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A two-component quasi-two-dimensional superconductor with Dzyaloshinsky-Moriya interaction is studied
based on the Ginzburg-Landau and Bogoliubov-de Gennes theories. Under external in-plane magnetic fields,
the order parameter of the superconducting state is a type of the Fulde-Ferrell states with a finite momentum of
Cooper pairs due to the Dzyaloshinsky-Moriya interaction. It is shown that the superconducting diode effect can
emerge when a supercurrent flows parallel to the external magnetic field, characteristic of chiral crystals. In the
Bogoliubov-de Gennes theory, phase diagrams associated with the transition of the Cooper-pair momentum and
the Josephson phase between spin-singlet and spin-triplet Cooper pairs are derived, and a close relationship with
the diode quality factor is demonstrated. Implications of critical currents in the aspect of thermodynamics are also
discussed. Based on such an argument, it is argued that the first-order phase transition in terms of Cooper-pair
momentum and the coexistence of phases with different Cooper-pair momentum and Josephson phase can occur.
The argument also implies the issue with the definition of critical currents calculated from the extremes of the
supercurrent when metastable states exist. Comments on purely two-dimensional superconductors are also given.
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I. INTRODUCTION

Nonreciprocal transport of matter has been researched
from many aspects in recent years. Superconductors (SC) are
one of the platforms for seeking such phenomena [1]. To un-
derstand the nonreciprocal transport, starting with symmetry
arguments can gain a general insight into the phenomena.
According to the Onsager reciprocal relations [2], the nec-
essary condition for such an effect is the breaking of the
parity (P) and time-reversal (T) symmetries of the system.
A class of superconductors that do not possess parity sym-
metry is classified as a noncentrosymmetric superconductor.
A well-studied system of such a class is the Rashba super-
conductors with polar asymmetry in the crystalline structure.
They can exhibit a nonreciprocal transport if the Zeeman
coupling is considered. For convenience, we will term such
systems the Rashba-Zeeman superconductors. The fluctuation
current of the Rashba-Zeeman superconductors responding
to an external electric field can become nonreciprocal [3].
That means the transport coefficients such as paraconductivity
also show nonreciprocity [3,4]. In a purely two-dimensional
SC, in which the resistive SC transition is the Berezinskii-
Kosterlitz-Thouless (BKT) transition [5–7], resistivity also
becomes nonreciprocal near the BKT transition in the low
current limit [4].

One of the interesting nonreciprocal effects in noncen-
trosymmetric superconductors is the superconducting diode
(SD) effect. It refers to an effect that the magnitude of critical
currents in the left-hand direction and the right-hand one is
not equivalent. The SD effect has been observed in various
experimental works [8–11], and some theoretical formula-
tions describing the effect have also been established [12–17].
The pictures of the mechanism of the SD effect are differ-
ent depending on how superconductivity breaks down under
electric currents. Upon increasing the external current, in an

essentially three-dimensional system, the Meissner phase can
be destroyed by the growth of vortex loops [18], and the vortex
lattice phase, as well as vortex glass phase, can be destructed
by the vortex depinning transition [19]. Superconductivity
can also be broken by the mechanism originating from the
depairing of Cooper pairs [20]. If the critical currents show
nonreciprocity by the latter [12–17], it is referred to as the
intrinsic SD effect [13,15]. For example, the zero-field SD ef-
fect in the superconductor-ferromagnet heterostructures [11]
is considered to be due to the intrinsic mechanism.

We recall that the necessary condition for the SD effect
is the broken P and T symmetries. Thus time-reversal-
symmetry-breaking fields such as external magnetic fields
are needed. For example, the SD effect in Ref. [8] occurs
due to the broken P symmetry in the crystalline structure
and the broken T symmetry by the external magnetic fields.
However, the SD effect can be possible even without an ex-
ternal magnetic field in twisted trilayer graphenes [10]. This
is considered to originate from a long-range order allowing
time-reversal-symmetry-breaking fields. The theoretical for-
mulation [16] in such a case implies that the zero-field SD
effect observed in Ref. [10] has essentially the same origin as
the intrinsic SD effect studied in Refs. [12–15,17], where the
critical currents were calculated in the same way. Recently, the
SD effect arising from dissipation, which causes time-reversal
symmetry breaking in nonequilibrium steady states, has also
been predicted [21].

In several theoretical works [12,13,15,17], the intrinsic SD
effect is studied with the Rashba-Zeeman superconductors.
However, the P and T symmetries are also broken by the
Dzyloshinzsky-Moriya (DM) interaction [22,23] and Zeeman
coupling. A phenomenological study on noncentrosymmet-
ric superconductors such as a heavy-fermion superconductor
CePt3Si [24] points out that mixed singlet-triplet pairing inter-
actions giving rise to parity-mixed order parameters originate
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from the DM interaction. Moreover, a weak coupling theory of
the mixed singlet-triplet pairing interaction is also developed
to study the static spin susceptibility of the Fermi liquid.
In Ref. [25], such a theory is constructed to study the gap
structure in noncentrosymmetric superconductors such as cu-
bic compounds Li2(Pd1−xPtx)3B. There is also a study on a
non-Hermitian system [26], in which the theory of supercon-
ductivity is developed by dropping out the assumption on the
hermiticity of the Hamiltonian. In such a case, anti-Hermitian
pairing can emerge from the DM interaction.

In this paper, we study a superconductor with the Zeeman
coupling and DM interaction under external in-plane magnetic
fields. Because of mixed singlet-triplet pairing interactions,
the system becomes a multicomponent superconductor. We
simplify the problem by choosing the asymmetric axis of the
DM interaction in one direction so that the model becomes
a two-component superconductor with a nonvanishing inter-
nal Josephson coupling, which is a consequence of the DM
interaction and will be given in the main text. The external
magnetic field directions, together with the supercurrent direc-
tions, will be chosen to be parallel to that axis. In this way, the
model is essentially different from those in Refs. [12–15,17],
where the external magnetic field and supercurrent are perpen-
dicular to each other. In the following, we will show that our
model can exhibit the intrinsic SD effect in both the Ginzburg-
Landau (GL) and Bogoliubov-de Gennes (BdG) frameworks,
and obtain the phase diagrams. In the Rashba-Zeeman and
Ising superconductors, the SD effect does not occur in this
parallel geometry. Importantly, the vortex drift motion by
applied supercurrent is suppressed in this setup, making it
easier to observe the intrinsic SD effect. Such an SD effect in
parallel geometry can occur in systems with chiral asymmetry,
and thus, we call it the chiral SD effect. Moreover, we will
go deep into how a critical current is calculated in an aspect
of thermodynamics and show that there are some problems
with the definition of critical currents caused by the current
mean-field framework. Lastly, we will give some comments
related to the SD effect in a purely two-dimensional (2D)
system.

