spacing and charging energy. Considering a small quantum
dot with large level spacing, it is enough to account for only
the level nearest to the Fermi energy and describe the dot by
the single-level Hamiltonian HQD = �εn̂d + ε0, where n̂d =
d†d is the quantum dot’s occupation, ε0 is the constant ground
state energy, and �ε sets the charging energy, which is tunable
by the gate voltage. We assume here that the superconducting
island is large enough to neglect its charging energy.

The total Hamiltonian of the system is thus given by HTot =
HQD + HEdge + HT, where the last term describes single-
electron tunneling between the quantum dot and the four
MBS closest to it. It is specified most generally as HT =∑4

i=1 γi(λid† − λ∗
i d ). The coupling constants λi are in gen-

eral complex and exponentially suppressed with increasing
distance between the MBS γi and the quantum dot.

As a simple first step, we explore the interaction between a
pair of Majorana bound states (1,2) and a quantum dot to show
the oscillation and hence exchange of parity between the two.
In the complex fermion notation �12, the relevant part of the
tunneling Hamiltonian takes the form

H12
T = �+(λ1d† − λ∗

1d ) − i�−(λ2d† − λ∗
2d )

= �e�
†
12d† + �∗

ed�12 + �o�
†
12d + �∗

od†�12, (3)

where �± = �
†
12 ± �12, and the redefined complex

coupling constants �e = λ1 − iλ2 and �o = −λ∗
1 + iλ∗

2.

This Hamiltonian acts on the Hilbert space spanned by
{|0〉12|1〉D, |1〉12|0〉D, |1〉12|1〉D, |0〉12|0〉D}, where the first
ket subscript 12 refers to electronic states with the specified
occupation numbers formed by the Majorana degrees of
freedom and the second ket with subscript D refers to those of
the dot. Generally, this Hamiltonian can have time-dependent
coupling, especially as MBS are being moved. We will
consider the case where they are brought close to the dot
and held there. Since this Hamiltonian conserves total parity
of the system, without loss of generality, we consider the
temporal dynamics of the odd parity state |0〉12|1〉D. Time
evolving this state, we obtain

|�(t )〉 = eiH12
T t |0〉12|1〉D

= cos(|�o|t )|0〉12|1〉D + i eiθ sin(|�o|t )|1〉12|0〉D,

(4)

where θ = arg(�ot ). If the state is allowed to evolve up to
time t = π

2|�o| , the state is fully transformed to |1〉12|0〉D.
Further evolution of the quantum state can be arrested by
turning off the coupling constant through moving the MBS
away from the quantum dot. Thus we obtain a time scale for
full parity transfer between the Majorana states and the quan-
tum dot. But this protocol would require very precise control.
The accumulated phases can also affect the desired outcome
in the scheme, making the transformation not topologically
protected. Writing down the evolution of the joint state under
the total Hamiltonian would add factors depending on the
charging energy to the time scale and this argument would
still hold. We therefore now turn to projective measurements
[25,41] to induce parity exchanges.

A weak tunnel coupling in Eq. (3) can be used to perform
a (weak) measurement of the Majorana parity iγ1γ2 [42]. To
illustrate this, we turn to the perturbative effect of the tunnel-
ing in Eq. (3) to the quantum dot Hamiltonian and evaluate the
parity-dependent shift of quantum dot energy levels. We label
the ground and excited states of the quantum dot Hamiltonian
HQD as ε0 and ε1 = �ε + ε0.

Treating the tunnel coupling terms �o and �e as small
parameters, we now use perturbation theory to evaluate their
effect on the energy levels ε0 and ε1 of the quantum dot.
The modified energy levels up to second order in perturbation
strength take the form

ε′
0 = ε0 − |�o|2(1 − N12) + |�e|2N12

�ε
, (5)

ε′
1 = ε1 + |�e|2(1 − N12) + |�o|2N12

�ε
, (6)

where �ε = ε1 − ε0 and N12 = 〈�†
12�12〉 is the initial parity

of the MBS. It is notable then that the parity-dependent shift
in energy levels scales as |�e|2−|�0|2

