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Superconducting properties of Bernevig-Hughes-Zhang model:
Theory and applications to transition metal dichalcogenides
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We investigate the superconducting properties of two-dimensional topological materials, in particular the
quantum spin Hall system with on-site pairing. Accordingly, three types of edge states are found, which
are topologically protected fermionic states at zero field, topologically protected Majorana states at finite
Zeeman fields, and unpaired fermionic states without topological protection. Applications to transition metal
dichalcogenides are also discussed.
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I. INTRODUCTION

Topology and superconductivity have been among the cen-
tral topics of the condensed matter physics in recent decades.
In particular, topological materials with nontrivial band topol-
ogy would support topological states on the boundaries.
Recently, several materials are found to host both topological
band structure and superconductivity in experiments, such as
doped Bi2Se3 [1–5], transition metal dichalcogenides [6–27],
and iron-based superconductors [28–37]. As the combination
of topology and superconductivity, topological superconduc-
tivity has been proposed to host the Majorana zero-energy
modes (MZMs) [38–42], which are believed to have poten-
tial applications in topological quantum computation [43–45].
As a result, intensive studies on the superconducting phase
of topological materials have been carried out in the recent
decade in hope of searching for topological superconductivity.

In three dimensions, Fu and Kane proposed that the su-
perconducting surface of a topological insulator could host
MZMs within the vortices [41]. As one of the possible plat-
forms, bulk iron-based superconductors were theoretically
[46] predicted and experimentally [31,33] found to host topo-
logical surface states and hence topological superconductivity
would be expected in such materials.

In two dimensions, Qi, Hughes, and Zhang [47] studied the
superconducting phase of a quantum anomalous Hall system
[48] whose time-reversal symmetry is spontaneously broken,
and Majorana chiral edge states were predicted. Moreover,
Wang, Xu, and Zhang [49] analyzed the superconducting
phases of a quantum spin Hall (QSH) system [50–52] whose
time-reversal symmetry is respected, and superconductivity
can be realized intrinsically. Experimentally the monolayer
iron-based superconductor was also found to host QSH edge
states [35], and theoretically higher order topological super-
conductivity with Majorana corner states was predicted under
certain circumstances [53–55].
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In this work, we focus on the monolayer transition metal
dichacogenides (TMDs) such as 4Hb-TaS2 [26,27], 2M-WS2

[18–22], 1T’-MTe2 and Td -MTe2 (M = Mo and W). In these
materials, all have been found intrinsically superconducting,
2M-WS2, 1T’-MTe2 and Td -MTe2 are found to host QSH edge
states, and 4Hb-TaS2 could be regarded as a QSH system in
the topologically trivial phase. As a result, the general results
of Wang, Xu, and Zhang could apply. However, as the TMDs
in general have lower symmetries, some conclusions due to
accidental degeneracy need to be modified. Furthermore, the
roles of external electromagnetic fields are also discussed in
our manuscript. Under an external out-of-plane electric field,
the accidental degeneracy between some pairings are lifted,
and some pairings are allowed to mix. Under an external in-
plane magnetic field, Majorana flat bands or Majorana chiral
edge states will in general emerge as long as the pairing sym-
metry is not the conventional s wave. However, we point out
that unpaired QSH edge states may also coexist with Majorana
edge states when the pairing symmetry is not the conventional
s wave.

II. SYMMETRY CLASSIFICATION OF PAIRINGS

It is known that the Bernevig-Hughes-Zhang (BHZ) model
[51] could describe the low-energy band structure of QSH
states. We consider the BHZ model with pairing potential,
whose Bogouliubov–de Gennes (BdG) Hamiltonian at mo-
mentum k reads

HBdG(k) =
(

HBHZ(k) − μ H�(k)
H†

�(k) −H∗
BHZ(−k) + μ

)
, (1)

where chemical potential is μ, the BHZ Hamiltonian is

HBHZ(k) = A(τxσzky − τykx ) + (M − Bk2)τz, (2)

with the Pauli matrices σi and τi in the spin and orbital space
respectively, and H� is the pairing term.

