
PHYSICAL REVIEW B 109, 054432 (2024)

Bulk-measurement-induced boundary phase transition in toric code and gauge Higgs model
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Study of boundary phase transition in toric code under cylinder geometry via bulk projective measurement is
reported. As the frequency of local measurement for bulk qubits is increased, spin-glass type long-range order
on the boundaries emerges indicating spontaneous-symmetry breaking (SSB) of Z2 symmetry. From the lattice
gauge theory viewpoint, this SSB is a signal of a transition to Higgs phase with symmetry-protected topological
order. We numerically elucidate the properties of this phase transition in detail, especially its criticality, and give
a physical picture using nonlocal gauge-invariant symmetry operators. Phase transition in the bulk is also studied
and its relationship to the boundary transition is discussed.
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I. INTRODUCTION

Measurement in quantum many-body systems leads to
nontrivial dynamics and produces exotic phases. Measure-
ment of entangled resource states induces measurement-based
quantum computation [1,2] and produces long-range en-
tanglement states or topological order [3]. With a suitable
choice of measurement types, measurement-only circuits
generate unconventional phases of matter such as symmetry-
protected topological (SPT) phases [4–6], topological orders
[7,8], and nontrivial thermal and critical phases [9–13].
As a further example, hybrid random-unitary circuits ex-
hibit measurement-induced entanglement phase transitions
[14–34].

Recently, toric code [35] was experimentally realized
[36]. Target geometry of the system is torus, providing two-
qubit quantum memory [35,37,38]. Recent studies, however,
showed that the interplay of an open geometry, such as the
cylinder with rough boundary (Fig. 1), and measurement can
give rich physical phenomena [8,39,40]. This observation was
obtained from the viewpoint of lattice gauge theory [41].
In quantum information aspect, edge mode on the boundary
works as a qubit [39,40,42], which is called subsystem code
[43,44]. From the gauge theory side, it was recently suggested
that edge mode creates some kind of long-range order (LRO)
and it distinguishes the Higgs and confinement phases, al-
though it was believed for a long time that the two phases
are adiabatically connected without any transitions [45]. This
LRO indicates that the Higgs phase is a SPT phase protected
by a higher-form symmetry [39], i.e., the bulk SPT order
induces the boundary LRO. This developments attract lots of
attention these days.

The above discussion was given for Hamiltonian systems.
In this paper, we shall study a closely related system with the

*These authors contributed equally to this work.

cylinder geometry by using a measurement-only scheme. In
particular, we investigate the emergence of edge modes and
transition from the deconfined (toric code) to Higgs phases
as the measurement corresponding to “Higgs coupling” is
getting frequent. Our protocol is as follows: We prepare a
toric code state as the initial state, and observe what happens
on performing local projective measurement on the bulk. The
reason for performing measurement only on the bulk is that
the interplay of a nonlocal gauge-invariant operator (NLGIO)
symmetry and Higgs condensation in the bulk induces LRO
with spontaneous-symmetry breaking (SSB) on boundary, a
signature of the SPT. In fact, by numerical methods, we verify
the emergence of the boundary LRO as a clear measurement-
induced phase transition on the boundary. Furthermore, we
find some noticeable features of the transition, and discuss
that it is evidence of the interplay of the NLGIO and Higgs
condensation.

The rest of this paper is organized as follows. In Sec. II,
we introduce measurement protocol on toric code state. In
Sec. III, Hamiltonian systems corresponding to our measure-
ment protocol are explained. In particular, we discuss the
connection of a lattice gauge Higgs model and toric code
model. In Sec. IV, we search a boundary phase transition
by employing efficient numerical methods in the stabilizer
formalism and discuss physical properties and indications of
the phase transition rather in detail. Then, we study the bulk
properties of the measured system in Sec. V. In particular,
we investigate the phase transition in the bulk and discuss its
relationship to the boundary transition. Section VI is devoted
for conclusions.

II. MEASURED TORIC CODE SYSTEM

We consider a code system composed of Lx × Ly plaque-
ttes (q lattice) and Lx × (Ly − 1) vortices (v lattice). Physical
qubits reside on links of the v lattice, and cylinder geometry
and rough boundaries in the y direction are employed. The

2469-9950/2024/109(5)/054432(9) 054432-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6965-6935
https://orcid.org/0000-0003-3578-9032
https://orcid.org/0000-0001-7872-1084
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.054432&domain=pdf&date_stamp=2024-02-28
https://doi.org/10.1103/PhysRevB.109.054432


KUNO, ORITO, AND ICHINOSE PHYSICAL REVIEW B 109, 054432 (2024)

link (ℓ

ℓ

)

vertex (v)
dual vertex (q)

