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Impact of surface anisotropy on the spin-wave dynamics in a thin ferromagnetic film
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The spin-wave dynamics in the thin CoFeB film in Damon-Eshbach geometry are studied in three cases
of boundary conditions—free boundary conditions, symmetrical surface anisotropy, and one-sided surface
anisotropy. The analytical model created by Wolfram and De Wames was extended to include perpendicular
surface anisotropy in boundary conditions. Its comparison with numerical simulations demonstrates perfect
agreement between the approaches. The analysis of the dispersion relation indicates that the presence of surface
anisotropy increases the avoided crossing size between the Damon-Eshbach mode and perpendicular standing
modes. Additionally, asymmetrical one-sided surface anisotropy induces nonreciprocity in the dispersion rela-
tion. In-depth analysis of the avoided crossing size is conducted for systems with different boundary conditions,
different thicknesses, surface anisotropy constant values, and external magnetic fields. It shows the significant
role of the strength of surface localization of the Damon-Eshbach mode and the symmetry of perpendicular
standing modes in the avoided crossing broadening. Interestingly, for a specific set of parameters, the interaction
between the particular modes can be suppressed, resulting in a mode crossing. Such a crossing, which occurs only
for one direction of the wave vector in a one-sided surface anisotropy system, can be utilized in nonreciprocal
devices.
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I. INTRODUCTION

In recent years, spin waves (SWs), which are collective,
harmonic oscillations of spins that propagate within magnetic
materials, have received increased attention due to their poten-
tial to transport and process information with the reduction of
Joule heating and energy dissipation [1]. One of the interest-
ing properties of propagating SWs in thin magnetic films in
Damon-Eshbach (DE) geometry [2] is the hybridization be-
tween the fundamental SW mode and perpendicular standing
SW (PSSW) modes [3–11]. This may result in the formation
of avoided crossings (ACs), which can be a crucial physical
characteristic for the development of magnonic devices such
as filters and phase shifters. However, the control of the dy-
namic magnetic properties is a fundamental problem for the
implementation of these devices.

It has been demonstrated that surface anisotropy signifi-
cantly impacts the dispersion relation and the AC size between
propagating SW mode and PSSW modes [12]. Other studies
have shown that surface anisotropy can be controlled by the
voltage applied across the ferromagnetic-metal/insulator het-
erostructures due to the charge accumulation at the interface
[13–15] or across insulator/ferromagnet/insulator multilayers
due to the dielectric polarization influence on the interface
[16]. Therefore, it can be concluded that hybridization be-
tween fundamental SW mode and higher-order PSSW modes

*krzysztof.szulc@amu.edu.pl

could be controlled by an electric field. However, there
has been no systematic study on the influence of surface
anisotropy on the hybridization between SW modes in the
ferromagnetic film.

Although surface anisotropy was predicted by Néel [17],
a consistent study of its influence on the magnetic dynam-
ics in films only began in the 1970s. The determination
of surface anisotropy constants based on the ferromagnetic
resonance (FMR) results became possible due to the suf-
ficiently good quality of fabricated films achieved by that
time and, correspondingly, due to narrow FMR linewidths
[18]. Comparison of experimental results with micromag-
netic calculations [19] made it possible to determine the
main sources of the surface anisotropy, and to explain its
dependence on the film thickness. Calculations of the sur-
face anisotropy constant in films of transition metals were
also performed within the framework of the itinerant elec-
tron theory of magnetism [20,21]. It was shown that this
method is in good agreement with both phenomenological
theory based on the Landau-Lifshitz equation and the FMR
measurements [22].

In the 1980s and 1990s, the study of the magnetization
dynamics in magnetic films continued, largely due to the
progress in the Brillouin light scattering technique [11]. The
Green’s functions formalism, developed previously in [23] for
DE surface SWs in the presence of exchange, was used to
explain the Brillouin light scattering spectra from thin films of
polycrystalline iron [24]. In [24], when studying the frequency
of the bulk and surface magnons as a function of the angle
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between the propagation direction of SW and the magnetic
field, a characteristic repulsion of the modes was discovered,
resulting in a gap in the spectrum. At that time, the experimen-
tal accuracy was not sufficient to allow the detection of this
effect. In this paper, we show that such gaps naturally appear
in the spectrum, and we also explore their width (especially
taking into account the effect of nonreciprocity [25]) and
patterns of occurrence.