Due to the particle-hole redundancy,

HT
�(−k) = −H�(k). (3)
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TABLE I. Classification of two-orbital pairing potentials.
�bulk (k) and �edge(t) are effective pairing of bulk and QSH edge
states via projecting the BdG Hamiltonian into the conduction band.
�edge(t) depends on the tangential unit vector t along the edge state
propagating direction. Pauli matrices σi and τi are in the spin and
orbital space respectively.

H� �bulk (k) �edge(t) D∞h C2h C2v C3v

�0 iτ0σy σ0 σ0 A1g Ag
�z iτzσy (M − Bk2)σ0/μ 0

A1 A1
�1 iτyσ0 A(k × σ )z/μ 0 A1u Au

�2 τyσz A(k × σ )/μ 0 A2u Bu A2 A2

�x iτxσy −Akyσz/μ −tyσz Au B1E1u E
�y τyσx Akxσz/μ txσz Bu B2

For on-site pairings, H� is an antisymmetric 4 by 4 matrix,
which can be expanded by 6 linearly independent matrices
as listed in Table I, with corresponding coefficients �0,1,2

and �x,y,z. These six pairing matrices can be classified with
respect to the symmetry group of the BHZ model.

The maximal symmetry group of the BHZ model in
Eq. (2) is D∞h� U(1), where point group D∞h has continuous
in-plane rotation Cz(θ ) = exp(iσzτzθ/2), vertical mirror re-
flections My = iσy and horizontal mirror reflection Mz = iσz,
and the spin-U(1) rotation is U (φ) = exp(Mzφ/2). Notice that
D∞h and spin-U(1) do not commute due to the spin-orbit cou-
pling (SOC). Under point group D∞h, �0,z furnish the trivial
representation A1g, �1(�2) furnishes A1u(A2u), and (�x,�y)
furnish the two-dimensional (2D) representation E1u.

In realistic crystals, the point group will be reduced to
Dnh with integer n = 3, 4, 6. The point group of monolayer
FeTe1−xSex is D4h, and superconductivity together with QSH
has been found in experiments. Its low-energy band structure
can be described by the BHZ model [28–30,35,53]. From
experiments, the possible pairing of FeTe1−xSex may be s±
wave, which could be realized by a mixture of �0 and �z

pairings as elaborated in the next section. The point group
of 2D 4Hb-TaS2 is D6h, and the unit cell of 4Hb-TaS2 is
formed by four monolayers, with two metalic and two insu-
lating, where the low-energy physics of metalic layers can be
described by the BHZ model but in the topologically trivial
regime [24,25]. From experiments, the possible pairing of
4Hb-TaS2 may be the time-reversal breaking chiral phase [26]
or time-reversal invariant (TRI) nematic phase [27], which
could be understood by the order parameter configuration
of (�x,�y) pairing. We expand the free energy in terms of
�± ≡ �x ± i�y up to the quartic order

f = α(|�+|2 + |�−|2) + β(|�+|2 + |�−|2)2

+ β ′|�+|2|�−|2. (4)

When β ′ > 0, f is minimized by the chiral pairing with either
positive chirality (�+,�−) = �(1, 0) or negative chirality
(�+,�−) = �(0, 1). When β ′ < 0, f is minimized by the
nematic pairing (�x,�y) = �(cos ϕ, sin ϕ), which is charac-
terized by the nematic angle ϕ ∈ [0, π ). For point group D∞h,
ϕ is continuous. For point group D6h, ϕ takes discrete values
mπ/3 or π/6 + mπ/3 with integer m = 0, 1, 2. The possible

nematic angles of D3h are the same as that of D6h. For point
group D4h, ϕ = mπ/2 or π/4 + mπ/2 with integer m = 0, 1.

It is interesting to note that, given the symmetry group
Dnh� U(1) with n = 3, 4, 6,∞, the combination (�1,�2)
furnish the 2D real representation of spin-U(1) group and
hence �1,2 are degenerate. This degeneracy between �1 and
�2 is protected by spin-U(1) symmetry, or equivalently mirror
symmetry Mz. In the following we try to break the horizontal
mirror symmetry Mz and consider pairings under such condi-
tions.

