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Effect of junction critical current disorder in superconducting quantum interference filter arrays
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In this study, we investigated the performance of two 2D superconducting quantum interference filter (SQIF)
arrays fabricated from YBCO thin films at a temperature of 77 K. Each array consisted of 6 Josephson junctions
(JJs) in parallel and 167 in series. We conducted both experimental and theoretical analyses, measuring the
arrays’ voltage responses to an applied magnetic field and their voltage versus bias-current characteristics. To
properly model the planar array layouts, our theoretical model used the stream function approach and also
included the Johnson noise in the JJs. The model further divides the superconducting current density of the arrays
into its Meissner current, circulating current, and bias current parts for practicality. Since the fabrication process
of YBCO thin films cannot produce identical JJ critical currents, we assumed a log-normal distribution to model
the JJ critical current disorder. Our model predictions, with a JJ critical current spread of 50%, agreed well with
our experimental data. Using our model, we were able to study the dependence of the voltage modulation depth
on critical current disorder and London penetration depth. We also analyzed the observed reflection asymmetries
of the voltage versus magnetic field characteristics, which might provide insight into the degree of critical current
disorder. Overall, our findings suggest that the use of YBCO thin films in SQIF arrays is promising, despite the
critical current disorder inherent in their fabrication process. Our study highlights the importance of theoretical
modeling in understanding the performance of superconducting devices and provides insights that could inform
the design of future SQIF arrays.
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I. INTRODUCTION

When fabricating 2D superconducting quantum inter-
ference filter (SQIF) arrays [or superconducting quantum
interference (SQUID) arrays] from YBCO thin films, the crit-
ical currents Ick and electric resistances Rk of the Josephson
junctions (JJs) exhibit significant variability and thus have
wide distributions. This Ic-R disorder in the arrays is thought
to result in a decrease in the magnetic-field-to-voltage transfer
function of the array, which is an undesirable outcome as
the goal is typically to achieve a transfer function that is
as large as possible for optimal performance in applications.
How detrimental such an Ic-R disorder is in real devices is
still unknown. This is in contrast to low-temperature super-
conducting thin-film arrays, where the Ick and Rk values can
be well controlled.

In this paper, we aim to provide a quantitative analysis of
the impact of the Ic-R disorder on the performance of two spe-
cific YBCO 2D SQIF arrays that we have recently fabricated
and measured. Our discussion will focus on the effects of Ic-R
disorder in these particular arrays, while the broader impact
of Ic-R disorder on 2D SQIF (or SQUID) arrays of varying
dimensions and with different screening and thermal noise
parameters will be addressed in a forthcoming publication.

Previously, we extensively modeled a structurally wide,
thin-film 1D parallel SQUID array with center current biasing
and used a brute-force approach to calculate the voltage-to-
magnetic-field characteristics, as described in Ref. [1]. In the
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present paper, we use an improved version of our previous
model, where we separate the superconducting current den-
sity into its Meissner current, circulating loop currents, and
bias-current components. This separation allows us to save
significant computational time and accurately calculate larger
2D arrays with strong Ic-R disorder.

Previous theoretical studies on 1D and 2D SQUID [2–5],
SQIF [6], and JJ [7] arrays have often not considered the
effects of thermal noise. Recent research has shown that prop-
erly accounting for thermal noise is essential for accurately
calculating the voltage-to-magnetic-field characteristics and
transfer function of these arrays [8–10]. Only a few studies so
far have investigated the consequences of Ic-R disorder in ar-
rays [5,11,12], but direct comparisons with experimental data
from genuine arrays with wide thin-film structures are lacking.

In this paper, we begin by discussing the layout, fabri-
cation, and measurement setup of our 2D SQIF arrays in
Sec. II. We then present our experimental results in Sec. III.
In Sec. IV, we outline our theoretical model, including the
JJ phase dynamics and the stream function approach. In
Sec. V, we compare our experimental data with our model
calculations and discuss the insights gained from our detailed
theoretical calculations with emphasis on the Ic-R disor-
der. We summarize our findings in Sec. VI. Appendices are
included to provide guidance on how to obtain the effective
hole areas and the geometric and kinetic inductances.

II. 2D SQIF ARRAY LAYOUT, FABRICATION,
AND MEASUREMENT SETUP

Two different SQIF arrays were fabricated lithographically
from a thin film of YBCO grown by e-beam evaporation on
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FIG. 1. 2D SQIF arrays S1 and S2. Etched rectangular regions
in the substrate are visible. Each of these regions has a pronounced
sharp step edge at the top to promote grain boundary thin-film growth
and a very gradual step on the bottom to avoid grain boundary
formation in the busbar region.

a 1 cm2 MgO substrate. The thickness of the film was d =
113 nm and its superconducting transition temperature was
Tc = 85.9 K. Before film deposition, steps were etched into
the MgO surface (see Fig. 1) using a well-established tech-
nique based on argon milling [13,14]. During YBCO thin-film
deposition, grain boundaries form along the edges of the sharp
MgO steps, producing JJs. Films were then lithographically
patterned into two different 2D SQIF arrays referred to in the
following as arrays S1 and S2, which are displayed in Fig. 1.