In general, there are two alternative approaches that can be
used for the analytical evaluation of the dipole-exchange SW
spectrum, including the interaction between the fundamental
SW mode and PSSW modes. One approach, proposed by
Wolfram and De Wames [26,27], involves solving a sixth-
order differential equation derived from Maxwell’s equa-
tions along with equations of the magnetization motion. The
extension of Damon and Eshbach’s theory for pure dipolar
SWs by including exchange interactions provides evidence
that, as a result of exchange, the surface and bulk modes
mix. This theoretical approach was used for an explanation
of the first experiments on magnon branch repulsion in thin
ferromagnetic films with in-plane magnetization [24,28] and
in thin single-crystal disks of yttrium iron garnet [29]. Much
later, researchers applied the same method to characterize
SWs in infinitely-long cylindrical wires with magnetization
along the wire [30,31].

However, it turned out that the Wolfram and De Wames
approach is not suitable for a broad range of sample geome-
tries and magnetic moment directions. In fact, its effectiveness
is limited to cases of unbroken symmetry in infinite films,
as well as in infinite wires with a magnetic moment along
the wire axis, as previously noted. For more general cases,
Kalinikos and Slavin proposed an alternative approach for
mixed exchange boundary conditions in thin films and the
arbitrary direction of external magnetic field and magnetic
moment relative to the film plane [32,33]. The first step of
this method is to solve Maxwell’s equations separately in the
magnetostatic approximation [34]. Then, the dynamical scalar
potential obtained in the form of the tensorial magnetostatic
Green’s functions [35] is inserted into the equations of motion
for the magnetic moment (linearized Landau-Lifshitz equa-
tions), and the resulting integrodifferential equation is solved
through perturbation theory. This method has resolved the
majority of theoretical issues of spin dynamics in laterally-
confined magnetic elements under different magnetic field
configurations. It has been previously applied to describe SW
dynamics in isolated magnetic stripes [36] as well as rectan-
gular [37,38], cylindrical [39], and triangular [40] magnetic
dots. A notable benefit of the Kalinikos and Slavin method
is that it utilizes a simple analytical formula to achieve good
agreement between theory and experiment for thin, circular
nanoelements with perpendicularly-magnetized states, such as
rings [41] and dots [42]. In more complex cases with broken
cylindrical symmetry, it is necessary to consider a greater
number of perturbation theory terms (i.e., the interaction of
SW modes) [43,44]. However, the applicability of this theory
to any case of nanostructures and geometry of applied fields
is not in question. The method of Wolfram and De Wames
turned out to be somewhat forgotten, which forced Harms and
Duine [45] to “rediscover” this ansatz since in some cases it
provides a more direct path to the result.
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FIG. 1. (a) A general schematic of the system and the coordinate
system. (b)–(d) Schematics of the boundary conditions investigated
in the manuscript: (b) free boundary conditions, (c) symmetrical
surface anisotropy, and (d) one-sided surface anisotropy.

A comprehensive review of the two mentioned approaches
with an analysis of their applicability for various cases of the
direction of the external field and magnetization in a ferro-
magnetic film is given by Arias [46]. The potential drawbacks
of the Kalinikos-Slavin method were identified, including
possible inaccuracies of the results obtained in the region
of hybridization of SW modes, as well as the complexity of
describing the interaction of surface and bulk modes. The
theoretical approach proposed in [46] is based on the method
developed by Wolfram and De Wames, and it provides strict
solutions to the problem. It is important to note that the hy-
bridization of SWs was only examined in the case of mixed
symmetrical boundary conditions.