ε1−ε0
and thus is only measur-

able when the even and odd sector couplings have different
magnitudes [42,43]. That is, the spectrum of the quantum
dot is now parity dependent. Over repeated measurements, the
probability distribution describing the occupation of the dot is
obtained as a function of �ε. This distribution is different for
the two possible parity states of the coupled Majorana, thus
offering a way to measure the parity of the MBS by measuring
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FIG. 2. Motion of the MBS, the necessary voltage pulse sequences, and the change in energy levels of the quantum dots are shown for each
of the transformations: (a),(b) |1〉12|0〉34 to |0〉12|1〉34 and (c),(d) |1〉12|0〉34 to |0〉13|1〉24. In each case, a pair of MBS approach the quantum dot
and are coupled to it. Through a projective measurement, the parity of the MBS pair is measured by the quantum dot, as detected by changes
in the quantum dot parity-dependent spectrum. A different pair of MBS is then brought close to the quantum dot and a second projective
measurement effectively transfers the parity to the second pair of MBS, signaling the end of the scheme.

the quantum dot. This repeated measurement process also
collapses the MBS pair coupled to it. On moving the MBS
away from the dot, the perturbative shift vanishes. Since the
quantum dot measures MBS parity in a nondestructive way
involving no hybridization, the process may be performed
multiple times by repeating the cycle of turning on interaction
by moving the MBS pair close to the dot and measurement of
the charge and then undoing the measurement if the desired
outcome is not obtained by making a different pair interact
with the dot.

V. QUBIT MANIPULATION

To illustrate our key scheme, we can break up the steps cor-
responding to the transfer from |1〉12|0〉34 to |0〉12|1〉34 in the
following way. We make the assumption that the total parity
of the system is initially odd. Since the tunneling Hamiltonian
conserves parity, we expect the system to always remain in
the odd parity sector. Let us say this initial state is |1〉12|0〉D:
(i) γ1 and γ2 are moved close to the quantum dot and interact
with it. The quantum dot measures the parity of the MBS as
outlined in the previous section. The process is repeated (with
undoing steps in between as necessary) until the dot-MBS
system is in the desired state of |0〉12|1〉D. (ii) The Majoranas
γ1 and γ2 are moved away so that γ3 and γ4 can now move
close to the quantum dot and interact with it. We repeat
the measurement process to obtain the desired final state of
|1〉34|0〉D. The voltage pulse sequence and corresponding QD
spectrum are indicated in Fig. 2.

A similar breakup is laid out for the transfer from |1〉12|0〉34
to |0〉13|1〉24. We assume the same initial state as before here:
(i) γ1 and γ2 are moved close to the quantum dot and interact
with it. The quantum dot measures the parity of the MBS as

outlined in the previous section. The process is repeated (with
undoing steps in between as necessary) until the dot-MBS
system is in the desired state of |0〉12|1〉D. (ii) γ1 is moved
away and γ4 is brought close to the quantum dot and interacts
with it. We repeat the measurement process to obtain the
desired final state of |1〉24|0〉D. The voltage pulse sequence
and corresponding QD spectrum are indicated in Fig. 2.

While the measurement of the parity of each indi-
vidual pair of MBS resembles a (nondestructive) fusion
process, the entirety of the scheme involves changing
the state of the system from |1〉12|0〉34 to |0〉12|1〉34 or
|1〉12|0〉34 to |0〉13|1〉24. That is,these schemes perform net
rotations over the degenerate subspace spanned by the states
{�†

12|00〉, �†
34|00〉, |00〉, �†

12�
†
34|00〉}, with the first two states

spanning the odd parity sector and the latter two spanning
the even sector. Operations over this subspace may be repre-
sented in terms of unitary operators Ui j = 1√

2
(1 + γiγ j ) [36].

The action of Ui j corresponds to exchanging the MBS γi

and γ j . The first transformation is equivalent to the action
of the unitary U = U21U34U23U41 on the input state. Simi-
larly, the second transformation is equivalent to the action
of the unitary U32 on the input state. We now analyze these
projective measurements further, drawing an analogy with
Stern-Gerlach experiments. Since the planar junction offers
precise control over the coupling interaction through MBS
motion, this scheme is better conceived in our geometry than
in wire junctions where the MBS are stationary.