Each array consists of Ns = 167 identical 1D parallel SQIF
arrays (the rows) which are connected in series via supercon-
ducting YBCO thin-film busbars. Each 1D SQIF array has
Np = 6 JJs in parallel. Table I lists the design parameters of
S1 and S2, i.e., the SQIF hole height, the hole widths (left to
right), the busbar height, and the number Ns of identical 1D
parallel SQIF arrays connected in series. The tracks leading
to the JJs have the same width as the JJs themselves (Table I).
Both arrays have geometric left-right symmetry. Because of
the difficulty controlling grain boundary growth, the values
of the critical currents Ick and resistances Rk (k = 1 to NsNp)
of the JJs can vary widely [15]. This disorder in Ick and Rk

TABLE I. SQIF array design parameters.

Hole height Hole widths (L-R) Busbar height JJ width

No. (µm) (µm) (µm) (µm) Ns

S1 15 1, 5, 13, 5, 1 16 2 167
S2 15 8, 12, 20, 12, 8 16 2 167

negatively affects the applied magnetic field to voltage trans-
duction. In a 2D array, it is not possible to measure the Ick

and Rk values individually and only consequences of the Ic-R
disorder can be detected.

For measurements, the arrays were placed on a measure-
ment probe and dipped into a dewar of liquid nitrogen and
zero-field cooled from room temperature down to 77 K. To
screen out the earth’s magnetic field, the dewar was sur-
rounded by five layers of mu-metal shielding. The standard
four-terminal method was used to measure the DC voltages
V appearing between the ends (between top and bottom) of
the 2D SQIF arrays, while a bias current I tot

b was injected
at the top and exited the array at the bottom. A solenoid
surrounding the probe enabled us to generate a homogeneous
perpendicular applied magnetic field Ba at the array. Both
V (Ba) and V (I tot

b ) of S1 and S2 were measured at 77 K.

III. EXPERIMENTAL RESULTS

Figure 2 shows the experimental results of voltage V versus
the applied magnetic field Ba for arrays S1 and S2, where Ba

was varied from −50 µT to +50 µT.
The bias currents I tot

b for S1 and S2 were chosen to opti-
mize the voltage modulation depths �V . �V can be used as
a measure of the maximum transfer function dV/dBa|max of
the center dip [8]. The values of the optimal bias current I tot

b,opt

and �V are given in Table II. Both V (Ba) curves are nearly
reflection symmetric with respect to the center dip. Because
the rectangular holes in S2 are overall larger than those in S1,
the V (Ba) characteristics of array S2 show more oscillations

FIG. 2. Experimental data V (Ba) of arrays S1 and S2 for optimal
bias current I tot

b,opt (see Table II).
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TABLE II. SQIF array electrical parameters.

No. I tot
b,opt (µA) �V (mV) Rtot (�)

S1 76.474 8.52 406.0
S2 78.215 5.76 399.1

in Fig. 2 than S1. To understand the origin of the complex
shapes of these two V (Ba) characteristics, we have performed
theoretical modeling which is outlined in detail below.

Figure 3 displays the results of our V (I tot
b ) characteristics

measurements in zero magnetic field for S1 and S2. The
differential resistance at large I tot

b defines the total resistance
Rtot of the array which is given in Table II. Our theoretical
modeling results in Sec. V will give an explanation for the
shape of V (I tot

b ).
Section IV below will outline the theoretical model that

we use to describe 2D SQIF (and SQUID) arrays. We will see
how our model allows us to extract from our experimental data
information about the JJ Ic-R disorder in our fabricated arrays.
Furthermore, our model predicts how the voltage modulation
depth �V , which can be used as a measure for the maximum
transfer function dV/dBa|max, decreases with increasing Lon-
don penetration depth λ and increasing JJ Ic-R disorder. Our
model also elucidates the role of the row-row mutual inductive
coupling in 2D SQIF arrays with busbars.

IV. THEORETICAL MODEL

A. JJ phase dynamics

Our fabricated step-edge JJs have negligibly small capaci-
tances and behave like short JJs as the JJ width is much less
than their Josephson penetration depths at 77 K. Therefore,
we use the resistively shunted junction model (RSJ model) to
describe our 2D SQIF arrays. The current Ik flowing through
the kth JJ (Fig. 4), where k = 1 to NpNs (numbered from left
to right through the rows from top to bottom), is the sum of

FIG. 3. Experimental data of voltage V versus bias current I tot
b of

S1 and S2 in zero applied magnetic field.

FIG. 4. Current flow schematic for a 2D SQIF array with uni-
form bias current injection. The crosses mark the resistively shunted
Josephson junctions. Here, Np = 6 and Ns = 4. For simplicity, only
one circulating current Jm and one current Ik flowing through the kth
JJ are indicated.

three different currents: (i) the current through the intrinsic
shunt resistance Rk , (ii) the Josephson current Ick sin ϕk , and
(iii) the noise current INk . Here Ick is the JJ critical current and
ϕk is the gauge invariant phase difference. The noise current
INk is due to the Johnson noise voltage which appears across
the JJ intrinsic shunt resistors Rk at finite temperature T .