(bulk)
(rough boundary)

q

v
・・・・・・

x

y

upper rough boundary

FIG. 1. Schematic figure of cylinder system with rough bound-
aries. This figure displays only the upper rough boundary. The star
operator (the red-shaded object) and plaquette operator (right-blue
shaded object) are considered. The red dashed regime is an upper
rough boundary regime.

schematic image of the system is shown in Fig. 1. In our
protocol, we consider a stabilizer state specified by a set of sta-
bilizer generators [46] focusing on pure states, Sint = {Ãv|v ∈
all v} + {B̃q|q ∈ all plaquette but q0} + {Su

x }, where q0 is one
of single q-lattice sites to avoid the redundancy to make all
elements of the stabilizer generator linearly independent. In
the above, Ãv and B̃q are the star and plaquette operators of
the toric code, defined by Ãv = ∏

�v∈v σ x
�v

and B̃q = ∏
�q∈q σ z

�q
,

where �v ∈ v stands for links emanating from vertex v, and
�q ∈ q for links composing plaquette q and Su

x = ∏
�∈URB σ x

�

(URB stands for the upper rough boundary [47]), which is a
nonlocal stabilizer related to the topological-symmetry gener-
ators [40]. Physically, Su

x is nothing but the spin flip operator
on the upper rough boundary. This stabilizer state corresponds
to one of the toric code ground states, the Hamiltonian of
which is shown shortly.

We use this stabilizer state as an initial state and perform
local σ z-projective measurement for each qubit with probabil-
ity p except for the dangling links on the upper and lower rough
boundaries. We call measurement pattern sample, and we av-
erage physical quantities over samples. Practically, under the
process of projective measurement in the stabilizer formalism
[46,48], σ z-projective measurement at link � removes one of
the star operators Ãv residing on the boundary vertices of �

(v1 and v2), and then σ z
� becomes a stabilizer as well as the

product of the star operators (Ãv1 Ãv2 ). That is, the initial toric
code state tends to lose Ã′

vs depending on the probability p,
and the number of σ z-stabilizer generator increases instead.
It should be also remarked that (Ãv1 Ãv2 ) loses σ x

� on the �

meeting v1 and v2, and has six σ x ′s. This plays an important
role for discussion on the bulk transition.

Numerically, the measurement process is performed by
the efficient numerical simulation by the stabilizer formal-
ism [48,49]. Throughout this study, we ignore the sign and
imaginary factors of stabilizers, which give no effects on
observables that we focus on. Note that the order of the local

measurement is interchangeable since all measurement oper-
ators {σ z

� } are commutative with each other.

III. VIEW POINT FROM HAMILTONIAN FORMALISM

Before going to the numerical analysis, we show that
our measurement protocol is to be compared with the toric
code in magnetic fields on cylinder, Hamiltonian of which is
given by

HTC =
∑

v

hxÃv +
∑

q

hzB̃q +
∑

�/∈rough

Jzσ
z
� +

∑
�

Jxσ
x
� .

(1)

In this section, we briefly review the lattice gauge Higgs
model and its physical properties, recently investigated from
novel point of view [39], and also introduce NLGIO symme-
tries, which play an important role for the interpretation of our
numerical results in the following sections. We also explain
that the toric code model [Eq. (1)] is a gauge fixing version of
the lattice gauge Higgs model.

A. Lattice gauge Higgs model

We shall explain the relation of the toric code and gauge
Higgs model in two spatial dimensions, especially under
cylinder geometry. Accessible reviews of the lattice gauge
theory (LGT) are Refs. [41,50].

The ancestor model of HTC is a (2 + 1)-D Z2 extended
gauge Higgs model, Hamiltonian of which is given by

HGHM =
∑

v

hxXv +
∑
(v,v′ )

JzZvσ
z
v,v′Zv′

+
∑

q

hzZq +
∑
(q,q′ )

JxXqσ
x
q,q′Xq′ , (2)

where X and Z are Pauli operators defined on q- and v-lattice
sites. The first and second terms are a Z2 matter chemical
potential on vertices and its gauge coupling term, the third
and fourth terms are Z2 matter chemical potential on plaquette
sites and its gauge coupling term. The schematic image of the
system and each terms are shown in Fig. 2.