In TMDs with low-symmetry structures, Mz can be broken
by crystal fields. The point group of 2M-WS2 and 1T’-MTe2

is the same C2h, including twofold rotation C2y = iσyτz and
inversion I = τz. Since C2h is Abelian, no 2D irreducible
representations can be found, and the time-reversal symmetry
will not be spontaneously broken. As a result, we find �0,z

belong to the trivial phase Ag, �1,x to Au and �2,y to Bu. The
point group of Td -MTe2 is C2v , including mirror reflections
Mx = iσxτz, My = iσy and twofold rotation C2z = iσzτz. Since
C2v is also Abelian, we find �0,1,z belong to the trivial phase
A1, �2 to A2 and �x(�y) to B1(B2). Besides, Mz can also be
broken by an external out-of-plane electric field, such as MoS2

under ionic liquid gating, whose point group is C3v and the
possible pairings are �0,1,z in the trivial phase A1, �2 in A2

and (�x,�y) in E [25].
Besides breaking horizontal mirror symmetry Mz, one can

also break the spin-U(1) symmetry by applying in-plane mag-
netic fields, which couple to electron spins along in-plane
directions via the Zeeman effect. Before that, we first review
the band structures and effective pairings for each pairing
channel at zero field.

III. EFFECTIVE PAIRINGS AT ZERO MAGNETIC FIELD

At zero field, energy spectra with different s-wave pairings
are plotted in Fig. 1 with open boundary conditions. In the �0

pairing [Fig. 1(a)], both the bulk states and QSH edge states
are fully gapped and topologically trivial, while the QSH edge
states can stay unpaired in the �z pairing [Fig. 1(b)]. In the
chiral pairing �± ≡ �x ± i�y [Fig. 1(c)], the time-reversal
symmetry (TRS) is spontaneously broken, and chiral edge
states emerge under nonzero Chern number. At zero field,
the Chern number is always even and the chiral edge states
are fermionic [inset of Fig. 1(c)]. �1 and �2 share the same
spectrum at zero field [Fig. 1(d)], with TRS-protected heli-
cal edge states with twofold degeneracy [inset of Fig. 1(d)].
The nematic pairing �x [Figs. 1(e) and 1(f)] is nodal in the
bulk and hosts fermionic flat bands on the edge at zero field.
Such behaviors can be understood by effective pairings among
states near chemical potential μ.

The effective pairing matrix �bulk (k) among bulk eigen-
states ψk↑,↓ of the BHZ model in Eq. (2), is defined on the
Nambu basis (ψk↑, ψk↓)�bulk (k)(−ψ

†
−k↓, ψ

†
−k↑)T. For differ-

ent pairing channels �bulk (k) are summarized in Table I. As
shown in Figs. 1(c)–1(f) and Table I, at zero field, �0 denotes
the conventional s-wave pairing, �z denotes the extended
s-wave pairing, and the mixture of �0 and �z can describe s±-
wave pairing. Both �1 and �2 correspond to helical p-wave
pairing but with different momentum-spin locking patterns,
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FIG. 1. BdG spectra at zero field. Blue regions denote bulk
states, orange lines denote QSH edge states on the open boundary
[(a), (c), (f) paired and (b), (d), (e) unpaired] and red lines de-
note topological edge states due to pairings [(c) chiral edge states,
(d) helical edge states and (e) flat bands]. The model parameters are
(A, B, M0, M1, μ, �, a) = (1, 0, 0.5, 1, 0.7, 0.1, 1) in Eq. (5).

the nematic pairing �x(�y) corresponds to px(py)-wave pair-
ing, and the chiral pairing �± ≡ �x ± i�y corresponds to
(p ± ip)-wave pairing respectively.

When μ is low, QSH edge states will be involved in
superconductivity, whose effective pairing �edge(t) depends
on the unit tangential vector t along the edge. As shown in
Figs. 1(b), 1(d), 1(e) and Table I, at zero field, �1,2,z would
not induce pairings in QSH edge states along any direction,
while nematic phase (�x,�y) = �(cos ϕ, sin ϕ) would not
induce pairings in QSH edge states along the nematic direc-
tion (cos ϕ, sin ϕ) only. Since the bulk states have orbital and
spin degrees of freedom while the QSH edge states only have
spin one, the existence of zero pairing channels for edge states
should be general. The reasons for unpaired QSH edge states
in �z and nematic phase (�x,�y) = �(cos ϕ, sin ϕ) depend
on the SOC details of the BHZ model. In general, due to
Kramer’s pairs along the same edge, the equal-spin pairings
will not be allowed for QSH edge states, and �1,2 would not
induce pairings in QSH edge states along any direction.