In this paper, we conduct a systematic analysis of the
impact of surface anisotropy on the SW hybridization, which
was presented in [12]. We are confronted with a choice be-
tween the two methods described above for calculating the
dynamics of SWs. Following the conclusions of Arias [46],
the Wolfram and De Wames method not only leads to the
goal more efficiently in this case, despite the asymmetry of the
boundary conditions, but it also provides a rigorous solution.
This is in contrast to the Kalinikos-Slavin perturbation theory,
which requires a significant number of iterations and provides
only an approximate solution. Therefore, we compared the
dispersion relations of SWs in a DE geometry using symmet-
rical and asymmetrical boundary conditions via the extended
Wolfram and De Wames approach. The results of analytical
calculations perfectly matched the numerical simulations in
the example of CoFeB thin film. We provide an in-depth
analysis of the dispersion relations, SW mode profiles, and
the effect of material parameters on the SW coupling in the
frame of AC size.

II. METHODS

A. Investigated system

The system under investigation is presented in Fig. 1(a). It
is a thin CoFeB film of thickness L magnetized in-plane in the
y-direction by the external magnetic field H0. We consider the
DE geometry, i.e., the SWs propagating along the x-direction,
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perpendicular to the external field H0. The z-axis corresponds
to the direction perpendicular to the film plane, where the
surfaces of the film are located at z = ±L/2. The following
parameters were used for CoFeB: magnetization saturation
MS = 1335 kA/m, exchange stiffness Aex = 15 pJ/m, and gy-
romagnetic ratio γ = 30 GHz/T. In this study, we consider
three cases of boundary conditions: free boundary condi-
tions (FBC) where the surface anisotropy is absent in the
system [Fig. 1(b)]; symmetrical surface anisotropy (SSA),
i.e., the surface anisotropy of equal strength is present on
both boundaries of the film [Fig. 1(c)]; and one-sided surface
anisotropy (OSA) where the bottom surface has nonzero sur-
face anisotropy while the top surface is described with FBC
[Fig. 1(d)].

B. Analytical model

We use the approach proposed by Wolfram and De Wames
[26,27] to calculate the dispersion relation in DE geometry
in the dipole-exchange regime, and we extend it to include
the perpendicular surface anisotropy introduced by Rado and
Weertman [47].

The magnetic free energy of the system can be presented
as

F =
∫ (

−μ0H0 · M + Aex

M2
S

(∇M)2 − 1

2
μ0Hd · M

)
dV, (1)

where there are three terms in the integral—the first term
represents the Zeeman energy, the second term represents the
exchange energy, and the third term represents the magneto-
static energy. M is the magnetization vector, μ0 is the vacuum
permeability, and Hd is the demagnetizing field.

The dynamics of the magnetic system are described with
the Landau-Lifshitz equation

∂M
∂t

= −|γ |μ0M × Heff , (2)

where Heff = − 1
μ0

δF
δM is the effective magnetic field.

The demagnetizing field Hd is derived from the Maxwell
equations in the magnetostatic approximation:

∇ × Hd = 0, ∇ · B = 0, (3)

where B = μ0(Hd + M) is the magnetic induction. Equa-
tion (3) enables the introduction of the magnetic scalar
potential ϕ, which satisfies the formula Hd = −∇ϕ. As a
result, the magnetostatic Maxwell equations are replaced with
a single equation for the magnetic scalar potential

�ϕ = ∇ · M. (4)

Since the magnetic film is uniformly magnetized, the
Landau-Lifshitz equation can be easily linearized. We assume
that the static y-component of the magnetization remains con-
stant and is equal to the saturation magnetization MS, while
the dynamic component m = (mx, mz ), which is much smaller
than the static component My (|m| � MS), precesses in the
xz-plane. Therefore, M(x, y, z, t ) = MSŷ + m(x, z)eiωt , where
ω = 2π f is the angular frequency and f is the frequency.