Here, the two gauge-invariant conditions, the Gauss laws,
for the physical subspace, are given by

Av|ψ〉 = |ψ〉, Bq|ψ〉 = |ψ〉. (3)

where

Av = Xv

∏
�v∈v

σ x
�v

≡ XvÃv,

Bq = Zq

∏
�q∈q

σ z
�q

≡ ZqB̃q, (4)

and �v ∈ v stands for links emanating from vertex (site) v, and
�q ∈ q for links composing plaquette (box) q. The Z2-electric
matter is defined on each vertex v, (Xv, Zv ), and its magnetic
dual, (Xq, Zq ), on each dual vertex q (i.e., plaquette of the
original lattice). On the other hand, the Z2 gauge field is
defined on links and denoted by (σ x

� , σ z
� ), σ z

v,v′ denote a gauge
variable on link connecting neighboring vertices v and v′, and
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FIG. 2. Schematic figure of an extended lattice gauge Higgs
model with rough boundaries. The lattice in the x direction is periodic
and in y direction is open. The red-dashed lines indicate the regime
upper and lower boundaries.

σ x
q,q′ denote a gauge variable on link connecting neighboring

dual vertices q and q′.
There are two differences between the system given by

HGHM [Eq. (2)] and the ordinary Z2 gauge Higgs LGT [45]:
(I) Dual matter field couples with the gauge field and

the coupling term Xqσ
x
q,q′Xq′ is added to the Hamiltonian be-

sides the ordinary Z2 electric matter-gauge coupling. This Z2

degrees of freedom residing on each plaquette q, (Xp, Zp),
corresponds to “particle” carrying magnetic flux (magnetic
charge), and its hopping induces fluctuation of the gauge field
and, therefore, confinement of electric charges. This degree
of freedom is often called m anyon, whereas the other one e
anyon.

(II) The model has an additional local gauge symmetry by
the presence of the magnetic-charge degrees of freedom,

Xq → XqVq, σ x
q,q′ → Vqσ

x
q,q′Vq′ , Vq,Vq′ ∈ Z2, (5)

and we impose additional Gauss-law constraint on the phys-
ical state, Eqs. (3) and (4). One may wonder that the system
(2) reduces to the ordinary gauge Higgs model by “integrating
out” the magnetic charge degrees of freedom via, e.g., em-
ploying unitary gauge of the second local gauge symmetry in
Eq. (5). In fact as we show shortly, disentangling of electric
and magnetic particles generates the ordinary Hamiltonian of
the gauge Higgs model in unitary gauge.

Here, we comment that on introducing rough and smooth
boundaries for the above Hamiltonian, the model describes
subsystem quantum code producing fault-tolerant qubit as
proposed in Ref. [40], although the explicit form of HGHM

in Eq. (2) was not shown there. There, each term of the

Hamiltonian (2) is categorized as “gauge” operator in the
subsystem-code literature [43].

B. Symmetry and relation to Toric code

The model HGHM with the above open boundary conditions
is known to have two important global topological symmetries
[40], generators of which are given by

P =
∏
v

Xv, SZ =
∏

q

Zq, (6)

P is the parity of the total electric charge corresponding to the
global spin flip on each vertex, and similarly SZ is the parity
of the total magnetic flux per plaquette.

Furthermore, as shown in Ref. [39], there are two symme-
tries, besides the global symmetries in Eq. (6),

Wγ =
∏
�∈γ

σ z
� , Hγ =

∏
�∈γ

σ x
� . (7)

Wγ and Hγ are called one-form symmetries, which have been
extensively studied recently [51,52]. Although the Jx and Jz

terms in the Hamiltonian HGHM [Eq. (2)] explicitly break
the one-form symmetries, it was shown that the higher-form
symmetry is generally robust and give nontrivial effect on dy-
namics of the system [39]. In the (2 + 1)-D system, Hγ can be
regarded as ’t Hooft loop (string) dual to Wilson loop (string)
Wγ . In particular, the path γ in the one-form symmetry Wγ

(Hγ ) is arbitrary. It is easily verified that by using the Gauss
laws in Eq. (4), P is expressed as a ’t Hooft loop residing
on the upper and lower rough boundaries. From the view
points of these symmetries, the Higgs phase was discussed
in [39], showing that the Higgs phase is SPT phase from
the perspective of these symmetries. In this study, however,
we focus on related but slightly different symmetry operators
LGIO’s as introduced in Sec. III D.

Now we show that the model HGHM is related to the gen-
eralized toric code HTC. We consider the following unitary
transformations [39,40]:

Uv = H

( ∏
v

∏
�∈v

(CZ )v,�

)
H, (8)

Uq = H

( ∏
q

∏
�∈q

(CZ )q,�

)
H, (9)

where H is the Hadamard transformation on each link and
(CZ )i, j is a controlled Z gate for the site i and link j. Applying
the above transformation to HGHM, we obtain the following
effective disentangled model

UvUqHGHM(UvUq)† ≡ HTC.