The paper is organized as follows. In Sec. II, we describe
our model. In Sec. III, the GL mean field theory of the model
is constructed first, and we then discuss what the critical
currents imply based on a thermodynamics aspect before re-
porting a numerical result of the model in the counterpart
framework. Section IV is devoted to the BdG mean field
theory of the model. There, the gap equations, the formula
of free energy, and the parameters for the numerical calcu-
lation are discussed first. Then, several numerical results are
shown. At the end of Sec. IV, we apply the theory for critical
currents developed in Sec. III to the model and discuss the
consequence of it. In Sec. V, we give two comments on a
purely 2D system. One is related to the BKT transition, and
the other is about the absence of the SD effect in a strict sense.
We end the paper with a summary and discussions. Natural
units h̄ = kB = c = 1 will be used in this paper.

II. MODEL

We consider a thin superconducting film lying on the
z-x plane under in-plane magnetic fields h = hez, where

h = μBH . Such a film is treated here as a 2D-like system
whose picture of the superconducting transition does not dif-
fer from a 3D counterpart. The partition function of the system
is given below:

Z = Tr e−S, (1)

S =
∫ 1/T

0
dτ

⎡
⎣∑

q

āα (τ, k)∂τ aα (τ, k) + H(ā, a)

⎤
⎦. (2)

Here, aα and āα are Grassmann variables corresponding to
the annihilation and creation operators of fermions with spin
α =↑,↓ and 2D momentum k = (k1, k3), where the sub-
scripts i = 1, 2, 3 represent x, y, z axis, respectively. τ denotes
imaginary time and T is the temperature of the system. The
Hamiltonian H is given by H = H0 + Hint, where H0 is the
free part and Hint is the interaction part. Each of them is given
as follows:

H0 =
∑

k

(εkδαβ + h · σαβ )āα (τ, k)aβ (τ, k), (3a)

Hint = −1

4

′∑
k,k′,q

Vαβγ δ (k, k′)āα (τ,−k + q)āβ (τ, k)

× aγ (τ, k′)aδ (τ,−k′ + q), (3b)

with

Vαβγ δ (k, k′)

= g (iσ2)†
αβ (iσ2)γ δ + va (ik̂3σ3σ2)†

αβ (ik̂′
3σ3σ2)γ δ

+ vm[ (ik̂3σ3σ2)†
αβ (iσ2)γ δ + (iσ2)†

αβ (ik̂′
3σ3σ2)γ δ], (3c)

where εk = k2/2m − μ, μ = p2
F/2m is the Fermi energy, and

[ξ̂ (k)]αβ ≡ ξαβ (k) = εkδαβ + h (σ3)αβ . σ3 denotes the z com-
ponent of the Pauli matrices, where (σ3)↑↑ = −(σ3)↓↓ = 1
and (σ3)↑↓ = (σ3)↓↑ = 0. k̂i denotes the cosine direction of
k along i axis, defined as k̂i ≡ ei · k/|k|, where e1 = ex and
e3 = ez. The first and second terms on the right-hand side
of Eq. (3c) represent the s-wave interaction with coupling
strength g and the p-wave interaction with coupling strength
va, respectively. The terms in the third line of Eq. (3c) repre-
sent the DM interaction with coupling strength vm following
the form obtained in Ref. [25]. Such a form comes from the
original form of the DM interaction: HDM = i

∑
q V m(q) ·

(Sq(τ ) × S−q(τ )), where Sq(τ ) = ∑
k σαβ āα (τ, k)aβ (τ, k +

q). In the considered model, V m(q) is chosen to be propor-
tional to vmq̂3ez. The prime symbol on the summation notation
in Eq. (3b) means that the summation of q is restricted for
some values, and the summation of k and k′ is performed on
the range [�−,�+], where �+ > pF > �− > 0. The width
� ≡ �+ − �−, which corresponds to the energy width 2ωc,
will be assumed hereafter so that � � max |q|.

By symmetry of the system, the Cooper-pair momentum q,
with which the superconducting state is stable, should have
only a z-axis component. Therefore, in the following, we
will only focus on the case where q lies on the z axis. Then
we have q = qez. This also implies the situation where the
supercurrent flows only along the z axis. In the setup discussed
in the preceding paragraph, the external magnetic fields and
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asymmetric axis of the DM interaction are also on the z axis.
Accordingly, hereafter, we will only consider the case when
the supercurrent flow is parallel to the external magnetic fields
and asymmetric axis of the DM interaction.

It is much more convenient to replace k and k′ in Eqs. (3b)
and (3c) with k + q/2 and k′ + q/2, respectively. After taking
the procedure, k̂3 becomes, up to q2 order,

k̂3 → k̂3 + 1

2
k̂2

1

(
q

k

)
− 3

8
k̂2

3 k̂2
1

(
q

k

)2

. (4)

In this paper, we assume |q| � pF. This allows us to neglect
all terms depending on q in the above equation. From this as-
sumption and Eqs. (3b) and (3c), one can obtain the following:

Hint = −1

4

′∑
k,k′,q

Vαβγ δ (k, k′)āα (τ,−k−)āβ (τ, k+)

× aγ (τ, k′
+)aδ (τ,−k′

−), (5a)

Vαβγ δ (k, k′) 	 g (iσ2)†
αβ (iσ2)γ δ + va (ik̂3σ3σ2)†

αβ (ik̂′
3σ3σ2)γ δ

+ vm[ (ik̂3σ3σ2)†
αβ (iσ2)γ δ

+(iσ2)†
αβ (ik̂′

3σ3σ2)γ δ], (5b)

where k± = k ± q/2 and k′
± = k′ ± q/2.