IV. TOPOLOGICAL SUPERCONDUCTIVITY
UNDER IN-PLANE MAGNETIC FIELDS

Now we turn on the external in-plane magnetic field, which
mainly couples to the spin via the Zeeman effect in 2D, and

hence can be treated as a pure Zeeman field B = (Bx, By, 0)
in the rest of this paper.

If T is spontaneously broken by the pairing such as the
chiral pairing (�x,�y) = �(±i, 1) with point group Dnh or
Cnv (n = 3, 4, 6,∞), under finite B the Chern number can
become odd and Majorana chiral edge states will emerge as
will be elaborated later.

If T and Mz are preserved by the pairing such as the
nematic pairing (�x,�y) = �(cos ϕ, sin ϕ) with point group
Dnh (n = 3, 4, 6,∞), under finite B the pseudo-time-reversal
symmetry (PTRS) T̃ ≡ T Mz is also respected. The pairing
phase is hence in the BDI class [56–60], with particle-hole
symmetry P and chiral symmetry C = T̃ P , which allows to
define the topological charge for each bulk nodal point. With
open boundary conditions, (Majorana) flat bands emerge be-
tween two nodal points with opposite net topological charges.

As long as T and the crystal symmetries are preserved
by the pairing such as �1,2 and �x,y pairings with point
group Dnh (n = 3, 4, 6,∞) or C2h, PTRS can also be found
T̃1(B̂) ≡ T C2B̂ in the �1(�x )-pairing, and T̃2(B̂) ≡ T MB̂ in
the �2(�y) pairing, where C2B̂ and MB̂ denote the twofold
rotation and mirror reflection with respect to the axis B̂, re-
spectively. These phases under in-plane Zeeman fields along
appropriate directions will also be in the BDI class with
Majorana flat bands on the edge. Besides, weak topological
superconductivity (WTSC), the superconducting analog of
weak topological insulator [42], will also be realized under
appropriate in-plane Zeeman fields.

To end our discussion on topological superconductivity, we
consider the specific BHZ model implemented in a square
lattice with lattice constant a, anisotropic SOCs Ax,y and in-
plane Zeeman field B

HBHZ = A{τxσz sin(kya) − τy sin(kxa)} + M(k)τz

+ {Ax sin(kxa)σy + Ay sin(kya)σx}τx + B · σ, (5)

where M(k) = M0 − M1{cos(kxa) + cos(kya)}, and an in-
plane Zeeman field B = (Bx, By, 0) is applied as suggested
above. Near � point, Eq. (5) becomes Eq. (2), with A = Aa,
M = M0 − 2M1, and B = M1a2/2.

We first discuss (�x,�y) pairing under point group D4h or
C4v . Then the anisotropic SOCs are zero Ax,y = 0. In the chiral
phase, the Chern number is proportional to the chirality and
the sign of order parameter. We hence focus on (�x,�y) =
�(i, 1) with � > 0 in Table I, where the Chern number is
essentially determined by four TRI points � = (0, 0), X =
(π, 0), (0, π ) and M = (π, π ), whose Chern number contri-
butions are C�,M = +2 and CX = −4. By comparing M0, M1

and μ, one can identify the superconducting pockets and ob-
tain the phase diagram at zero field in Fig. 2(a). Under finite
B, every normal band splits into two spin-polarized bands, and
the Chern number reads 1

2C(μ − |B|) + 1
2C(μ + |B|), where

C(μ) is the Chern number at chemical potential μ and zero
field. As a result, we obtain the phase diagram under an in-
plane Zeeman field in Fig. 2(b). As mentioned previously, odd
Chern numbers ±1 and −3 could arise an in-plane Zeeman
field, and Majorana chiral edge states emerge correspond-
ingly. In the nematic phase (�x,�y) = �(cos ϕ, sin ϕ), the
nematic angle can be ϕ = 0, π/4, π/2. When ϕ = 0(π/2),
the zero-pairing lines are sin ky(x) = 0 or equivalently ky(x) = 0
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FIG. 2. Phase diagrams of chiral phase. The x axis denotes the
topological parameter M0 and the y axis denotes the chemical poten-
tial μ, both in units of M1. (a) At zero field. (b) Under an in-plane
Zeeman field B = 0.3M1.