Employing the Josephson equation for the voltage across
the kth JJ, one obtains

�0

2πRk

dϕk (t )

dt
+ Ick sin ϕk (t ) + INk (t ) = Ik (t ). (1)

Here �0 is the flux quantum and t the time. Introducing the
dimensionless time τ = 2πRIct/�0 where R is the average JJ
resistance and Ic the average critical JJ current, one can write
Eq. (1) in vector notation as

ξ̂−1 d �ϕ(τ )

dτ
+ η̂

−−−−→
sin ϕ(τ ) +�iN (τ ) = �i(τ ). (2)

Here ξ̂ and η̂ are NsN p × NsNp diagonal matrices with diag-
onal elements ξ̂kk = Rk/R and η̂kk = Ick/Ic, respectively. The
components of �ϕ are ϕk and those of

−−→
sin ϕ are sin ϕk , while the

components of �iN are INk/Ic and those of �i are Ik/Ic.
From Kirchhoff’s law one obtains for a 2D array with

uniform bias current injection as indicated schematically in
Fig. 4

�i(τ ) = K̂ �J (τ )/Ic +�ib. (3)

Here �J is the circulating current vector with components Jm

flowing around hole m (Fig. 4), where m = 1 to Ns(Np − 1),
numbered from left to right through the rows from top to
bottom. The transport bias current vector �ib is NsNp dimen-
sional with identical components Ib/Ic. The total bias current
is I tot

b = Np Ib where the time-independent bias current is uni-
formly injected from the top as shown in Fig. 4. Because in our
arrays Ns � Np, any effects arising from the top and bottom
bias current leads are neglected. The matrix K̂ in Eq. (3) is an
NsNp × Ns(Np − 1) matrix of the form

K̂ = ÎNs×Ns ⊗ κ̂, (4)
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where ⊗ is a tensor product with ÎNs×Ns an Ns × Ns identity
matrix and κ̂ an Np × (Np − 1) matrix with elements (κ̂ )i j =
δi j − δi−1, j . Here δi j is the Kronecker δ.

Using the second Ginzburg-Landau equation one can relate
neighboring JJ phases within each row via the expression

�0

2π
(ϕk+1 − ϕk ) = �m + μ0 λ2

∮
Cm

�j d�l. (5)

Here λ is the London penetration depth. The index m is
the index for the circulating currents Jm and for the holes.
(The index m is related to the JJ index k via the relation
k = m + Int{m/(Np − 1) − ε} where Int{} is the integer part
of its argument and ε is an infinitesimally small positive real
number). �m in Eq. (5) is the magnetic flux through hole
m, and �j is the supercurrent density in the array. The line
integration in Eq. (5) is performed counterclockwise along the
contour Cm which runs along the edges of the hole, and μ0 is
the permeability of free space.

The magnetic flux �m in Eq. (5) is made up of four contri-
butions,

�m = �(app)
m + �(Mei)

m + �(J )
m + �(Ib)

m . (6)

Here, �
(app)
m is the externally applied flux through hole m,

with �
(app)
m = AmBa, where Am is the hole area and Ba the

applied homogeneous perpendicular magnetic field. �(Mei)
m is

the flux through hole m created by all the Meissner shielding
currents induced in response to the applied field Ba. �(J )

m is the
flux produced in hole m by all the circulating currents �J , and
�(Ib)

m is the flux through hole m produced by the transport bias
currents flowing vertically through all the JJs from the top to
the bottom [Eq. (3) and Fig. 4].

In a similar way, the supercurrent density �j in Eq. (5) is
made up of three parts,

�j = �j (Mei) + �j (J ) + �j (Ib). (7)

Here �j (Mei) is the Meissner shielding current density, �j (J ) the
current density from all the circulating currents, and �j (Ib) the
transport bias current density in the array. The bias current Ib

not only flows through the leads (Fig. 4), but also through each
JJ according to Eq. (3).

By using Eqs. (6) and (7), one can rewrite Eq. (5) as
�0

2π
(ϕk+1 − ϕk ) = �1,m + �2,m + �3,m, (8)

where the fluxoids �1,m, �2,m, and �3,m are defined as

�1,m = �(app)
m + �(Mei)

m + μ0λ
2
∮

Cm

�j (Mei) d�l, (9)

�2,m = �(J)
m + μ0λ

2
∮

Cm

�j (J) d�l, (10)

and

�3,m = �(Ib)
m + μ0λ

2
∮

Cm

�j (Ib) d�l. (11)

The fluxoid �1,m in Eq. (9) can be written as

�1,m = BaAeff
m , (12)

where Aeff
m is the effective hole area of hole m, with

Aeff
m = BaAm + �(Mei) + μ0λ

2
∮

Cm
�j (Mei) d�l

Ba
. (13)

The effective hole area Aeff
m does not depend on Ba, because

both �(Mei) and �j (Mei) are proportional to Ba. How we deter-
mine Aeff

m is outlined further below.
Furthermore, the fluxoid �2,m in Eq. (10) can be written as

�2,m = (L̂ �J )m, (14)

where L̂ is the Ns(Np − 1) × Ns(Np − 1) inductance square
matrix of the array, with each matrix element the sum of a
geometric and kinetic term. How we determine the inductance
matrix L̂ is outlined further below.