The above unitary disentanglement corresponds to gauge fix-
ing with unitary gauge. The Hamiltonian HGHM is related to
the Hamiltonian HTC.

C. Ground-state properties

The gauge Higgs model on infinite system was analyzed
in Fradkin and Shenker [45], and its phase diagram has been
investigated in detail [53–58]. There are three phases, de-
confined (toric code), Higgs, and confined phases, but with
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FIG. 3. Schematic image of phase diagram of the Hamiltonian
HTC on the cylinder geometry. We assume hx and hz are some con-
stant. The dashed arrow represents our target measurement protocol
related to the parameter sweep in the Hamiltonian formalism.

periodic boundary conditions, the Higgs and confinement
phases are connected without any thermodynamic singu-
larities [45]. The schematic image is shown in Fig. 3. In
particular, for the spatial dimension D � 2, the Higgs phase
exists for |Jz| > |Jx|, |hx|, |hz|, as the Jz term is nothing but
the hopping of the charged particle.

When the cylinder geometry is employed, the Higgs and
confinement phases can be distinguished. As suggested in
Ref. [39], in the deep Higgs phase (Jz → ∞), 〈σ z

� 〉 = −1 in
the bulk, then the Hamiltonian HTC can be reduced to a 1D
transverse-field Ising model on the rough boundary,

Hrb =
∑

〈�x,�′
x〉

hzσ
z
�x
σ z

�′
x
+

∑
�x

Jxσ
x
�x
, (10)

where �x is a dangling link on the (upper or lower) rough
boundary, 〈�x, �

′
x〉 represents nearest-neighbor pairs of the

dangling links on the rough boundary. This Hamiltonian Hrb

exhibits the SSB for |hz| > |Jx|. Thus, the Higgs phase can
be distinguished from the other two phases by observing the
boundary SSB.

Here, we further comment on the ground-state property of
the model HTC on the cylinder. For Jx = Jz = 0 (toric code
phase), the model HTC is exactly solvable but its state de-
generacy is different from the system with the conventional
torus geometry. From the stabilizer viewpoint [46], we count
the number of independent stabilizers. Here, as to the pla-
quette operator B̃q, one constraint exists

∏
q∈all Bq = 1, thus

there are LxLy − 1 independent stabilizers of B̃q, denoted by
a set of generator of stabilizer, {B̃q|q ∈ all plaquette but q0},
where q0 is one of single q-lattice sites to avoid the re-
dundancy. On the other hand, as to the star operator Ãv ,
there is Lx(Ly − 1) independent stabilizer generators since∏

v∈all Ãv 	= 1. From the above counts, totally 2LxLy − Lx − 1
linear independent stabilizers exist and from the fact that the
total number of link qubits is Lx(2Ly − 1), the degeneracy
is 2(Lx (2Ly−1))−(2LxLy−Lx−1) = 2. That is, twofold degeneracy
appears for the entire energy levels.

In the exact toric code phase for Jx = Jz = 0, two operators∏
periodic σ x

� and
∏

cross σ z
� commute with HTC and anticom-

mute with each other, where “periodic” denotes a closed loop
on the dual lattice in the periodic direction (x direction) of
the cylinder and “cross” a string crossing the cylinder from
the upper to lower rough boundaries. The twofold degeneracy

can be understand by the existence of them, and therefore it is
expected that this degeneracy is robust against local perturba-
tions with finite Jx and Jz as long as the system is in the toric
code phase.

Furthermore, we focus on the twofold degenerate ground
states of HTC with Jx = Jz = 0 in the toric code phase denoted
by |ψG1〉 and |ψG2〉. These states can be distinguished by
a string operator Su

x introduced in Sec. II as Su
x |ψG1(2)〉 =

+1(−1)|ψG1(2)〉. The operator Su
x is linearly independent of

all Ã′
vs and B̃′

qs and also commute with them, thus it can be
a linearly independent additional stabilizer. In our protocol
with projective measurement, we choose the state |ψG1〉 as the
initial state.

D. NLGIO symmetry in Toric code

As important symmetries, we consider NLGIO for HTC

with Jx = 0. Two types of them are: (i) Glo,1 ≡ ∏
�∈�0

σ z
� with

an arbitrary close loop �0 and (ii) Glo,2 = σ z
�r1

[
∏

�∈�b
σ z

� ]σ z
�r2

where �r1 and �r2 are two arbitrary dangling links on the
upper rough boundary and the string in the bulk �b con-
necting the �r1 and �r2 links. Both these operators satisfy
[HTC, Glo,1(2)] = 0 for Jx = 0. In particular, the second-type
NLGIO Glo,2 plays an important role in the subsequent study.
Another conserved charge is

∏
�∈rough σ x

� , which is nothing but
the global charge parity of the gauge Higgs model, and is an
element of stabilizers of the initial state.