After linearization, the SW dynamics are described with a
set of three coupled equations:

iωmx = γμ0

(
H0 − 2Aex

μ0MS
�

)
mz + MS∂zϕ, (5)

−iωmz = γμ0

(
H0 − 2Aex

μ0MS
�

)
mx + MS∂xϕ, (6)

�ϕ − ∂xmx − ∂zmz = 0. (7)

The solutions to Eqs. (5)–(7) take the form of plane
waves. Two wave vectors can be defined due to the sys-
tem’s symmetry: in-plane wave vector k (in the x-direction)
and out-of-plane wave vector q (in the z-direction), as
shown in Fig. 1(a). As a result, we have (mx, mz, ϕ) ∝
(mx0, mz0, ϕ0)eikxeiqz. The system in the x-direction is infinite,
therefore the wave vector k can only have real values for the
solution to be physical. On the other hand, the wave vector q
may take on complex values. For simplicity, we introduce the
following dimensionless parameters: 	 = ω

γμ0MS
, θ = 	H +

λ2(k2 + q2), 	H = H0
MS

, and λ2 = 2Aex

μ0M2
S
. After substituting the

plane-wave solution into Eqs. (5)–(7) and expressing them in
the matrix form, we obtain⎛

⎜⎝
i	 θ iq

θ −i	 ik

ik iq k2 + q2

⎞
⎟⎠

⎛
⎜⎝

mx0

mz0

ϕ0

⎞
⎟⎠ = 0. (8)

The condition that the determinant of the 3 × 3 matrix in
Eq. (8) is equal to zero leads to the following formula:

(k2 + q2)(	2 − θ2 − θ ) = 0. (9)

As θ = θ (q2), Eq. (9) is a third-degree function with respect
to q2. Two roots, q = ±ik, are obtained by setting the first
bracket to zero, whereas four roots, q = ±q1 and q = ±iq2,
where q1, q2 ∈ R, are obtained by setting the second bracket
to zero. From the zeroing of the second bracket in Eq. (9), we
can also derive the formula for the dimensionless frequency

	 =
√

θ (θ + 1). (10)

Let θ (q = q1) = θ1 and θ (q = q2) = θ2. Since q1 and q2

correspond to the same frequency, 	 = √
θ1(θ1 + 1) =√

θ2(θ2 + 1), and therefore θ2 = −(θ1 + 1). From this for-
mula, we can obtain the connection between wave vectors k,
q1, and q2, which is the following:

q2 = ±
√

2k2 + q2
1 + 2	H + 1

λ2
. (11)

We can interpret the solutions obtained for the out-of-plane
wave vector q as follows. Since our solution is a plane wave,
wave vector q1 will give a volume contribution of the sinu-
soidal character to the mode profile, while wave vectors k
and q2 denote exponentially-decaying modes localized on the
surfaces. Since the wave vector k represents also the propa-
gating in-plane wave vector, this solution has a character of
a DE mode. Next, knowing that 	H � 0, we can derive from
Eq. (11) that |q2| � 1/λ, indicating that q2 has a character of
a surface exchange mode.
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The solution of Eq. (8) can be represented by a vector⎛
⎝mx0

mz0

ϕ0

⎞
⎠ =

⎛
⎜⎝

ikθ − q	

iqθ + k	

	2 − θ2

⎞
⎟⎠C, (12)

where C is an arbitrary constant. The general solution for the full vector (mx, mz, ϕ) is a superposition of six terms, one for each
solution of the wave vector q,⎛

⎝mx

mz

ϕ

⎞
⎠ =

⎡
⎢⎣

⎛
⎜⎝

X1

Z1

F1

⎞
⎟⎠C1eiq1z +

⎛
⎜⎝

X2

Z2

F2

⎞
⎟⎠C2e−iq1z +

⎛
⎜⎝

X3

Z3

F3

⎞
⎟⎠C3ekz +

⎛
⎜⎝

X4

Z4

F4

⎞
⎟⎠C4e−kz +

⎛
⎜⎝

X5

Z5

F5

⎞
⎟⎠C5eq2z +

⎛
⎜⎝

X6

Z6

F6

⎞
⎟⎠C6e−q2z

⎤
⎥⎦eikx, (13)

where X1 = ikθ1 − q1	, X2 = ikθ1 + q1	, X3 = X4 = ik, X5 = ikθ2 − iq2	, X6 = ikθ2 + iq2	, Z1 = k	 + iq1θ1, Z2 = k	 −
iq1θ1, Z3 = −k, Z4 = k, Z5 = k	 − q2θ2, Z6 = k	 + q2θ2, F1 = F2 = 	2 − θ2