Next, let us consider the diagonalization of Eq. (5b) and
discuss its eigenvalues. The result of diagonalization is in the
form �†

αβk��γ δk′ , where

� = diag(λ+, λ−), (6)

λ± = 1

2

[
g + va ±

√
(g + va)2 + 4

(
v2

m − gva
)]

, (7)

�αβk ≡
(

�1αβk

�2αβk

)

=
(

cos χ (iσ2)αβ + sin χ (ik̂3σ3σ2)αβ

sin χ (iσ2)αβ − cos χ (ik̂3σ3σ2)αβ

)
, (8a)

and

tan χ = (va − λ−)/vm. (8b)

Now, let us look at the sign of λ−. From Eq. (7), it is apparent
that if vm >

√
gva, then λ− becomes negative. In that case,

the terms associated with λ− do not participate in ordering
the superconducting state because the interaction between
fermions through this mode is effectively repulsive. Therefore
the system is reduced to a one-component order parameter
system, and, in the Hamiltonian, the term associated with λ−
is responsible for a correction term of the free part H0. A
detailed study of such a case will be our future work. In this
paper, we consider the case with positive λ−. In this case,
Eq. (5b) becomes

Vαβγ δ (k, k′) = λ+�
†
1αβk�1γ δk′ + λ−�

†
2αβk�2γ δk′ . (9)

As we will demonstrate in a moment below, the presence of
two �iαβk’s in Eq. (9) means that the system is described by
two parity-mixed order parameters responsible for ordering
the superconducting state.

In the last of this section, we derive the effective ac-
tion of the model. By introducing auxiliary boson fields,
{ϕi(q), ϕ̄i(q)} (i = 1, 2), and using the Hubbard-Stratonovich
transformation, Eq. (5a) is decoupled. At this time, the parti-
tion function becomes

Z = Trϕi,aα
e− ∫ 1/T

0 dτ H ′
, (10)

where the subscript of Tr means the integral with respect to
ϕi, ϕ̄i, aα , and āα . Here, H ′ is given below:

H ′ = HBdG +
′∑

q,i

1

|λi| ϕ̄i(τ, q)ϕi(τ, q), (11)

where

HBdG =
′∑
q

āα (τ, q)∂τ aα (τ, q) + H0

+ 1

2

′∑
q,k

�+αβ (τ, q, k)aα (τ, k+)aβ (τ,−k−)

+ 1

2

′∑
q,k

�−αβ (τ, q, k)āα (τ,−k−)āβ (τ, k+) (12)

and

�̂+(τ, q, k) = ϕ̄1(τ, q)�̂1k + ϕ̄2(τ, q)�̂2k, (13a)

�̂−(τ, q, k) = ϕ1(τ, q)�̂†
1k + ϕ2(τ, q)�̂†

2k, (13b)

are the so-called pair fields. In the above equation, we use the
hat symbol ‘ ˆ[·]’ to represent each variable in a compact matrix
form. For example, [�̂ik]αβ = �iαβk. The dagger denotes the
Hermitian conjugate. By introducing four-component Nambu
fields:

�(τ, k) ≡ 1√
2

[a↑(τ, k+), a↓(τ, k+),

ā↑(τ,−k−), ā↓(τ,−k−)]T, (14a)

�̄(τ, k) ≡ 1√
2

[ā↑(τ, k+),

ā↓(τ, k+), a↑(τ,−k−), a↓(τ,−k−)], (14b)

Equation (12) can be rewritten as follows:

HBdG =
′∑
k

�̄(τ, k)G−1(τ, q, k) �(τ, k)

+ 1

2

′∑
k,q′ �=q

�̄(τ, k)G−1
cor (τ, q′, k) �(τ, k), (15)

where

G−1(τ, q, k) ≡
(

∂τ + ξ̂ (k+) �̂−(τ, q, k)
�̂+(τ, q, k) ∂τ − ξ̂ (−k−)

)
(16a)

and

G−1
cor (τ, q′, k) ≡

(
0 �̂−(τ, q′, k)

�̂+(τ, q′, k) 0

)
. (16b)
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Hereafter, we assume that the main contribution of Eq. (10) is
only the first term of the right-hand side of Eq. (15). There-
fore the remaining term in that equation will be neglected.
This treatment means we are considering the Fulde-Ferrell
(FF) state of superconductors [27]. In this FF state, the or-
der parameters in a real-space representation, namely ϕi(z),
are proportional to exp (iqz), and the amplitude of the gap
function is spatially homogeneous. After integrating Eq. (10)
over the fermion fields, we obtain the effective action Seff as
follows:

Seff [ϕ̄i, ϕi] 	
∫ 1/T

0
dτ

[
−1

2

′∑
k

Tr ln G−1(τ, q, k)

+
∑

i

1

|λi| ϕ̄i(τ, q)ϕi(τ, q)

]
, (17)

where Tr is a trace over eigenvalues of G−1(τ, q, k). The ap-
proximation notation is used above because we keep the range
of the summation of momentum k unchanged from Eq. (3b).
Equation (17) becomes exact when q = 0. The above equation
should be a good approximation if |q| � �. Below, we will
neglect the dependence of ϕi on boson Matsubara frequencies.

III. GINZBURG-LANDAU THEORY

In this section, we study the effective action Seff derived
in the previous section in the GL theory framework. After
deriving the GL free energy, we then discuss critical super-
current and show a numerical calculation of the model in the
GL framework.

A. GL free energy

To derive the GL free energy, we expand Seff to the fourth-
order terms of the order parameters. Following a procedure
in Ref. [28], we first write G−1 in the form G−1 = G−1

0 + �̂,
where

G−1
0 (ωn, q, k) ≡

(−iωn + ξ̂ (k+) 0
0 −iωn − ξ̂ (−k−)

)
, (18a)

�̂(q, k) ≡
(

0 �−(q, k)
�+(q, k) 0

)
, (18b)

and ωn are fermion Matsubara frequencies. Then, by using the
formula ln [G−1

0 (1 + G0�̂)] = ln G−1
0 − ∑∞

n=1
(−1)n

n [G0�̂]n,
we obtain the GL free energy FGL as below:

FGL = α1ϕ
2
1 + α2ϕ

2
2 + 2α3ϕ1ϕ2 cos φ

+ β1ϕ
4
1 + β2ϕ

4
2

+ 2ϕ1ϕ2
(
β3ϕ

2
1 + β4ϕ

2
2

)
cos φ

+ ϕ2
1ϕ

2
2 (β5 + 4β6 cos2 φ), (19)

where ϕi here is the magnitude of the auxiliary boson fields
satisfying ∂FGL/∂ϕi = ∂FGL/∂φ = 0, and φ is the phase dif-
ference, or the so-called internal Josephson phase, between
ϕ1 and ϕ2. The free energy of the normal state, coming from
the contribution ln G−1

0 , had been subtracted already in the
above equation. Coefficients αi are calculated up to q2-order
and h-linear order, while coefficients βi are evaluated at O(1).