And, the fluxoid �3,m in Eq. (11) can be written as

�3,m = (�LIb )m Ib, (15)

where we name �LIb the bias current inductance vector which
has Ns(Np − 1) components. Each component is the sum of
a geometric and kinetic term. How we determine the bias
current inductance vector �LIb is outlined further below.

Finally, using Eqs. (2), (3), and (8)–(15), we derive the fol-
lowing system of nonlinear stochastic differential equation of
first order for the time evolution of the JJ phase difference
vector �ϕ(τ ):

ξ̂−1 d �ϕ(τ )

dτ
+ η̂

−−−−→
sin ϕ(τ ) +�iN (τ )

= �ib + K̂L̂−1

Ic

[
�0

2π
D̂�ϕ(τ ) − Ba �Aeff − �LIb Ib

]
. (16)

Here D̂ is an NsNp × Ns(Np − 1) matrix of the form

D̂ = ÎNs×Ns ⊗ δ̂, (17)

where δ̂ is an (Np − 1) × Np matrix with elements (δ̂)i j =
−δi j + δi, j−1. The differential Eq. (16) is the key equation of
this paper.

The set of dynamic equations for the JJ phase differences
ϕk [Eq. (16)] can also be written with the help of a so-called
washboard potential U ({ϕk}) as [7]

�2
0

4π2Rk

dϕk

dt
= −∂U ({ϕk})

∂ϕk
, (18)

where

U ({ϕk}) = −
NsNp∑
k=1

[
�0

2π
Ick cos ϕk + �0

2π
(Ib − INk )ϕk

]

+ 1

2

Ns (Np−1)∑
m=1,m′=1

Mm L̂−1
m,m′ Mm′ , (19)

with

Mm = �0

2π
(ϕk+1 − ϕk ) − Aeff

m Ba − LIb
mIb, (20)

where k is a function of m as stated above.
The potential U can be obtained from energy considera-

tions or conjectured directly from Eq. (16). Evaluating the
right-hand side of Eq. (18) leads to Eq. (16).

The time-averaged voltage V of the SQIF array, measured
between its top and bottom ends, is given by

V = R Ic lim
τ→∞

1

τ

1

Np

NsNp∑
k=1

[ϕk (τ ) − ϕk (0)]. (21)
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The noise current vector �iN (τ ), which appears in Eq. (16),
was implemented using uncorrelated Gaussian random vari-
ables with the mean-square deviations 2 �k/�τ . Here �τ is
the time-step interval used in the finite-difference method used
to numerically solve Eq. (16), and �k is the noise strength
defined as

�k = R

Rk

2πkBT

Ic�0
, (22)

where kB is the Boltzmann constant and T the operating tem-
perature of the array.

B. Stream function approach

In this section we show how, for superconducting thin-
film arrays with extended busbar structures (Fig. 1), one
can use the stream function approach [1,16–20] to calculate
the effective hole areas �Aeff [Eq. (13)], the array inductance
matrix L̂ [Eq. (14)], and the bias current inductance vector
�LIb [Eq. (15)]. These three physical quantities are needed in
order to numerically solve the set of differential equations in
Eq. (16) and to obtain the time evolution of the JJ phase
differences ϕk (τ ).

For a superconducting thin film of thickness d in the xy
plane, the supercurrent density �j(x, y, z) becomes independent
of the perpendicular direction z if λ > d [18,21]. In our case
we have d = 0.113 µm and λ = 0.42 µm (as shown later)
and thus λ > d . In this case one can introduce a 2D stream
function g(x, y) which is defined via the x and y components
of �j as

jx = 1

d

∂g

∂y
and jy = − 1

d

∂g

∂x
. (23)

Using Eq. (23) together with the second London equation and
Biot-Savart’s law in 2D, one obtains by applying partial in-
tegration a second-order linear Fredholm intregro-differential
equation for the stream function g(x, y) of the form

λ2

d

(
∂2

∂x2
+ ∂2

∂y2

)
g(x, y)

+ 1

4π

∫
�

Q(x, y, x′, y′) g(x′, y′) dx′dy′ − fs(x, y)

= Ba

μ0
, (24)

where Ba is the applied magnetic field pointing in the z direc-
tion and

fs(x, y) = 1

4π

∮
∂�

g(x′, y′)√
(x − x′)2 + (y − y′)2

3

(
x − x′
y − y′

)
�n dl ′.

(25)

In Eq. (24), � is the integration domain, i.e., the supercon-
ducting thin-film area, and ∂� is the domain boundary which
includes the edges of the holes. The vector �n in Eq. (25) is a
normal vector in the xy plane, perpendicular to the boundary,
and �n points outward, away from the domain �. In Eq. (25),
dl ′ is a line element.

The kernel Q in Eq. (24) can be written as [1]

Q(x, y, x′, y′)

= 1

�x�y

⎡
⎣[√

x̄2 + ȳ2

x̄ ȳ

]x′−x+�x/2

x′−x−�x/2

(x̄)

⎤
⎦

y′−y+�y/2

y′−y−�y/2

(ȳ) , (26)

with the definition[
[ f (x, y)]s2

s1
(x)

]s4

s3
(y)

= f (s2, s4) − f (s1, s4) − f (s2, s3) + f (s1, s3), (27)

where �x and �y are the grid spacings used when solving
Eq. (24) numerically. We used �x = �y.