and ky(x) = π , independent of applied in-plane Zeeman fields.
Under an in-plane Zeeman field, as shown in Fig. 3(b), the
zero-pairing lines (orange) intersect with two spin-split Fermi
surface (FSs) (blue) at four nodal points labeled by their
topological charges ±1, which are all at ky(x) = 0 line. Cor-
respondingly, as shown in Fig. 3(e), fermionic bands (red)
and Majorana flat bands (green) emerge on the open x(y)
edges. When ϕ = π/4, at zero field the zero-pairing lines are
sin ky − sin kx = 0 or equivalently ky = kx and ky = π − kx.
Under a uniform Zeeman field, as shown in Fig. 3(c), the
zero-pairing contours (orange) are not straight lines but curves
depending on the Zeeman field. Such zero-pairing curves in-
tersect with two spin-split FSs (blue contours) at four nodal
points labeled by their topological charges ±1, which are
neither at ky = kx nor ky = π − kx. Correspondingly, as shon
in Fig. 3(f), fermionic flat bands (red) and Majorana flat
bands (green) emerge on the open x edges and y vedges.
In �1(�2)-pairing, as shown in Fig. 3(a) and 3(d), under
an in-plane Zeeman field B, the zero-pairing contours (or-
ange) are (B × k)z = 0 (B · k = 0), which intersect with two
spin-split FSs (blue contours) at four nodal points labeled by
their topological charges ±1, and Majorana flat bands (green)

FIG. 3. Nodal superconductivity at finite field B ‖ x̂. (a), (b), (c)
The zero-pairing lines (orange) intersect with two spin-split Fermi
surfaces (blue) at four nodal points labeled by their topological
charges ±. (d), (e), (f) Fermionic flat bands (red) and Majorana flat
bands (green) emerge on the open x edges, corresponding to (a),
(b), (c) respectively. The pairings are �2 in (a), (d), �x in (b), (e)
and �x = �y in (c), (f). Denote � as the pairing amplitude, the
parameters are A = M1 = μ = 1, Ax,y = 0, � = 0.1, and (B, M0) =
(0.3, 2.5) in (a), (d) while (B, M0) = (0.1, 1.2) in (b), (c), (e), (f).

FIG. 4. Weak topological superconductivity at finite field B ‖
x̂. (a), (b) �1 pairing and (c), (d) �x pairing. Blue regions de-
note bulk states, orange lines denote QSH edge states and red
lines denote edge states due to pairings. The model parameters
are (A, Ax, Ay, B, M0, M1, μ, �, a) = (1, 0.5, 0.2, 0.05, 0.5, 1, 0.7,

0.1, 1) in Eq. (5).

emerge on the open edges perpendicular (parallel) to the field
direction.

We then discuss �x(�y) pairing under point group C2h,
where the anisotropic SOCs Ax,y are finite. We define the pair-
ing nematic direction as the x(y) direction for �x(�y) pairing,
respectively. Under finite B along the twofold rotation axis
(y axis in our notation), along the pairing nematic direction,
Majorana flat bands can be created and QSH edge states stay
unpaired, while when the Zeeman field is in the mirror plane
(xz plane in our notation), WTSC will be realized along the
edge perpendicular to the pairing nematic direction. As shown
in Figs. 4(c) and 4(d), in �x pairing, under Zeeman field
B ‖ x̂, QSH edge states are paired along both x and y edges,
while gapless edge states exist only along y edges, which is
perpendicular to the pairing nematic direction of �x pairing.
Our results on �x(�y) pairing also apply to �1(�2) pairing,
respectively, as shown in Figs. 4(a) and 4(b).

So far we have considered topological superconductivity
under weak in-plane fields, where the pairing potential is
hardly changed by the external field. When the Zeeman field
increases to the field close to the Pauli limit, the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [61,62] would start
to emerge through a first-order phase transition, where the
free energy expansion on the superconducting order parameter
has to go to the sixth order as the quartic order changes sign
to negative. For example, in the quartic expansion Eq. (4),
under strong in-plane field larger than the Pauli limit, β could
change its sign from positive to negative, triggering a first
order phase transition from zero-momentum pairing phase
to finite-momentum FFLO state. Finite-momentum supercon-
ductivity in the BHZ model would be discussed in our future
works.