For a qn-order term with n � 1, the cutoff momentum are
�− = 0 and �+ = ∞. For a O(1) term, �− = 0 but �+ is
given to be the momentum corresponding to the energy ωc.
See Appendix A for the explicit expression of each coefficient.
From the above, the GL free energy FGL has trivial stationary
points at cos φ = ±1. A nontrivial one, where cos φ �= ±1, is
also possible and given below:

cos φ = − 1

4ϕ1ϕ2β6

(
α3 + β3ϕ

2
1 + β4ϕ

2
2

)
. (20)

However, near the SC phase transition under a low magnetic
field, since the amplitude of order parameters is small, no
nontrivial solution satisfies the above equation. Even at a
relatively high magnetic field, where the GL theory in the
context of this paper becomes invalid, numerical results show
that such solutions tend to be metastable in the range exam-
ined. Therefore we ignore possible nontrivial solutions in the
following.

B. Critical current

Next, let us discuss critical currents. In literature such as
Ref. [13], it is shown that, based on a mean-field microscopic
theory, a supercurrent with Cooper-pair momentum q, I(q), is
given by

I(q) = ∂F (q)

∂q
, (21)

where F (q) is the Helmholtz free energy or condensation
energy such as given by Eqs. (19) or (25). Here, we absorb
all unnecessary coefficients into the definition of the current
I(q). The critical current in a given direction is determined by
finding the maximum value of supercurrent magnitude in that
direction. As aforementioned in the last section, here we focus
on the case where the supercurrent flows in the z-axis direc-
tion. Hereafter, let I+(q) and I−(q) be supercurrents flowing in
the positive and negative z-axis direction, respectively. Then,
the critical currents in the positive z-axis direction, I+c, and in
the negative z-axis direction, I−c, are given by

I±c = maxq |I±(q)|. (22)

In this way, the diode quality factor rd is defined as below:

rd = I+c − I−c

I+c + I−c
. (23)

Equation (22) will be evaluated intensely in Secs. III C and
IV B.

Now, let us consider the meaning of the critical current
from a thermodynamic point of view. From Eq. (21), one
may regard that a critical current is obtained by minimiz-
ing G(q, I) = F (q) − I · q. The minimum value of G(q, I) is
the Gibbs free energy G(I) = minq {G(q, I)}. Indeed, there is
prior research [29] asserting that the system should realize in
the state obtained by minimizing G(q, I). As clear from the
definition of G(I), if the state is thermodynamically stable in
the above sense, then G(I) is concave with respect to I. By
this consideration, a critical current can be interpreted as a
supercurrent in which G(I) becomes convex with respect to
I indicating thermodynamical instability. This interpretation
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can give a critical current different from Eq. (22) when multi-
ple metastable states appear. Further details will be discussed
in Sec. IV C.

In the previous paragraph, we discussed critical currents
from a thermodynamic aspect by considering the supercurrent
and Cooper-pair momentum as thermodynamic variables like
pressure or an external magnetic field. As a result, the frame-
work is the same as equilibrium thermodynamics although
there is a constant external current flowing as a supercurrent in
the system. Moreover, it also means that q is constant in time
by itself. It has to be examined further from both theoretical
and experimental sides whether q can still be constant in time
under an external current.

C. Numerical results of GL model

Here, we point out a feature of the GL model in Eq. (19)
that differs from a single-component superconductor stud-
ied in Refs. [13,15,17]. There, it is shown that, for a
one-component order parameter of superconductivity, the
quadratic term such as α1 must be calculated up to q3-
order to realize the SD effect. In considering a system
with two-component order parameters, however, stopping
at q2 order of each αi term is sufficient to realize the
SD effect. We can verify this with explicit calculations.
Hereafter, we choose gN (0) = 0.2, vaN (0) = 0.1, vmN (0) =
0.01, μ/Tc0 = 103, and ωc/μ = 0.13, where Tc0 is the zero-
field SC transition temperature and N (0) is the density of
states at the Fermi level (see Appendix A). Indeed, it is not
necessary to specify the last two parameters when working in
the GL framework. However, for convenience in the numerical
calculation and to compare the results with the BdG theory in
the next section, we assign those values here as well. Substi-
tuting the minimized free energy of Eq. (19) for each q into
Eq. (21), the supercurrent with Cooper-pair momentum q is
computed. Here we define the reduced dimensionless GL free
energy fGL and supercurrent Ĩ as fGL ≡ FGL(N (0)T 2

c0)−1 and
Ĩ ≡ 2I (vF N (0)Tc0)−1, respectively. The dimensionless free
energy is a function of the normalized Cooper-pair momen-
tum q/pF, normalized temperature t ≡ T/Tc0, and normalized
external magnetic field h̃ ≡ h/Tc0 = μBH/Tc0. We show the
q dependencies of fGL and Ĩ of the GL model in Eq. (19)
at normalized temperature t = 0.9 and normalized magnetic
field h̃ = 0.1 in Fig. 1. As seen in Fig. 1(a), the GL free energy
with the Josephson phase φ = 0 is smaller than that with φ =
π . This result is consistent with the BdG mean-field theory
in the next section. Moreover, despite being difficult to see
with the naked eye, the free energy takes the global minimum
at finite q with |q| � pF, and the critical supercurrents in
positive and negative directions indeed differ in magnitude,
giving the diode quality factor rdGL = 4.5 × 10−4. In this
manner, the SD effect in the two-component superconductors
can be realized without q3-order terms in αi, in contrast to the
single-component superconductors.

To make this result intuitive, let us solve a couple of the
GL equations associated with Eq. (19) at φ = 0. Obtaining the
exact solution is extremely difficult because the equations are
cubic. For simplicity, let us consider the case with ϕ1 � ϕ2.
This assumption is appropriate for the parameters considered
in this section. With this approximation, ϕ2 can be expressed

(a)

(b)

FIG. 1. Cooper-pair momentum dependencies of (a) the reduced
dimensionless mean-field free energy fGL and (b) corresponding
supercurrent Ĩ at temperature t = 0.9 and magnetic field h̃ = 0.1.
In panel (a), the red and black lines show the GL free energy with
the internal Josephson phase φ = 0 and π , respectively. In panel (b),
the supercurrent in the stable state [red line in panel (a) for φ = 0] is
plotted.

as a linear term of ϕ1, namely ϕ2 	 α3ϕ1/α2, and ϕ2
1 can be

solved to the first order of α3/α2 (see Appendix B). Sub-
stituting the expression of ϕ2