Having determined the stream function g(x, y) allows us to
calculate the magnetic fluxes �m of the holes m as well as the∮
∂�m

�j d�l terms. One obtains

�m = μ0

∫
�m

h(x, y) dx dy + �(app)
m , (28)

where h(x, y) is defined as

h(x, y) = fs(x, y) − 1

4π

∫
�

Q(x, y, x′, y′) g(x′, y′) dx′dy′

(29)
and∮

∂�m

�j d�l = 1

d

∮
∂�m

(
∂g(x, y)

∂y
dx − ∂g(x, y)

∂x
dy

)
. (30)

By choosing different boundary conditions for the stream
function g(x, y), one can separately address the three different
current densities in Eq. (7), i.e., j (Mei), j (J ), and j (Ib), and then
obtain �Aeff, L̂, and �LIb from Eqs. (13)–(15). Further details
about how to obtain �Aeff, L̂, and �LIb are given in Appendixes A,
B, and C.

V. MODEL VERSUS EXPERIMENTAL RESULTS

There are 2NsNp + 1 unknown parameters in our model.
These unknown parameters are the NsNp = 167 × 6 = 1002
values for the JJ critical currents Ick , the NsNp = 1002 values
for the JJ resistances Rk , and the London penetration depth
λ. Experimentally it has been found that in YBCO JJs, Ick and
Rk are approximately anticorrelated according to the empirical
law IckRk ∼ j1/2

ck , where jck is the JJ critical current density
[14,22]. By exploiting this empirical law, we obtain for the
diagonal matrix ξ̂ in Eq. (16) the matrix elements ξ̂kk = η̂

−1/2
kk .

This reduces the number of unknown model parameters by
almost a factor of 2, from 2 NsNp + 1 to NsNp + 1.

The critical currents of YBCO step-edge junctions have
a spread in values and previous measurements have found
wide Ic distributions of approximately Gaussian or even log-
normal [15] shape. Therefore, when solving Eq. (16), we treat
the NsNp matrix elements η̂kk = Ick/Ic as log-normal random
variables. A log-normal distribution p(η) with mean value 1
and standard deviation σ has the form

p(η) = 1

η γ
√

2π
exp

−(ln η − μ)2

2 γ 2
. (31)
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TABLE III. Best-fit parameters.

No. Ic (µA) λ (µm) σ (µm)

S1 19.3 0.42 0.5
S2 20.2 0.42 0.5

Here μ = − γ 2/2 and γ =
√

ln(1 + σ 2). A log-normal distri-
bution is similar to a Gaussian distribution for small σ . In our
modeling, we cannot use Gaussian random variables for η̂kk

because they would lead to unphysical negative Ick/Ic values,
particularly for large σ . In the following we call the standard
deviation σ the Ic spread.

The number of unknown parameters is reduced slightly
further by the relation between the measured total resistance
Rtot (Table II) and the unknown average JJ resistance R. This
relation is given by

R = Rtot∑Ns
i=1

( ∑N p
j=1 η̂

1/2
kk←i j

)−1 . (32)

Here the symbol kk ← i j means that the i j indices (where
i = 1 to Ns is the row index and j = 1 to Np, the column
index) are mapped onto the k index which runs from 1 to
NsNp. For arrays with sufficiently large NsNp, due to the
introduction of p(η) and Eq. (32), one no longer is dealing
with NsNp + 1 parameters but instead one only has to deal
with three parameters, which are Ic, λ, and σ . Because S1 and
S2 were produced from the same YBCO thin film on the same
substrate, one can expect λ and σ to be the same for S1 and
S2. But because of the finite values Np = 6 and Ns = 167, one
can expect a slight difference between the average Ic values of
array S1 and S2. The values of Ic, λ, and σ for S1 and S2, that
were found to best model our experimental data, are listed in
Table III. These values were found by probing many different
Ic, λ, and σ combinations and comparing by eye the calculated
V (Ba) and V (I tot

b ) curves with the experimental data curves.
The search for the Ic, λ, and σ parameters was made easier by
exploiting the facts that the V (I tot

b ) curves are very sensitive
to Ic and that decreasing λ shifts V (Ba) upward and increases
the voltage modulation depth �V , whereas increasing σ only
decreases �V . Because of the Ic disorder and the finite size
of the arrays, the parameters Ic, λ, and σ can only be de-
termined with our procedure with some uncertainties which
we estimated to be about 2%, 5%, and 10%, respectively.
Previously, in DC-SQUIDs [23] that were made from similar
YBCO thin films, a value of λ(77 K) � 0.39 µm was found,
which is close to λ = 0.42 µm used here.