1 , F3 = −(	 + 	H ), F4 = 	 − 	H , F5 = F6 =
	2 − θ2

2 , as it follows from Eq. (12).

As the system under consideration is an infinite film,
boundary conditions must be applied on the top and bot-
tom surfaces. Our goal was to extend the model derived by
Wolfram and De Wames to include the presence of the per-
pendicular surface anisotropy. It requires the extension of the
exchange boundary condition by adding the term depending
on the surface anisotropy [47]

∂zmx = 0|z=±L/2,

∂zmz ∓ σt(b)mz = 0|z=±L/2, (14)

where σt(b) = K t(b)
s /Aex, and K t(b)

s is the surface anisotropy
constant for the top (bottom) surface.

Since the equation for the magnetic scalar potential
[Eq. (7)] outside of the film gives �ϕout = 0 and, subse-
quently, −ϕ0(k2 + q2)eikxeiqz = 0, the asymptotic solutions
outside of the film for the magnetic scalar potential are given
by expression

ϕout =
{

C7eikxe−|k|z for z � L/2,

C8eikxe|k|z for z � −L/2.
(15)

As the tangential components of the demagnetizing field Hd

are continuous across the surfaces of the film, the magnetic
scalar potential must also be continuous. Additionally, the
normal component of B must also be continuous. Therefore,
this results in the effective magnetostatic boundary conditions

ϕ = ϕout, (16)

Bz = Bout
z , (17)

where ϕ and Bz are the magnetic scalar potential and magnetic
induction in the magnetic material, and ϕout and Bout

z are the
magnetic scalar potential and magnetic induction out of the
magnetic material, respectively. Then, Eq. (17) can be rewrit-
ten in terms of the scalar potential as

∂zϕ − mz = ∂zϕout. (18)

The complete set of boundary conditions in Eqs. (14), (16),
and (18) evaluated for the SW modes in Eq. (13) leads to the
following degeneracy matrix A:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

iq1X1eiq1
L
2 −iq1X2e−iq1

L
2 kX3ek L

2

iq1X1e−iq1
L
2 −iq1X2eiq1

L
2 kX3e−k L

2

(iq1 − σt )Z1eiq1
L
2 (−iq1 − σt )Z2e−iq1

L
2 (k − σt )Z3ek L

2

(iq1 + σb)Z1e−iq1
L
2 (−iq1 + σb)Z2eiq1

L
2 (k + σb)Z3e−k L

2

[(iq1 + |k|)F1 − Z1]eiq1
L
2 [(−iq1 + |k|)F2 − Z2]e−iq1

L
2 [(k + |k|)F3 − Z3]ek L

2

[(iq1 − |k|)F1 − Z1]e−iq1
L
2 [(−iq1 − |k|)F2 − Z2]eiq1

L
2 [(k − |k|)F3 − Z3]e−k L

2

∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

−kX4e−k L
2 q2X5eq2

L
2 −q2X6e−q2

L
2

−kX4ek L
2 q2X5e−q2

L
2 −q2X6eq2

L
2

(−k − σt )Z4e−k L
2 (q2 − σt )Z5eq2

L
2 (−q2 − σt )Z6e−q2

L
2

(−k + σb)Z4ek L
2 (q2 + σb)Z5e−q2

L
2 (−q2 + σb)Z6eq2

L
2

[(−k + |k|)F4 − Z4]e−k L
2 [(q2 + |k|)F5 − Z5]eq2

L
2 [(−q2 + |k|)F6 − Z6]e−q2

L
2

[(−k − |k|)F4 − Z4]ek L
2 [(q2 − |k|)F5 − Z5]e−q2

L
2 [(−q2 − |k|)F6 − Z6]eq2

L
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

The condition det A = 0 allows us to obtain the solutions
of wave vector q and, subsequently, the resonance frequencies
as a function of wave vector k. The eigenvectors of matrix A
provide the coefficients Ci in Eq. (13).