1 into Eq. (19), one can further
evaluate FGL to the first order of α3/α2 (see Appendix B).
From the asymptotic equation of FGL, Eq. (B2), it becomes
clear that if one rewrites FGL in the form −α̃2/4β̃, qn-order
terms where n � 3 are induced in α̃, signaling the intrinsic
SD effect. However, further numerical calculation shows that
Eq. (B2) gives a diode quality factor r̃dGL = −1.7 × 10−4 at
t = 0.9 and h̃ = 0.1, incompatible with the estimation rdGL =
4.5 × 10−4 in the previous paragraph. The deviation from
rdGL is due to ignoring the higher order terms of α3/α2 in
Eq. (B2). Indeed, if one substitutes Eq. (B1) into Eq. (19)
and performs numerical calculation straightforwardly, r̃dGL

becomes 5.7 × 10−4, which is in reasonable agreement with
rdGL. Moreover, it can be deduced from Eq. (B2) that as long
as the q3-order term in α1 is not to be evaluated, the SD effect
would not be expected if α3 and β3 are neglected. In this way,
the SD effect based on the usual GL theory up to the q2-order
stems from the appearance of α3 and β3 in the GL free energy,
at least when the condition ϕ1 � ϕ2 is satisfied.
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Although the SC effect occurs in this approach, the diode
quality factor rdGL is tiny and does not coincide with the
result in the BdG mean-field theory. As we see below, in the
BdG mean-field framework, rd is negative in a low magnetic
field and high temperature region. This discrepancy arises
from neglecting some higher order terms in q and h, such
as qh-order terms in βi and q3-order terms in αi. In other
words, the higher-order derivative terms play a qualitatively
essential role in the SD effect. It is expected that the GL
theory is quantitatively consistent with the BdG theory near
the transition temperature when the higher-order derivative
terms are appropriately taken into account. However, we will

not go any further into the GL framework and move to the
microscopic calculation in the BdG framework.

IV. BDG MEAN-FIELD THEORY

A. Gap equations

The first step to obtaining the mean-field free energy is to
solve the saddle point equations of a given effective action
for order parameters. In the model worked on, this can be
achieved by considering the equation ∂Seff/∂ϕ̄i = 0, where
Seff is given by Eq. (17). Such a procedure brings us to a
couple of gap equations as follows:

ϕi(q) = λiT

2

∑
k,ωn

{
[ϕ1(q)�1↓↑k + ϕ2(q)�2↓↑k]�i↓↑k

(−iωn + εk+ + h)(iωn + ε−k− − h) + |ϕ1(q)�1↓↑k + ϕ2(q)�2↓↑k|2

+ [ϕ1(q)�1↑↓k + ϕ2(q)�2↑↓k]�i↑↓k

(−iωn + εk+ − h)(iωn + ε−k− + h) + |ϕ1(q)�1↑↓k + ϕ2(q)�2↑↓k|2
}

, (24)

where i = 1, 2. Now, the mean-field free energy F (q) of the superconducting state with Cooper-pair momentum q can be
calculated by solving the above equations for ϕi and substituting them into the expression of free energy, which is given below:

F (q) = −T

2

′∑
k

∑
ωn

Tr ln G−1(ωn, q, k) + T

2

[ ′∑
k

∑
ωn

Tr ln G−1(ωn, q, k)

]
ϕi=0

+
∑

i

1

λi
|ϕi(q)|2. (25)

The second term in the right-hand side of the above equation
is responsible for the free energy of the normal state. More
explicit expressions of Eqs. (24) and (25) can be found in
Appendix C. Like in the GL framework, it can be shown
that the internal Josephson phase φ satisfying the condition
cos φ = ±1 is a trivial stationary point of F (q). A nontrivial
one is also possible. However, unlike the GL framework,
finding such a nontrivial solution is difficult in the present
framework since one has to minimize F (q) at each of φ ∈
[0, π ] numerically. Thus here we assume that F (q) is min-
imized when the Josephson phase φ satisfies the condition
cos φ = ±1, in which the value of φ is restricted to φ = 0
or π as in the GL theory (Sec. III C). For convenience, let us
extend the domain of ϕ2 from positive real numbers to real
numbers. In this way, the sign of ϕ2 will reflect the Josephson
phase directly. The supercurrent is calculated in the same way
as done in Sec. III.

The physical parameters necessary for the numerical calcu-
lation, gN (0), vaN (0), vmN (0), μ/Tc0, and ωc/μ, are given
as the same as in Sec. III C. However, the integration over
momentum is now limited to the bounded interval [�−,�+].
As aforementioned in Sec II, the interval is fixed here indepen-
dent of q in the same way as the BCS theory. Accordingly, �±
is given by �±/pF = (1 ± ωc/μ)1/2. In this way, the reduced
dimensionless mean-field free energy fmf ≡ F (N (0)T 2

c0)−1

can be calculated as a function of q/pF, t , and h̃.

B. Numerical results

First, we describe some features of h̃-t phase diagrams
of the model when the supercurrent I is 0. Let q0 be the
Cooper-pair momentum at the lowest free energy. As shown
in the phase diagram in Fig. 2(a), there is a transition of
q0 in the relatively high magnetic field region. While a
crossover of q0 appears at high temperatures, it turns into

a first-order transition at sufficiently low temperatures. The
critical point or the endpoint of the first-order transition at
the high-temperature side is approximately located at the field
h̃ = 1.08 ± 0.02 and temperature t = 0.425 ± 0.025. It must
also be emphasized that the first-order transition is due to the
growth of metastable states accompanied by the mean-field
theory. While metastable states do not exist in the crossover
regime, they are manifest in the first-order transition regime.
The change of the mean-field free energy upon increasing
the external magnetic field is shown at t = 0.5, which is in
the crossover regime, and at t = 0.1, which is the first-order
transition regime, in Figs. 3 and 4, respectively. These results
reveal that the first-order transition at low temperatures is
caused by the manifestation of metastable states, and the two
states with different Cooper-pair momentum q0 should coexist
at the first-order transition. These features are the same as the
case of a single-component superconductor [13,15].

A distinctive feature of the model can be found by looking
at the Josephson phase φ. As shown in Fig. 2(b), the order
parameter ϕ2 changes the sign with the transition of q0. This
means that the Josephson phase discontinuously changes from
0 to π at the first-order transition or crossover of q0 upon
increasing the external magnetic field at a fixed temperature.
In accordance with the nature of the phase transition, the
change in the value of ϕ2 is, as well as q0, discontinuous at
low temperatures while continuous at high temperatures. As
a result of the latter, at high temperatures where ϕ2 changes
continuously, there is a line where the Josephson phase cannot
be defined because ϕ2 becomes zero around the crossover
line of q0. Furthermore, the discontinuous change in ϕ2 at
low temperatures implies that the phases coexisting at the
first-order transition are different not only in the momentum
q0 but also in the Josephson phase φ.
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(a) q0

(b) ϕ2

(c) rd

FIG. 2. Color maps of the h̃-t phase diagram. The color gradation
indicates (a) the Cooper-pair momentum q0 in the most stable state,
(b) an order parameter ϕ2, and (c) the diode quality factor rd. In (b),
ϕ2 is defined as a real number to reflect the Josephson phase. See
Sec. IV A for further details. In (c), the white band lying between
approximately h̃ = 1.1 and 1.3 is referred to as “region E” in the
text.