While doing the calculations we found that the inductance
matrix elements between rows are quite small because the
superconducting busbars sufficiently separate the holes of
adjacent 1D parallel SQIF arrays (rows). We noticed that
neglecting the small row-row mutual inductances made no
noticeable difference to any of our results. Therefore, our 2D
arrays behave like Ns independent 1D parallel SQIF arrays
where the 2D array DC voltage is simply the sum over all
the row DC voltages. Being allowed to neglect the row-row
coupling simplifies Eq. (16) and dramatically reduced the

FIG. 5. V (Ba) characteristics of arrays S1 and S2 for 10 different
Ic-disorder sets {η̂kk}.

FIG. 6. Ic-disorder set {η̂kk = Ick/Ic} in array S1 used for calcu-
lating the dotted curve in Fig. 5. The array has Np = 6 JJ columns
and Ns = 167 JJ rows.
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FIG. 7. Comparison between experimental and calculated V (Ba)
characteristics for array S1 and S2.

computational time needed to calculate the time evolution of
the JJ phases.

Though each of our 2D SQIF arrays contains NsNp = 1002
JJs, Ns is still not large enough for V (Ba) and V (I tot

b ) to
become independent of the chosen Ic-disorder set {η̂kk}. We
have investigated 40 different randomly chosen sets {η̂kk} for
both S1 and S2, and selected the two Ic-disorder sets that fitted
our S1 and S2 experimental data best.

Figure 5 shows calculated V (Ba) characteristics for S1
and S2, using the parameters in Table III, for 10 different
randomly chosen Ic-disorder sets {η̂kk} for each array. The
V (Ba) curves vary, as each Ic-disorder set {η̂kk} produces a
somewhat different result. Figure 6 displays the Ic-disorder
set {η̂kk} used to calculate the dotted V (Ba) characteristics of
S1 in Fig. 5. Due to the long tail of a log-normal distribution
with σ = 0.5, values of η̂kk as large as 4 can be seen.

The calculated dotted curves from Fig. 5 for S1 and S2,
together with our experimental S1 and S2 data from Fig. 2,
are displayed in Fig. 7. Figure 7 shows a key result of our
paper. The quantitative agreements between experimental data
and calculation for both S1 and S2 are exceptional. Still, we
could have improved the agreement even further by searching

FIG. 8. Calculated V (Ba) characteristics of array S1 and S2 for
three different values of λ.

for more optimal Ic-disorder sets {η̂kk}. It turns out that the
effective hole areas Aeff

m are important ingredients to describe
the experimental V (Ba) data correctly. As can be seen in
Fig. 7, the calculated curves are slightly more stretched along
the Ba axis than the experimental data. After the calculation,
we found out that this discrepancy can be partially explained
by the fact that the layout size of the arrays was actually
about 2% larger than the values given in Table I. Furthermore,
our calculations showed that the term in Eq. (16) which con-
tains the bias current inductance �LIb can be neglected without
affecting our calculated V (Ba) characteristics.

To gain a better understanding of the role of the London
penetration depth λ, Fig. 8 shows, for S1 and S2, how V (Ba)
(for positive Ba) changes with λ while all other parameters
stay unchanged. Increasing λ causes the voltage modulation
depth �V = Vmax − Vmin to decrease. This is mainly due to
the increase in the kinetic inductances which are proportional
to λ2. This is similar to a DC-SQUID where an increase of the
screening parameter βL leads to a decrease of �V [24].

Figure 9 shows how rapidly the voltage modulation depth
�V (λ) for S1 and S2, which is a measure of the maximum
transfer function dV/dBa|max [8], decreases with increasing
λ. Note that λ enters our calculations via the factor λ2/d
[Eq. (24), and Eq. (30) with Eq. (5)], which is known as
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FIG. 9. Calculated voltage modulation depth �V versus λ of
array S1 and S2.

the Pearl penetration depth [25]. Thus, increasing the film
thickness d , as long as λ > d [18,21], would further in-
crease the modulation depth �V of our arrays, assuming that
all other parameters stay unchanged. Figure 10 shows, for
S1 and S2, how the V (Ba) characteristics (for positive Ba)
change with the Ic spread σ while all other parameters stay
unchanged. Increasing σ smoothes the V (Ba) curves, which
decreases the voltage modulation depth �V . The underlying
cause is revealed by looking at the V (�(app)) characteristics
of the simple DC-SQUID (Ns = 1, Np = 2) with R1 �= R2 and
Ic1 �= Ic2 [24,26]. Here, the R asymmetry causes a skewing of
the V (�(app)) response [24] and the Ic asymmetry a ��app

shifting to the left or right by an amount ��(app) = Ls|Ic1 −
Ic2|/2 where Ls is the self-inductance of the DC-SQUID loop
[26]. In addition to the reflection symmetry breaking, the mod-
ulation depth decreases with increasing Ic asymmetry [24,26].
The modulation depth is less affected by the R asymmetry.
In our 2D SQIF arrays each row has 6 JJs in parallel and
5 holes. As the Ick’s and Rk’s are all different, this produces
in each row a different reflection asymmetry, i.e., Vrow(Ba) �=
Vrow(−Ba), due to different skewing and Ba shifting. Be-
cause of the very weak inductive coupling between rows, as
mentioned above, the time-averaged voltages Vrow(Ba) across
rows can simply be added up to give the total array voltage
V (Ba). Adding up a large number of different row voltages
Vrow(Ba) causes a V (Ba) smoothing which reduces the mod-
ulation depth �V of the array but also reduces the reflection
asymmetry.