We note that the NLGIO symmetries are different from the
magnetic-one-form symmetry considered in [39], etc. They
are exact symmetries even in the presence of the Av terms in
HTC. From this fact, both the NLGIO’s are elements of the
stabilizer group and can provide a useful picture for under-
standing the relationship between the bulk Higgs phase and
boundary order, as we explain later on.

IV. SEARCH FOR A PHASE TRANSITION
ON THE BOUNDARY

In this section, we study “phase diagram” of the measured
toric code. The initial state employed in the present numerical
study is one of the exact ground states stabilized by Sint. Key
point of this study is to observe edge physics on the rough
boundaries. As mentioned in the previous section, the model
HTC reduces to an effective rough boundary Hamiltonian sim-
ilar to the transverse field Ising model. Thus, it is expected that
SSB of Z2-full spin-flip symmetry (Su

x ) with a magnetic LRO
emerges as the strength of the σ z term increases in HTC (see
Fig. 3). However, we note that this expectation is not obvious
as spins on the boundaries keep intact on measurement.

We shall investigate the above qualitative expectation in
our measurement protocol by the efficient stabilizer numeri-
cal methods. Performing local σ z-projective measurement for
each qubit with probability p can correspond to increasing Jz

with Jx = 0 in the Hamiltonian HTC as shown in Fig. 3.
We study numerically the edge states on the rough

boundaries emerging with LRO. We are interested in quasi-
one-dimensional subsystem of upper or lower boundary. Thus,
our numerics prioritize to vary Lx with Ly fixed. Increasing
both Lx and Ly (especially Ly > 4) requires large computa-
tional cost being inaccessible. We mostly set Ly = 6 with
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p

FIG. 4. Behavior of the average value of χSG/Lx . The right-blue
shaded line represents the crossing point of the different system-size
data. We used 3 × 103 samples. We fix Ly = 6.

care since for too small Ly, transition-like behavior on the
boundary disappears.

We introduce the Edward-Anderson spin-glass (SG) order
parameter [59] defined by

χSG = 1

Lx

∑
�x,�′

x

CSG(�x, �
′
x )

with

CSG(�x, �
′
x ) = 〈ψ |σ z

�x
σ z

�′
x
|ψ〉2 − 〈ψ |σ z

�x
|ψ〉2〈ψ |σ z

�′
x
|ψ〉2,

where |ψ〉 is the stabilizer state and �x
′s are links on the

boundary. As a target observable, we observe the variance
of χSG divided by Lx, Fv (p, Lx ) ≡ var(χSG)/Lx. This quantity
measures sample-to-sample fluctuations and is useful to detect
a phase transition on the boundary. Fv (p, Lx ) shows a clear
peak at a transition point [60].

In Fig. 4, we first display the calculations of χSG/Lx as
a function of p for various Lx, which exhibit smooth curves
crossing with each other at p ∼ 0.75. This result implies the
existence of a phase transition there.

Next, Fig. 5(a) shows calculations of Fv (p, Lx ). We find
that the peak grows with increasing Lx and the peak shifts
toward larger p with increasing Lx. This is a typical continuous
phase transition behavior. This result indicates the existence
of the boundary phase transition. As Fv (p, Lx ) shows, the
fluctuations of the SG order gets simultaneously zero for all
system sizes at p ∼ 0.75, and solid SG order appears there in
the thermodynamic limit.

The above phenomenon can be understood by the NL-
GIO symmetry Glo,2 of HTC and condensation of Higgs.
As we show later on, the SSB of the NLGIO symme-
try Glo,2 is restored in this regime. The NLGIO symmetry
Glo,2 dictates for any states under consideration Glo,2|ψ〉 =
σ z

�r1
[
∏

�∈�b
σ z

� ]σ z
�r2

|ψ〉 ∝ |ψ〉. If the condensation of Higgs
boson takes place for length scale |�b|, 〈

∏
�b

σ z
� 〉 	= 0, we have

〈σ z
�r1

σ z
�r2

〉 	= 0. Therefore, the above numerical result indicates
that perfect Higgs condensation takes place at p ∼ 0.75. Here,
the physical picture is that the proliferation of the bulk Higgs
condensate induces condensation of NLGIO with various
shapes connecting two different links on the boundary. This
condensation of string operators (corresponding to Wilson

p

(a) (b)

(c)

FIG. 5. (a) System-size dependence of Fv . (b) Scaling function.
(c) Correlation for CSG(�x, �

′
x ). Here, we chose �x = 0, Lx = 72. We

used the following fitting functions: f1(�′
x ) = a exp(−�′

x/ξ ) + b and
f2(�′

x ) = a�′η
x + b, where a, b, ξ , and η are fitting parameters. Scatter

plots represent numerical results specified by probability p. Note that
peak of Fv in Lx = 72 system is located at p = 0.66. Thus, physical
quantities are expected to show critical behavior at p = 0.66 in Lx =
72 system. We used (3 − 4) × 103 samples for (a)–(c).

string with both of the edges attached to the boundary) induces
long-range order 〈σ z

�r1
σ z

�r2
〉 	= 0.