When the quantum dot interacts with a pair of MBS (say γ1

and γ2), the quantum state exists in an entangled superposition
of states with the same parity as shown in Eq. (4). Our goal
here, then, is to use the quantum dot to measure the nonlocal
parity of the MBS pair and, in performing the measurement,
effectively transfer parity from the MBS to the quantum dot
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[43]. It is useful to map the MBS parity operators to spin
operators in the following way:

X = i

2
γ2γ1, Y = i

2
γ3γ2, Z = i

2
γ1γ3. (7)

We can then rewrite the state of the system with arbitrary
coefficients in terms of eigenstates of the X operator:

|ψ〉 = α|+〉X + β|−〉X . (8)

We would like to project the state of the system such that the
state of the system is |−〉X . It can be measured by observing
the probability distribution of occupation of the quantum dot
as described earlier. The probability of obtaining this outcome
on measurement is given by |β|2. If it is not obtained on
measuring the dot, we “undo” the measurement by moving
γ3 close to the dot and γ2 away from the dot by applying a
positive voltage pulse on superconducting island C so that
this new pair of MBS interact with the quantum dot and
are in superposition with it. We then perform another charge
measurement, which is equivalent to measuring the operator
Z . Any outcome of this operation would yield a quantum state
of the form |ψ ′〉 = 1√

2
(|+〉X ± |−〉X ). We can now revert to

measuring X by applying a negative voltage pulse on island
C. During this second cycle of measuring the parity of X , the
probability of the desired outcome is 1

2 . One can perform sev-
eral cycles of such measurements until said desired outcome
is obtained.The probability of obtaining |−〉X for the first time
on the nth such cycle is pn(−) = |β|2δn,1 + (1 − δn,1) |α|2

2n−1 .
The total probability of obtaining |1〉D|−〉X is thus calculated
by adding up the probabilities for all n as

p(−) = |β|2 + |α|2
∞∑

n=2

1

2n−1
= |β|2 + |α|2 = 1. (9)

That is, after enough cycles, one is guaranteed to obtain the
desired outcome. Thus, in each of the two schemes, replacing
the hold times to projective measurements makes them less
dependent on needing precise and time sensitive control for
the scheme to work.

Such measurements are performed over the crucial in-
termediate step involving the Rabi oscillation state given
in Eq. (4). Were there infinitely precise control, one could
move away the MBS precisely at time t = π

2|�o| , smoothly
changing the changing the state from |0〉12|1〉D to |1〉12|0〉D

and preventing any further time evolution or phase accumu-
lation. However, in practice, the states accumulate various
arbitrary dynamical phases over time evolution and interac-
tion with the quantum dot, as seen in Eq. (4). Consider the
second transformation, for instance. Most generally, it can
be written as |0〉13|1〉24 = U |1〉12|0〉34 with U = U32U ′(t ) and
U ′(t ) = diag(eiα1(t ), eiα2(t ), eiβ1(t ), eiβ2(t ) ) [36,44]. This would
render these steps nontopological, thus necessitating projec-
tive measurement in order to design protected gate operations.
However, the possibility to accumulate such phases on spe-
cific qubit states will be useful in such geometries in designing
a phase gate. Though not topologically protected, this will
enable us in creating a universal set of quantum gates that can
be realized on the extended junction platform.

VI. OUTLOOK

Turning to the experimental feasibility of our proposal,
several components have been separately investigated and
established. Josephson junction phase slips in extended ge-
ometries and response to fields and voltage pulses have a
venerable history in a variety of superconductors. Applica-
tions of quantum dot physics in quantum information science
is a vast area of study [45–51]. More recently, extended
topological junctions are receiving a concerted push with
promising initial indicators of MBS physics [20,21,52–57].

The realization of our proposal would require a synergy of
these disparate experimental elements working hand in hand
with more involved theoretical treatments. In reality, even a
single step, such as experimentally demonstrating adiabatic
motion of vortices and associated MBS via STM measure-
ments or coupling of MBS and the quantum dot via energy
shifts and Rabi oscillation, would constitute a milestone.
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