Figure 11 displays �V (σ ) normalized by �V (σ = 0). The
figure shows that an Ic spread σ = 0.5 reduces �V (σ )/�V (0)
in the case of S1 from 1 to about 0.55 and in the case of S2
from 1 to about 0.4. Figure 11 reveals that Ic-R disorder has
a stronger detrimental effect on �V in an array with larger
inductances like S2 than in an array with smaller inductances
like S1. Figure 11 is one of the key results of this paper.

In Appendix D we discuss the weak reflection asymmetry
of V (Ba).

FIG. 10. Calculated V (Ba) characteristics of array S1 and S2 for
three different Ic spreads σ .

FIG. 11. The calculated normalized voltage modulation depth
�V (σ ) / �V (0) versus Ic spread σ for array S1 and S2.

054507-8



EFFECT OF JUNCTION CRITICAL CURRENT DISORDER … PHYSICAL REVIEW B 109, 054507 (2024)

FIG. 12. Experimental and calculated V (I tot
b ) characteristics of

array S1 and S2.

Figure 12 shows the experimental and calculated V (I tot
b )

characteristics in zero applied magnetic field for S1 an S2. The
calculation does not perfectly reproduce the experimentally
observed V (I tot

b ) at low I tot
b . Better agreement can possibly

be achieved by modifying the log-normal distribution p(η) in
Eq. (31) such that low Ic values become more emphasized.
The values of NpIc for S1 and S2 are indicated in Fig. 12. In
contrast to V (Ba), the calculated shape of V (I tot

b ) is not very
sensitive to a particular choice of the Ic-disorder set {η̂kk} for
a given σ , but is very sensitive to the choice of Ic, i.e., the
average Ick value.

Figure 13 again displays V (I tot
b ) for S1 but here the cal-

culated additional dotted curves reveal how the parameters T
and σ affect the shape of V (I tot

b ). Going from curve 1 to 2
shows the effect of temperature T = 77 K, and going from
curve 2 to 3 the effect of σ = 0.5.

VI. SUMMARY AND CONCLUSION

We measured the V (Ba) characteristics at optimal bias
currents and the V (I tot

b ) characteristics at Ba = 0 of two 2D
SQIF arrays with Ns = 167 and Np = 6.

FIG. 13. Experimental and calculated V (I tot
b ) characteristics of

array S1. The parameters used to calculate the 3 dotted blue curves
are (1) T = σ = 0, (2) T = 77 K, σ = 0, and (3) T = 77 K,
σ = 0.5.

To model our experimental data, we developed a theoret-
ical model that takes into account the Johnson noise in the
JJ resistances Rk , the spreads in Ick and Rk , and the wide,
thin-film busbar structure of the arrays. The model was made
numerically efficient by dividing the superconducting current
density into its Meissner current, circulating current, and bias
current parts. Using the stream function approach for λ > d ,
we calculated the effective areas of the array holes, inductance
matrices, and bias current inductance vectors. The calcula-
tions revealed that the busbar height was sufficiently large
such that the inductive row-row coupling could be neglected.
This significantly simplified the numerical calculations and
made the investigation of the Ic-R disorder of our Ns = 167
arrays computationally possible.

Empirical findings that Rk can be expressed in terms of Ick

reduced the parameter space, and we could identify {Ick} sets
from a log-normal distribution that produced V (Ba) character-
istics that agreed well with our experimental data.

Our calculations demonstrated that the voltage modulation
depth �V , which is a measure for the maximum transfer
function, decreases with increasing λ due to the increase in
kinetic inductances which are proportional to λ2/d .

Most of all, our calculations showed how �V decreases
with increasing Ic spread σ , where the decrease was more
rapid for the high inductance array S2. Our experimental
data were best described by σ = 0.5, showing that the Ic-R
disorder in our arrays reduced �V by 45% in S1 and 60% in
S2.

We observed slight reflection asymmetries in our exper-
imental V (Ba) characteristics, caused by the Ic-R disorder,
and our model predicted a similar degree of asymmetry as
observed experimentally. Generally, the refection asymmetry
increases with increasing Ic spread σ , but decreases when Ns

is increased.
The calculated V (I tot

b ) characteristics did not fully agree
with our experimental data at low I tot

b , possibly due to
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FIG. 14. Meissner current streamlines in S1 and S2.

the choice of a log-normal distribution that did not suffi-
ciently emphasize low Ick values. Modifying our log-normal
distribution would give better agreement with V (I tot

b ) with-
out affecting much the V (Ba) results. Our calculations also
showed how the V (I tot

b ) characteristic changes with tempera-
ture (T = 0 to T = 77 K) and with σ (σ = 0 to σ = 0.5).