In an intuitive picture, as Glo,2 is an element of the sta-
bilizer group, the finite Higgs condensation 〈∏�b

σ z
� 〉 	= 0

generates an effective stabilizer such as σ z
�r1

σ z
�r2

. In this sense,
effective interactions on the boundary are induced by the bulk
Higgs condensation. We expect that as the above string �b in
the bulk is arbitrary, the critical value p can decrease for larger
Ly as the number of strings �′

bs participating the effective
boundary interactions increases. Similar mechanism works for
enhancing the Higgs condensation for larger Ly.

We identify the transition point and its criticality by ap-
plying the scaling analysis to Fv (p, Lx ) by means of pyfssa
numerical package [61,62]. Here, the scaling ansatz is set as

Fv (p, Lx ) = L
ζ

ν
x �((p − pc)L

1
ν
x ), where � is a scaling function,

ζ and ν are critical exponents and pc is a critical transi-
tion probability in the thermodynamics limit. We observe the
clear data collapse as shown in Fig. 5(b). Here, the transi-
tion probability is estimated by pc = 0.757 ± 0.035 and the
exponents, ν = 2.54 ± 0.52 and ζ = 2.64 ± 0.34. The above
scaling analysis indicates almost perfect SG order on the
rough boundary for p � 0.757 for all system sizes, including
infinite Lx. We note that pc corresponds to the scaling function
x = 0 in Fig. 5(b). The point x = 0 in the scaling function
is off-peak. This implies that the ordered phase (SSB phase)
emerges after strict suppression of the fluctuations of the spins
on the boundary in the thermodynamic limit. This is some
peculiar feature of the present system, which comes from
the fact that effective couplings between boundary spins are
induced by the bulk measurement and they do not exist at the
onset. For further study, we observe the correlation function
CSG(�x, �

′
x ) for the Lx = 72 and Ly = 6 system in the vicinity
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y
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p p

p

(e)

FIG. 6. Partition for SAF (a) and SAH (b). Sample-to-sample vari-
ance for SAF (c) and SAH (d). (e) System-size dependence of SAH ,
where we averaged over all measurement samples. We used 3 × 103

samples for (c), (d), and (e).

of the peak of Fv (p, Lx ), which we denote p = p′
c. The results

are displayed in Fig. 5(c). For p > p′
c, a clear long-range SG

order exists, as expected from the above observation. On the
critical point p = p′

c, the correlator is well fitted by the power-
law decay, estimated as ∝ |�x − �′

x|η with η ∼ 0.25. Finally
for p < p′

c, the result is well fitted by the exponential decay,
estimated as ∝ exp[−|�x − �′

x|/ξ ] with ξ ∼ 3.79, indicating
a disordered phase. The analysis verifies the SG boundary
phase that is induced by the bulk-measurement-enhancing
Higgs condensation. In passing, we examine another fitting
for CSG(�x, �

′
x ) at the criticality such as e−α|�x−�x′ |β [63,64].

However, we find that the power-law fitting is better than that.
We also observed effects of the system size in the y direction
Ly to the rough-boundary phase transition. The additional data
is shown in Appendix, the result of which is consistent with
the consideration by the Hamiltonian formalism.

We further investigate entanglement properties of our sys-
tem. We focus on entanglement entropy (EE) for a subsystem
A (its complement is subsystem B and we use logarithm with
base 2 for EE.) Here, we consider two different partitions
shown in Figs. 6(a) and 6(b). First partition is that the subsys-
tem A is the upper rough boundary and its EE is denoted by
SAF . In the second one, the subsystem A is the half of the upper
rough boundary and its EE is denoted by SAH . The EE can be
calculated from the number of linearly independent stabilizers
within a target subsystem A and the number of qubit of the
subsystem A [65,66].