Throughout this work, we employ the mean-field theory
for the analysis and calculations, which applies to regimes
sufficiently away from the fluctuations. Due to the 2D nature
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of the systems we consider in this manuscript, fluctuations
near the superconducting transition will lead to proliferation
of vortices and anti-vortices in the absence of magnetic fields,
resulting in the well-known Berezinskii-Kosterlitz-Thouless
transition, which would be studied in our future works.

V. CONCLUSIONS

We studied the superconducting properties of the BHZ
model and proposed possible schemes for Majorana states
within our framework, where in-plane Zeeman fields are
always needed. As experimental candidates, we mainly dis-
cussed monolayer transition metal dichalcogenides.
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APPENDIX: EFFECTIVE PAIRINGS

We consider the full form of pairing potential

H� =

⎛
⎜⎜⎝

0 δ1 δ2 δ3

−δ1 0 δ4 δ5

−δ2 −δ4 0 δ6

−δ3 −δ5 −δ6 0

⎞
⎟⎟⎠, (6)

which is an antisymmetric 4 by 4 matrix with 6 linearly
independent parameters δi(i = 1, . . . , 6). Another scheme of
parametrization is given in the main text

H� = �0iτ0σy + �ziτzσy + �1iτyσ0 + �2τyσz + �xiτxσy

+ �yτyσx, (7)

and we can find the relation between these two sets of
parameters:

�0 = 1

2
(δ2 + δ5), �z = 1

2
(δ2 − δ5),

�1 = 1

2
(δ1 + δ6), �2 = i

2
(δ1 − δ6),

�x = 1

2
(δ3 + δ4), �y = i

2
(δ3 − δ4). (8)

The Cooper pairs that play the role of superconducting
pairing are mainly near the Fermi energy μ (depicted in
Fig. 5), and we can project the whole Hamiltonian to the states

(a) (b)

FIG. 5. Schematic of the effective pairing of bulk and edge states
Project the BdG Hamiltonian of the (a) edge states, (b) bulk states
into the conduction band, the yellow spin at the same Fermi energy
denotes the effective pairing.

near μ and obtain the effective Hamiltonian for the paired
electrons.

1. Effective pairing of QSH states �edge(k)

For the gapless edge state along t = (tx, ty) direction, the
BHZ Hamiltonian Eq. (2) reduces to

Hedge (k, t) = Ak(σzτxty − τytx ), (9)

where k is the edge state momentum along the edge direction
and |t| = 1 is an unit vector.

Due to time-reversal symmetry, there exists a Kramer’s
pair of energy-degenerate edge states with opposite momenta
kt,−kt, and opposite spins ↑,↓ at the same spatial position.
However, due to the localization of edge states, the energy-
degenerate edge states with opposite momenta but the same
spin will be at opposite edges. As a result, equal-spin pairings
are not allowed for edge states provided the on-site pairings
in our work. Thus we consider the restricted form of pairing
potential for the edge states

H ′
� =

⎛
⎜⎜⎝

0 0 δ2 δ3

0 0 δ4 δ5

−δ2 −δ4 0 0
−δ3 −δ5 0 0

⎞
⎟⎟⎠. (10)

In the superconducting phase, the projected effective BdG
Hamiltonian is

HBdG
edge (k, t) =

( Ak − μ −�edge(t)iσy

iσy�
†
edge(t) −Ak + μ

)
, (11)

where the effective pairing of QSH edge states is

�edge (t) =
(

1
2 {δ2 + δ5 − (δ3 + δ4)ty + i(δ3 − δ4)tx} 0

0 1
2 {δ2 + δ5 + (δ3 + δ4)ty − i(δ3 − δ4)tx}

)
, (12)

For �0 pairing, δ2 = δ5 
= 0 and δ3,4 = 0, thus �edge = �0σ0

in this pairing channel. On the contrary for �z pairing, δ2 =
−δ5 
= 0 and δ3,4 = 0, thus �edge = 0 in this pairing channel.
Other pairings can be similarly derived and summarized in
Table I.