Our findings suggest that the use of YBCO thin films
in SQIF arrays is promising, as the critical current disorder
inherent in their fabrication process reduces the transfer func-
tion in our case only by about a factor of 2. This is one of
our important results. Our study highlights the importance
of theoretical modeling in understanding the performance
of superconducting devices and provides insights that could
inform the design of future SQIF arrays. While our detailed

FIG. 15. Effective hole area enhancement factor Aeff
m /Am of S1

and S2. Geometric and kinetic parts are indicated.

theoretical modeling provided valuable insight into the role
of Ic-R disorder for the specific arrays tested, more general
investigations are needed to fully understand its role as a
function of screening parameter βL, noise strength �, kinetic
inductance fraction, Ns and Np values, and different array
planar geometries.
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APPENDIX A: EFFECTIVE HOLE AREAS

By choosing any constant applied magnetic field, Ba > 0,
and the boundary condition g|∂� = 0, for all boundaries ∂�,
one can calculate numerically, by solving Eq. (24), the part
of g(x, y) that corresponds to the Meissner shielding current
density �j (Mei). In this case fs = 0 [Eq. (25)]. Streamlines of
�j (Mei) in array S1 and S2 are shown in Fig. 14. Using Eqs. (28)
and (30), the fluxoids �1,m [Eq. (9)] of the different holes are
determined and the effective hole area enhancement factors
Aeff

m /Am [Eq. (13)] are calculated.
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FIG. 16. Current streamlines in array S1 and S2 to determine the
inductance matrix L̂.

Aeff
m /Am for different holes m are displayed in Fig. 15,

where the geometric and kinetic parts are indicated. Figure 15
shows that the kinetic part plays an important role.

APPENDIX B: INDUCTANCE MATRIX L̂

One can determine the part of g(x, y), which corresponds
to a counterclockwise circulating current Jm around hole m,
by choosing Ba = 0 and solving Eq. (24) numerically with
the appropriate boundary condition. The boundary condition
is g|�m = Jm (Jm > 0 but arbitrary), and g increases linearly
from 0 to Jm along the left JJ and decreases linearly from
Jm to 0 along the right JJ. Everywhere else g|∂� = 0. In
this case, fs in Eq. (25) can be obtained analytically as

FIG. 17. Inductance matrix elements L̂i j of a single row, i = 1 to
5 and j = 1 to 5, for S1 and S2. The geometric and kinetic inductance
parts are shown in different colors.

fs(x, y) = [Pu
m(x, y) + Pu

m(x,−y)]Jm, where the formulas for
Pu

m can be found in Appendix B of Ref. [1]. Examples of cur-
rent streamlines of currents flowing around a hole m = 2 in S1
and S2 are shown in Fig. 16. One can use Eqs. (28) and (30) to
determine the fluxoids �2,m [Eq. (10)] generated in the differ-
ent holes, and then with Eq. (14) all the matrix elements of
the inductance matrix L̂ are calculated. The matrix elements
L̂i j of S1 and S2, for the holes in a single row, are plotted in
Fig. 17 and their geometric and kinetic parts are indicated. The
large self-inductances are seen along the diagonal while the
negative mutual inductances are off-diagonal. The row-row
mutual inductance matrix elements are found to be very small
and are not displayed here. Figure 17 shows that the kinetic
part plays a dominant role.
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FIG. 18. Current streamlines of �j (Ib ) in S1 and S2 to determine �LIb .

APPENDIX C: INDUCTANCE VECTOR �LIb

One can determine the part of g(x, y) that corresponds to
the bias transport current density �j (Ib) by choosing Ba = 0 and
solving Eq. (24) numerically with the appropriate boundary
condition. The boundary condition is g = ±NpIb/2 along the
left/right outer edges of the array, and, along the inner edges
of the holes, g = −NpIb/2 + iIb with i = 1 to Np − 1, while
g increases linearly along the JJs between neighboring holes.
Again, fs can be obtained analytically and can be expressed
in terms of Pu

m(x, y) [1]. Streamlines of �j (Ib) in S1 and S2 are
shown in Fig. 18. Using Eqs. (28) and (30), the fluxoids �3,m

[Eq. (11)] of the different holes can be determined, and with

FIG. 19. Components LIb
m of the bias current inductance vector

�LIb . The geometric and kinetic parts are shown.

Eq. (15) the components LIb
m of the inductance vector �LIb are

calculated.
Figure 19 shows LIb

m for the different holes m along a row,
and the geometric and kinetic parts are indicated.

APPENDIX D: REFLECTION ASYMMETRY OF V (Ba)

Figure 20 shows the experimental reflection asymmetry of
V (Ba) by plotting V (Ba) and V (−Ba) for S1 and S2. Small
differences between V (Ba) and the reflected curve V (−Ba)
are noticeable. Figure 21 displays the calculated V (Ba) and
V (−Ba) curves. One can define the degree δ of the reflection
asymmetry as

δ =
∫ �B/2
−�B/2 |V (Ba) − V (−Ba)|dBa

�V �B
, (D1)

with the integration interval �B = 100 µT. The experimental
δ for S1 and S2 are δ = 0.0137 and 0.015, respectively, while
the calculated ones are δ = 0.0127 and 0.012.

We found from our calculations that δ increases when the
Ic spread σ increases.
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FIG. 20. Experimental V (Ba) and V (−Ba) of array S1 and S2 to
show the reflection asymmetry.

FIG. 21. Calculated V (Ba) and V (−Ba) of array S1 and S2 to
show the reflection asymmetry.
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