The sample-to-sample variance of SAF divided by Lx,
var[SAF ]/Lx, is plotted in Fig. 6(c) to shed light on a bulk

p

FIG. 7. System-size dependence of SAF , where we averaged over
all measurement samples. We used 3 × 103 samples. We fix Ly = 6.

transition behavior motivated by Ref. [60]. We find the peak
and no system-size dependence indicating a crossover. The EE
SAF evaluates the degree of separation between the bulk and
the upper rough boundary. From the data, the rough boundary
is separated from the bulk for p � 0.45, smaller than the rough
boundary transition point pc. This behavior gives an intuitive
scenario that after the entanglement separation between the
rough boundary and bulk, the SG LRO on the rough boundary
starts to develop. This result is consistent with the fact that
the proliferation of Higgs condensation in the bulk enhances
short-range entanglement and hinders long-range one (i.e., the
topological order).

We next observe the sample-to-sample variance of SAH

divided by Lx, var[SAH ]/Lx plotted in Fig. 6(d) and find al-
most the same behavior to var[SAF ]/Lx. From SAH plotted
in Fig. 6(e), we find that for small p, SAH ∝ Lx, and inter-
estingly enough for large p, SAH approaches unity, SAH = 1.
It indicates twofold degenerate states on the upper rough
boundary. We initially include Su

x in the set of stabilizer gen-
erators. We perform measurement only on bulk degrees of
freedom, and therefore Su

x remains as a stabilizer generator
in the whole process. Since Su

x flips all spins on the upper
rough boundary, it contributes to SAH [65], as SAH = 1. For
large p, interplay between bulk-boundary entanglement sep-
aration and the stabilizer Su

x on the rough boundary indicates
that the rough boundary state is a cat state [GHZ state such
as, 1√

2
(|011 · · · 0〉 ± |100 · · · 1〉)], where Su

x (parity) operator
stabilizes the state with eigenvalue 1 or −1, i.e., implying a
superposition of the SSB states on the boundary. This phe-
nomenon is similar to the twofold degenerate Z2 SSB state
in the well-studied transverse-field Ising chain. The SSB indi-
cated by SAH → 1 is a signal of emergence of the Higgs=SPT
phase.

Finally, we show the behaviors of the average of entangle-
ment entropy SAF over the measurement samples for different
system sizes. The result is plotted in Fig. 7. For small p, SAF ∝
Lx similarly to the case of SAH . For large p, SAF approaches
zero, indicating the strict entangle separation between the bulk
and the rough boundary.

V. SEARCH FOR A BULK TRANSITION

Final issue is to search a bulk transition and clarify re-
lation between the bulk and boundary transitions. To this
end, to investigate the size of Ãv clusters (Ãv1 Ãv2 · · · ) in the
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n
o
.

No.

FIG. 8. Histogram of the number of σx in each generator of
stabilizers for 0.3 � p � 0.9. We omit the data point for zero number
of σ x and Su

x . We used 3 × 103 samples.

set of stabilizer generators is quite useful. The Gauss law is
destroyed at sites adjacent to σ z measurement, whereas the
stabilizer of each cluster comprises σ x

�
′s on its boundary, and

therefore every Ãv cluster measures its total inside charge. In
the critical regime of the transition from the deconfined (toric
code) to Higgs phases, we expect the scale invariance, and
emergence of various sizes of clusters. Simple consideration
reveals (frequency of clusters) ∝ (size of cluster)−1. Proba-
bility distribution of size of clusters can be measured by the
number of σ x

� in the corresponding stabilizer generator.
The numerical results are displayed in Fig. 8. For small

p = 0.30, the size of clusters is rather small, and for large
p = 0.9, all clusters have almost the same magnitude. For that
regime, we expect that large rectangular-shaped clusters tend
to emerge. In between, various size of clusters emerge, and
the system for p = 0.60 seems scale invariant. Therefore, we
expect that the bulk transition from deconfined (toric code)
to Higgs phases takes place at p = pb 
 0.60. Topological
order of the initial state gets lost at p = pb, as the efficiency
of the operator

∏
periodic σ x

� is destroyed by “voids” inside Av

clusters, where “periodic” denotes a closed loop on the dual
lattice in the periodic direction (x direction) of the cylinder.
In fact very recently, some related problem was studied in
[67], in which stability of logical qubits in toric code against
measurement is discussed by referring percolation theory. The
critical probability for breakdown of the logical qubit operator
is estimated as p = 0.5 there. Our estimation of pb might
approach that value for sufficiently large systems. It is an
interesting future problem to study the relation between our
observation about bulk phase transition and the breakdown of
logical qubit operator.

The above result implies that the bulk transition ob-
served in the present protocol takes place earlier than the
rough boundary phase transition indicated by the peak of
var(χSG)/Lx. We also observed the variance of the squared
expectation value of the local Ãv , the results of which supports
the existence of bulk transition, shown in Appendix.