To be more specific, we consider the explicit examples
of edge states along x and y edges in the following. Tak-
ing the ribbon geometry with the y direction opening as an
example, the gapless QSH edge states emerge on the open
boundary y = 0. Due to the translation symmetry along the
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x axis, the edge states can be labeled by the momentum
kx. Due to time-reversal symmetry, there exists a Kramer’s
pair of energy-degenerate edge states with opposite momenta
kx,−kx, and opposite spins ↑,↓. The edge state Hamiltonian
hence reads

Hedge(kx ) = −Akxτy, (13)

from which the edge state Kramer’s pair reads

φ↑ = c1↑ + ic2↑, φ↓ = c1↓ − ic2↓, (14)

where cτσ denotes the electron with orbital index τ = 1, 2 and
spin index σ =↑,↓. Notice that φ↑ carries momentum +kx

while φ↓ carries −kx. Then the on-site pairing of edge states
is the pairing among each Kramer’s pair

φ↑φ↓ = c1↑c1↓ + c2↑c2↓ − ic1↑c2↓ + ic2↑c1↓. (15)

The first two terms correspond to the pairing matrix �0, and
the last two correspond to the pairing matrix �y.

For the edge states along the y axis, the Hamiltonian reads

Hedge(ky) = Akyσzτx, (16)

and the Kramer’s pair is

ψ↑ = c1↑ + c2↑, ψ↓ = c1↓ + c2↓. (17)

The corresponding pair matrix is

ψ↑ψ↓ = c1↑c1↓ + c2↑c2↓ + c1↑c2↓ + c2↑c1↓. (18)

The first two terms correspond to the pairing matrix �0, and
the last two correspond to the pairing matrix �x. That is, �0

and �x can induce gapped QSH edge states along y direction.

2. Effective pairing of bulk states �bulk(k)

The effective pairing of bulk states can also be
obtained by the projection method. Without pairing
term and magnetic field term, the BHZ Hamilto-
nian Eq. (5) of the manuscript can be diagonalized
U −1

0 (k)HBHZ(k)U0(k) = diag(E , E ,−E ,−E ) with

eigenvalue E =
√

(A2 + A2
x ) sin2 kx + (A2 + A2

y ) sin2 ky + M2

and unitary transformation U0(k). When adding the

unconventional �-pairing term and magnetic field B‖,
which can be regarded as perturbations, we can rewrite
the whole BdG Hamiltonian on the BHZ eigenbasis
U0(k), namely V −1

0 (k)HBdG(k)V0(k) = Hdiag where
V0(k) = diag(U0(k),U ∗

0 (−k)) is the BHZ eigenbasis in the
particle-hole space, and then projecting Hdiag to conduction
band, and finally obtain the effective bulk pairing in terms of
conduction band electrons.

Taking �1 pairing as an example, the effective bulk pairing
Hamiltonian near ky → 0 is

(c↑, c↓)

(
− i�A2 sin kx

|E | 0

0 − i�A2 sin kx
|E |

)(
c↑
c↓

)
. (19)

Thus, the Majorana edge states from spin up sector do not
hybridize with those from the spin down sector, resulting in
the gapless edge states as shown in Fig. 4(b). On the other
hand, the effective bulk pairing Hamiltonian near kx → 0 is

(c↑, c↓)

⎛
⎝ �A2 sin ky

|E | −AA2
y� sin2 ky

|E |(M+|E |)
�(M+|E |)

A|E |
�A2 sin ky

|E |

⎞
⎠(

c↑
c↓

)
. (20)

Unlike the previous case, here the Majorana edge states from
different spin sectors are coupled by the off-diagonal pairing
terms in the above pairing matrix, resulting in the gapped edge
states as shown in Fig. 4(a).

For �x pairing, the effective bulk pairing Hamiltonian near
ky → 0 is

(c↑, c↓)

(
− i�AAx sin kx

|E | 0
0 i�AAx sin kx

|E |

)(
c↑
c↓

)
, (21)

which explains the gapless edge states in Fig. 4(d). The effec-
tive bulk pairing Hamiltonian near kx → 0 is

(c↑, c↓)

⎛
⎝�AAy sin ky

|E |
�A2Ay sin ky

2

|E |(M+|E |)
�(M+|E |)

Ay|E |
�AAy sin ky

|E |

⎞
⎠(

c↑
c↓

)
, (22)

which explains the gapped edge states in Fig. 4(c).
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