Compared to the approach suggested by Kalinikos et al.
[33], the solution mentioned above is precise within the
examined geometry. Calculating multiple integrals for com-
ponents of a demagnetizing tensor and expanding dynamical
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FIG. 2. (a)–(d) Dispersion relations of six lowest modes of a 100-nm-thick CoFeB film with (a) FBC, (b) SSA with K t
s = Kb

s =
−700 µJ/m2, and (c),(d) OSA with K t

s = 0 and Kb
s = −1500 µJ/m2 for (c) negative and (d) positive wave vectors in the external magnetic

field μ0H0 = 50 mT. The plots present the comparison between the analytical model (orange lines) and numerical simulations (blue lines).
Avoided crossings (ACs) are marked with labels. (e) The frequency difference between neighboring modes in FBC system. In plots (a)–(e)
wave vector k on the x-axis is presented in the logarithmic scale. (f)–(i) Closeup on the ACs: (f) AC1, (g) AC2, (h) AC3, and (i) AC4. The
plot axes are showing the wave vector and frequency values relative to the AC position calculated from Eqs. (20) and (24), respectively. Plots
present numerical simulation results only, which are in agreement with analytical results.

magnetization components into a series is not required to ob-
tain coupled modes, which simplifies analytical calculations
and significantly reduces computation time.

C. Numerical simulations

The Landau-Lifshitz equation in the linear approxima-
tion [Eqs. (5) and (6)] and the magnetostatic Maxwell
equation-based formula for the magnetic scalar potential
[Eq. (7)] along with the boundary conditions for perpen-
dicular surface anisotropy [Eq. (14)] and magnetic scalar
potential [Eq. (15)] were solved numerically using finite-
element method simulations in COMSOL MULTIPHYSICS [12].
The problem was solved in one-dimensional geometry con-
sidering only the z-axis (x- and y-directions were reduced).
Equations (5)–(7) were modified accordingly to introduce the
terms coming from the implementation of the plane-wave so-
lution representing the propagation of SWs in the x-direction

(mx, mz, ϕ) = (mx0, mz0, ϕ0)eikx. The implementation in COM-
SOL consists of two Coefficient Form PDE interfaces with im-
plemented Eqs. (5), (6) and Eq. (7), respectively. The bound-
ary conditions from Eqs. (14) and (15) are introduced with
the Flux/Source function. The discretization step of 0.5 nm
is used in all simulations. The dispersion relations were cal-
culated using eigenfrequency study, which uses the MUMPS

solver.

III. RESULTS AND DISCUSSION

A. Dispersion-relation analysis

First, we study the effect of the surface anisotropy on the
dispersion relation. We chose the thickness of the CoFeB film
L = 100 nm and external magnetic field μ0H0 = 50 mT. We
show the dispersion relation of the six lowest modes for three
cases—free boundary conditions (FBC), i.e., K t

s = Kb
s = 0

[Fig. 2(a)]; symmetrical surface anisotropy (SSA) with
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K t
s = Kb

s = −700μJ/m2 [Fig. 2(b)]; one-sided surface
anisotropy (OSA) with K t

s = 0 and Kb
s = −1500 µJ/m2

separately for negative [Fig. 2(c)] and positive [Fig. 2(d)]
wave vector k. Values of surface anisotropy are comparable
to the values presented in the literature [48].