Let us move to the case when the system is under a constant
supercurrent. We show a color map of the diode quality factor
varying with external magnetic fields and temperatures in
Fig. 2(c). Below h̃ ∼ 1.1, the signs of the diode quality factors
are all negative. In contrast, at high enough magnetic fields
and low enough temperatures, for example, at h̃ � 1.4 and
t � 0.1, the sign of the diode quality factor changes from neg-
ative to positive. This feature coincides qualitatively with the
results in a single-component superconductor [13]. However,

FIG. 3. Cooper-pair momentum dependence of the reduced di-
mensionless mean-field free energy fmf obtained in the BdG theory.
The temperature is t = 0.5, and various high magnetic fields h̃ =
1.15, 1.10, and 1.00 are adopted from the top to bottom.

in the range of relatively high magnetic fields 1.1 < h̃ < 1.4,
a novel behavior of the SD effect appears. There is a region
where the diode quality factor takes a local minimum value
with a negative sign or a local maximum value with a positive
sign. Such a region is located slightly above the transition
line of q0. We term it “region E.” The presence of this region
differs from the result of single-component superconductors
[13,15,17], where single or double sign reversal occurs at all
temperatures in the corresponding region. Thus the region E
is a hallmark of the SD effect arising from the DM interaction.
Slightly above the region E, the diode quality factor reaches a
local maximum with a negative sign. The diode quality factor
reaches the global maximum with a negative sign below the
region E and slightly below the transition line of q0.

Readers might wonder why the region E and the first-order
transition of q0 do not perfectly overlap, as seen in Figs. 2(a)
and 2(c), or much easier in Fig. 5(a). A reason for this can
be grasped by paying attention to the relation between the
growth of metastable valleys and values of qc± at which the
supercurrent reaches a critical current. As shown in Figs. 4(b)
and 4(c), upon increasing h̃ = 1.15 to h̃ = 1.20 at t = 0.1, the
minimum of free energy fmf changes from the valley O to the
valley R, while the place of qc± is still in the same valley O.
As a result, in the vicinity of the first-order transition, qc± and
Ic±, in other words, the diode quality factor rd can still vary
smoothly. In this way, the region E in the low temperature
region and the first-order transition of q0 do not completely
overlap.

From Fig. 5, we further find a peculiar behavior of the
diode quality factor in the region E. Upon increasing the
magnetic field at t = 0.1, it can be seen from Fig. 5(a) that
the diode quality factor curve reaches a local minimum in
magnitude and becomes nondifferentiable at a certain mag-
netic field. Indeed, following our numerical data, such a
behavior occurs at the same time as the Cooper-pair momenta
giving critical currents to move from the valley O to the
valley R. On the other hand, in Fig. 5(b) for t = 0.5, at which
metastable valleys are absent, the diode quality factor curve
varies smoothly over the range of magnetic fields. The values
of the magnetic field and temperature at which the curve
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(a) h̃ = 0.90 (b) h̃ = 1.15

(c) h̃ = 1.20 (d) h̃ = 1.25

FIG. 4. Cooper-pair momentum dependence of the reduced dimensionless mean-field free energy fmf at the temperature t = 0.1 and various
high magnetic fields h̃. Dashed lines in the figure show tangent lines. The red and blue dots denote the Cooper-pair momentum corresponding
to the critical current in the −z and +z directions, respectively.

becomes nondifferentiable are vague at this stage. However,
our numerical data affirms that the curves become sharper at
the extreme points in region E upon cooling, and we argue
that the growth of metastable valleys in the low temperature
regime causes the nondifferentiable behavior.

C. Phase coexistence under a steady current

In our theoretical framework, metastable states appear in
the high magnetic field region above the transition line of
q0. Furthermore, as shown in Fig. 4(c), the critical currents
can be realized in a valley of the metastable state. A question
arises of how this can happen if starting in a stable state such
as the valley R in Fig. 4(c). We answer a question through
the following discussion. Suppose a stable state is reached
in the region above the transition line of q0. We then apply
an external current to the system slowly. As a result, at a
certain current IM with corresponding momentum qR, the con-
densation energy F (q) decreases to the value that the Gibbs
free energy G(IM) in the valley of the stable state becomes
equal to that in another valley with corresponding momentum
qO. This current IM can be obtained by drawing a tangent
line connecting the point of each valley. Examples are shown
in Figs. 4(b)–4(d). The number of points from each valley
that shares the same tangent line can reach at most three at

some external magnetic fields and temperatures within this
model. Points on such a tangent line share the same Gibbs free
energy G(IM). Consequently, phase coexistence should occur
between the states of distinct valleys, as in the phase coex-
istence of liquid and gas [30]. For concreteness, we consider
the case where two phases coexist, as in Fig. 4(c). Then, IM is
given in terms of F (qO), F (qR), qO, and qR as follows:

IM = F (qO) − F (qR)

qO − qR
. (26)

Let χ and 1 − χ be the volume fraction of qO and qR states,
respectively. Thus the condensation energy of each point on
the tangent line, fs(q), is

fs(q) = χF (qO) + (1 − χ )F (qR). (27)

Further increasing current beyond |IM| slowly, the state of
the whole system changes its Cooper-pair momentum discon-
tinuously from a value of the valley R to that of the valley O.
This means that the states on the thick black curve between
two tangent points, namely qO and qR, are prohibited when the
system settles down in the state whose Gibbs free energy be-
comes the minimum. Again, at some currents |I| > |IM| with
corresponding momentum in the valley O, it turns out that the
system can go to the valley L through another tangent line. If
this is the case, the critical current in the negative z-direction
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(a) t = 0.1

(b) t = 0.5

FIG. 5. Magnetic field dependence of the diode quality factors
rd and the most stable Cooper-pair momentum q0 at (a) t = 0.1 and
(b) 0.5. The red (blue) line denotes the rd (q0) curve. At t = 0.1,
the first-order transition of q0 occurs at h̃ = 1.2, while the local
minimum in the magnitude of rd in the region E locates at h̃ = 1.22.
At t = 0.5, q0 and rd vary smoothly over the range of magnetic fields,
and the rd curve reaches its local minimum in magnitude in the region
E at h̃ = 1.09.