Summarizing the results, we expect that the bulk phase
transition takes place first at pb and then the rough-boundary
phase transition at pc, which is naturally regarded as the SPT
transition. This observation indicates that the regime pb <

p < pc is neither topological nor SPT. As a possible physical

picture, with increasing p, incoherent proliferation of e anyon
(charge particle in the gauge Higgs model) occurs first induc-
ing the breakdown of the long-range entanglement at p = pb,
and then, further increase in p results in the condensation of
e anyon with the boundary long-range order as the SPT order.
A similar physical picture has been shown in recent studies
[68,69]. We obviously cannot deny the possibility that the
above two transitions take place simultaneously.

VI. CONCLUSIONS

This paper clarified the bulk-measurement-induced bound-
ary phase transitions in the generalized toric code system on
cylinder geometry with the rough boundaries. Our numerical
results elucidated the emergence of the SG LRO on the rough
boundaries. The criticality was estimated in detail. The SSB
with LRO and the degeneracy on the rough boundaries in our
toric code system under projective measurement indicate that
the Higgs=SPT phase is produced by the local measurement
on the bulk starting with the initial toric code (deconfined)
state.

There are various interesting future directions. One of them
is to study a similar system that is closely related to a subsys-
tem code [40,43,44].
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APPENDIX: ADDITIONAL NUMERICAL RESULTS

We show additional numerical results for the measured
toric code system with cylinder geometry by using the effi-
cient numerical stabilizer algorithm.

1. Ly dependence of rough-boundary phase transition

We observe effects of the system size in the y direction Ly

to the rough-boundary phase transition. The Ly dependence of
χSG are displayed in Figs. 9(a)–9(c) for Ly = 2, 3, and 4. For
all values of Ly, the value of χSG/Lx increases more rapidly
as a function of p for larger Lx. Furthermore, for Ly = 2
[Fig. 9(a)], we observe that the data of the various Lx

′s do
not cross with each other except p = 1. This indicates nonex-
istence of boundary phase transition for a finite p, while for
larger L′

ys, the crossing point shifts to the lower value of p as
shown in Figs. 9(b) and 9(c). Also, the insets of each panels in
Figs. 9(a)–9(c) show the behavior of Fv . These results indicate
the existence of the continuous phase transition on the rough
boundary. However, for the Ly = 2 case [Fig. 9(a)], the peak
of Fv approaches p = 1, indicating that the transition point
approaches p = 1 for the thermodynamics limit.

These numerical results indicate that the SG-ordered phase
itself disappears as decreasing Ly, corresponding to (1 + 1)-D
system. The reason is that in the Hamiltonian formalism, (1 +
1)-D gauge Higgs model with periodic boundary conditions
has the unique ground state in the “Higgs regime” [39,41],
and the model is nothing but a specific limit of the cluster spin
model with periodic boundary conditions (i.e., no boundaries
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(a)

(b)

(c)

FIG. 9. Ly dependence of spin-glass order χSG/Lx . (a) Ly = 2,
(b) Ly = 3, and (c) Ly = 4. Each inset panel represents Fv . We used
4 × 103 samples.

in the x direction.) Our numerical result is consistent with the
consideration by the Hamiltonian formalism.

2. Variance of squared Ãv

We further present numerical study about the expecta-
tion value of squared star operator in our protocol, Ā =
1

Nv

∑
v〈ψ |Ãv|ψ〉2, where Nv = Lx(Ly − 1). In our protocol,

the local σ z measurement removes the initial Ã′
vs, and thus,

p

FIG. 10. The sample-to-sample variance of Ā. The inset displays
the L · Ā. We used 3 × 103 samples. We fix Ly = 6.

its number monotonically decreases for larger p. In the toric
code, this means the lack of the Gauss law and discontinuity
of electric flux. Then, we calculate the sample-to-sample vari-
ance of it var[Ā]. Its system-size and p dependence are plotted
in Fig. 10.

The moderate peaks emerge and their height is smaller
for larger Lx. The reason for it is simple: Since the variance
is calculated from the value of 〈ψ |Ãv|ψ〉2 averaged for all
vertices v in each sample, the variance of the mean is inversely
proportional to Lx although these values are much small. In
fact as shown in the inset of Fig. 10, var[Ā] × Lx exhibits no
system-size dependence. This behavior can support the pres-
ence of bulk phase transition as explained by observing the
scale-free distribution of the size of the product of Ãv shown
in Fig. 8 in the main text. The value of p on the moderate
peak of var[Ā] × Lx is estimated as p ∼ 0.14. This value is
small compared to pb and pc. This result implies that after
weak fluctuation of Ā, the scale free phenomena for the size
of stabilizer constituted by the product of Ãv (e-anyon cluster
proliferation) emerges.
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