can be different from the value given in Eq. (22), and the diode
quality factor also changes. The diode quality factor defined
by Eq. (22) is rd = −0.23, −0.17, and −0.07 in Figs. 4(b)–
4(d), while the above thermodynamic argument gives −0.36,
0.43, and 0.51, respectively. Not only the magnitude but also
the sign changes when the thermodynamic argument applies.
To prevent this, we consider how a supercooled liquid is
realized. Such a phenomenon occurs by a quick drop in tem-
perature towards a freezing temperature [31]. As an analogy
of this phenomenon, we believe that the system can reach the
state with momentum qc− in the valley O by rapidly increasing
current. By such a rapid change, the state with qc+ in the
valley O can also be reached. However, these states that do
not give the minimum to G(I ) for each I could remain only
for a finite time. Let I ′

c± � 0 be the critical current calculated
from the minimum of G(I ) in the ±z direction. Our theoreti-
cal argument implies intriguing dynamics, such as relaxation
to normal state or other superconducting states, leading to
the inevitable transient SD effect if the current I satisfying

|Ic±| > |I| > |I ′
c±| is applied and the superconducting state

with corresponding Cooper-pair momentum q realizes.
Note that the above discussion is expected to be general

and can also be applied to single-component superconduc-
tors. However, here we have not considered surface energies
between coexisting phases. The dynamics of the supercon-
ducting state are known to depend on the setup and are desired
to be clarified for further understanding of the SD effect.

V. COMMENTS ON PURELY 2D SYSTEMS

So far, we have studied the SD effect at the mean-field
level with effectively three-dimensional superconducting thin
films in mind. Here, let us point out two issues related to a
purely 2D system, which can be realized in atomically thin
films, to stress the fundamental differences between quasi-2D
and purely 2D superconductors. The following comments are
important for those who wish to study our model in the context
of purely 2D systems or to seek out the SD effect in purely 2D
systems.

Firstly, in a 2D system, even under an in-plane mag-
netic field, the superconducting transition should be the BKT
transition, in which the effect of the in-plane Zeeman field
is renormalized to the superfluid weight [4,32,33]. Using
the Nelson-Kosterlitz (NK) criterion [6], we can estimate
the BKT transition temperature TBKT at various magnetic
fields. To do this, we have to calculate the superfluid weight
matrix ρ̂w, whose i j components are given by (ρ̂w )i j ∝
[∂2F (A)/∂Ai∂Aj]A=0, where A is a virtual gauge field [34].
This can further be simplified as follows:

(ρ̂w )i j ∝ ∂2

∂qi∂q j
F (q). (28)

Therefore the superfluid weight is the second-order derivative
of the condensation energy with respect to q. Using the above
equation, the NK criterion can be written as below [32]:

[det ρ̂w]1/2 ≈ 2

π
TBKT. (29)

The approximation notation is used above because ρw in
Eq. (28) has not yet been renormalized by thermally induced
vortex-antivortex pairs.

In applying the BKT theory to a two-component model like
the model studied here, although the complete theory of such
systems has still not been established, there is a simulation
study of a 2D system of two-component mixed Bose gases
[35] that provides useful wisdom. There, it is shown that in a
case with nonzero Josephson coupling, the NK criterion is still
valid. Therefore it would be inclined to conclude that the BKT
theory can be applied to the model studied here. However,
there is a difference between the model studied in Ref. [35]
and our model. The Josephson couplings in quaternary terms
of order parameters had not been included in the former but
were included in the latter, as can be seen in Eq. (19). Whether
it is significant is an open question.

Secondly, vortex-antivortex unbinding under a finite elec-
tric current would result in the absence of the SD effect,
accompanied by a discontinuous change in resistance between
zero ohms state and finite ohms state, in a purely 2D sys-
tem. In purely 2D superconductors, according to Refs. [7,36],
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although the in-plane DC resistivity is strictly zero only in the
limit of vanishing current, the current-voltage characteristic
becomes nonlinear in a not-too-low current region. Indeed,
a true 2D system is regarded as a superconductor in this
sense. However, lacking P and T symmetry in such a system
can cause the directional asymmetry of the nonlinear current-
voltage characteristic under a low electric current. A detailed
study of them will be presented elsewhere.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have studied the superconducting diode
effect in a two-component superconductor with the Zeeman
coupling and weak DM interaction based on the GL and BdG
mean-field framework. In the GL framework, it has become
apparent that calculating each GL coefficient up to q2-order
is sufficient to demonstrate the SD effect. However, a nu-
merical result of the model showed that even in the vicinity
of the zero-field transition temperature of superconductivity,
the diode quality factor is tiny and different from the BdG
framework due to neglecting higher-order terms of q in the GL
coefficients. For the BdG mean-field framework, the internal
Josephson coupling changes its sign in a low temperature
and high magnetic field region in thermal equilibrium. The
first-order transition of Cooper-pair momentum also appears
in a low temperature region. At the transition, the phases with
different Cooper-pair momentum and Josephson phase coex-
ist. Under the supercurrent, the diode quality factor calculated
from the extremes of supercurrent changes the sign in two re-
gions. One is located in a low temperature and high magnetic
field region, and the other is in a finite range of temperatures
named region E, located at moderately high magnetic fields. In
region E, the diode quality factor calculated from the extremes
of the supercurrent shows nonmonotonic magnetic field de-
pendence and changes its sign in a high temperature region
but does not change at sufficiently low temperatures.

Furthermore, we went deep into what the critical current
would imply to the stability of superconductivity. Interpreting
a supercurrent as a control variable and using thermodynamic
arguments, we argued that the corresponding Cooper-pair
momentum of the system under a constant supercurrent is
a value such that the counterpart Gibbs free energy, being a
function of supercurrent, reaches its minimum. Consequently,
phase coexistence and first-order transition of Cooper-pair
momentum upon increasing the external current are predicted
in a low temperature and high field region. A critical current
and diode quality factor can also differ from those calculated
from the extremes of the supercurrent. The critical current
predicted from the global extremum of supercurrents may be
realized by a rapid change of supercurrent as an analogy of the
supercooled liquid if we assume a supercurrent plays a role in
temperature. However, a state achieved by such a procedure
should not last an infinite time if the thermodynamic argument
for the supercurrent applies to the setup of the system, since
it is not a truly stable SC state in stationary thermodynamic
equilibrium. In this way, we conclude that the critical cur-
rent significantly depends on the dynamics when multiple
metastable states exist in a low temperature and high field
regime, and attention should be paid to the definition of the
diode quality factor. In other words, the transient dynamics of

the SD effect may occur associated with the transition of heli-
cal superconducting states. It can be a signature of the helical
superconductivity in noncentrosymmetric superconductors.

In this paper, only the FF state, being spatially homo-
geneous, was discussed. For the Larkin-Ovchinnikov (LO)
state [37], our approach starting from a momentum-space
representation of the action cannot give the same result as
one expects from a real-space representation. The problem
stems from the fact that it is not easy to perform the Fourier
transform of the action from a real-space representation to
a momentum-space representation. For example, for sim-
plicity, let us consider a single-component system in which
the gap function in the real-space representation is �(x) =
A exp(iq1x) + B exp(iq2x) (q1 �= q2). This gap function real-
izes an FFLO state [38]. If q1 = −q2 but A �= B, the state
is known as a stripe state [39]. Thus one has G−1(τ, x) in
the form that �̂± in Eq. (16a) is replaced by two matrices
with one proportional to �(x) and other one is proportional
to �∗(x). Now, it can be seen that the factors exp(±iqix)
in G−1(τ, x) cannot be canceled by a unitary transformation,
meaning that one cannot reach a simple form of G−1(τ, k) like
Eq. (16a). In this way, our approach cannot straightforwardly
be generalized to the case with a single phase composed of
multiple Cooer-pair momentum q giving rise to spatial inho-
mogeneity. Starting from a real-space representation of the
action of our model is also challenging. Nevertheless, from
the centrosymmetry of the LO state, one can quickly conclude
that the SD effect should not occur, at least if the external
current changes adiabatically. It could be interesting to study
the SD effect in FFLO states with spacial modulation because
it appears in a phase diagram of the equilibrium state [40,41].
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APPENDIX A: GL COEFFICIENTS

The GL coefficients of the two-component model, in
Eq. (19), are obtained as follows:

α1 = 1

λ+
− 1

4
N (0)(3 + cos 2χ )

[
log

2εc

πT
+ γ

]

− 2β0 sin 2χ
hvF q

T 2
+ 1

8
β0(3 + cos2 χ )

v2
F q2

T 2
, (A1)

α2 = 1

λ−
− 1

4
N (0)(3 − cos 2χ )

[
log

2εc

πT
+ γ

]

+ 2β0 sin 2χ
hvF q

T 2
+ 1

8
β0(3 + sin2 χ )

v2
F q2

T 2
, (A2)

α3 = −1

4
N (0) sin 2χ

[
log

2εc

πT
+ γ

]

+ 2β0 cos 2χ
hvF q

T 2
+ 1

16
β0 sin 2χ

v2
F q2

T 2
, (A3)

β1 = 1

T 2
β0

(
1 + sin2 χ − 13

8
sin4 χ

)
, (A4)
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β2 = 1

T 2
β0

(
1 + cos2 χ − 13

8
cos4 χ

)
, (A5)

β3 = − 1

2T 2
β0 sin 2χ

(
1 − 13

4
sin2 χ

)
, (A6)

β4 = − 1

2T 2
β0 sin 2χ

(
1 − 13

4
cos2 χ

)
, (A7)

β5 = 2β6 = 1

T 2
β0

(
5 − 13

16
sin2 2χ

)
, (A8)

where β0 = 7ζ (3)N (0)/(16π2), N (0) = mA/(2π ), and A de-
notes system’s area.

In a one-component case with λ− 	 0, the GL free energy
can be written as FGL = α1ϕ

2
1 + β1ϕ

4
1 . Although an explicit

numerical calculation for such a case was not performed in
this paper, we give here the GL coefficients as follows:

α1 = 1

λ+
− 1

4
N (0)(3 + cos 2χ )

[
log

2εc

πT
+ γ

]

− 2β0 sin 2χ
hvF q

T 2
+ 1

8
β0(3 + cos2 χ )

v2
F q2

T 2

+ 93 ξ (5)

112 π2ξ (3)
β0 sin 2χ

h (vF q)3

T 4
, (A9)

β1 = 1

T 2
β0

(
1 + sin2 χ − 13

8
sin4 χ

)

+ 589 ξ (5)

448 π2ξ (3)
β0 sin 2χ (3 + cos2 x)

hvF q

T 2
. (A10)

APPENDIX B: ASYMPTOTIC SOLUTIONS
FOR THE GL EQUATIONS

Following the procedures described in the main text, we
can evaluate ϕ2

1 and FGL as follows:

ϕ2
1 = − α1

2β1

[
1 + 3α3β3

2α2β1

]
+ α2

3

2α2β1
+ O

(
α2

3/α
2
2

)
, (B1)

FGL = − α2
1

4β1

[
1 + 2α3β3

α2β1

]
+ O

(
α2

3/α
2
2

)
. (B2)

APPENDIX C: EXPRESSIONS OF EQS. (24) AND (25)

After taking summation of Matsubara frequency in
Eqs. (24) and (25), one can obtain the following:

ϕi(q) = λiT

2

′∑
k

[
tanh

ε+(k, q)

2T
+ tanh

ε−(k, q)

2T

]

× �G(q, θ )

EG(k, q)
�i(θ ), (C1)

Fs = −
′∑
k

[T ln(1 + eε+(k,q)/T )(1 + eε−(k,q)/T ) + EG(k, q)]

+
∑

i

1

λi
|ϕi(q)|2, (C2)

where Fs is the free energy of the superconducting part. To
obtain Eq. (25), one has to subtract from Eq. (C2) the normal
part, which is calculated by substituting ϕi = 0 into Eq. (C2).
The other variables are given as follows:

�G(q, θ ) = ϕ1(q)�1(θ ) + ϕ2(q)�2(θ ), (C3)

�1(θ ) = − cos χ + sin χ cos θ, (C4)

�2(θ ) = − sin χ − cos χ cos θ, (C5)

ε±(k, q) = EG(k, q) ±
(

kq

2m
cos θ + h

)
, (C6)

and

EG(k, q) =
[(

k2

2m
+ q2

8m
− μ

)2

+ [�G(θ )]2

]1/2

(C7)

expresses the quasiparticle’s spectrum. In the numerical calcu-
lation, we replace the summation notations in Eqs. (C1) and
(C2) by

′∑
k

→ N (0)

πm

∫ �+

�−
dk k

∫ π

0
dθ, (C8)

where �± is described in the main text.
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