The dispersion relation calculated with the analytical
model is shown as dashed orange lines, while the numerical
simulation results are shown with dashed blue lines. Fig-
ures 2(a)–2(d) demonstrate the perfect agreement between
these two methods, yielding identical outcomes. The nature
of dispersions is characteristic of the system in DE geometry.
Each plot consists of one branch with a significant slope in the
center of the investigated range of wave vector k, displaying
a DE surface mode character, and the remaining five are flat
branches representing PSSW modes. All the modes start to
increase significantly in frequency at about 107 rad/m as a
result of the increasing contribution of the exchange interac-
tion to the SW energy. Positions of PSSW modes at k ≈ 0 are
determined by the wave vector q1 ≈ nπ/L (n = 1, 2, 3, . . . is
the PSSW mode number). In the presence of negative surface
anisotropy, the value of q1 > nπ/L for corresponding PSSW
modes (the reverse happens for positive surface anisotropy).
The increase of the frequency of the DE mode correlates
with the increase of its wave vector q1 with the increase of
k. However, q1 begins to decrease at some point, leading to
q1 ≈ nπ/L for very large wave vectors k. Similarly as for the
case of k ≈ 0, for very large k in the presence of negative sur-
face anisotropy, q1 > nπ/L (the reverse happens for positive
surface anisotropy). A detailed explanation of the correlation
between wave vectors k and q1 is provided in Appendix A.
The DE mode increases in frequency and intersects with the
three lowest PSSW modes, leading to the emergence of ACs.
These ACs are labeled in Figs. 2(a)–2(d) with the abbreviation
AC and a number indicating their sequence, beginning with
the lowest.

The discussion of ACs requires a precise definition of
where AC occurs. Neglecting the atomic distance limit, the
theory provides an infinite number of SW modes. Though it
is hypothetically possible for AC to be present between all
modes, it is apparent that the number of ACs is not infinite
for the finite-thickness film. To denote the presence of AC, we
establish two distinct criteria. The first is the local-minimum
criterion. If the function that represents the frequency differ-
ence between the neighboring modes

� fmn = fm(k) − fn(k) (20)

(where m, n is a mode number) has a local minimum � fACn,
this minimum represents an AC (or simply crossing if � fAC =
0). In this way, we can define an AC for any boundary condi-
tions and it allows multiple ACs if multiple local minima exist.
The second is a frequency-limit criterion. It could be clearly
defined only for FBC. It says that an AC is present between
the DE mode and nth PSSW mode if f DE

k→∞ > f n
k=0 in the case

in which f DE
k→∞ is calculated for Aex = 0 [2], i.e.,

f DE
k→∞ = μ0γ

2π

(
H0 + MS

2

)
(21)

and [49]

f n
k=0 = μ0γ

2π

[(
H0 + 2Aex

μ0MS

(nπ

L

)2
)

×
(

H0 + MS + 2Aex

μ0MS

(nπ

L

)2
)]1/2

. (22)

This criterion is valid under the assumption that the contribu-
tion of the exchange interaction to the k dependence of the
frequency of the DE mode and PSSW modes is identical. The
AC position is determined by the minimum of Eq. (20). It
means that the choice of criterion does not influence the value
of the AC size. In this paper, we present the results based on
the local-minimum criterion because of its broader definition.
However, we will also mention the frequency-limit criterion
and its impact on the results.

To address AC occurrence accurately, the frequency differ-
ence between neighboring modes is presented as a function
of wave vector k in Fig. 2(e) for the case of FBC, for which
the dispersion relation is shown in Fig. 2(a). In the range of
small and large wave vectors, the distance between the modes
is almost constant. The discrepancy between these ranges is
due to the fact that in the limit of small wave vectors, the
dispersion relation of the modes can be described by Eq. (22)
[49], while in the large wave-vector limit it can be described
with the function

fn = μ0γ

2π

(
H0 + MS

2
+ 2Aex

μ0MS
k2 + 2Aex

μ0MS

(nπ

L

)2
)

. (23)

In the midrange, each curve shown in Fig. 2(e) has a lo-
cal minimum corresponding to the AC, which is labeled and
marked with an arrow. The first three ACs are relatively small,
not exceeding a size of 200 MHz. The AC4, represented by a
deep minimum, has a size of 1.14 GHz. On the other hand,
AC5 has a very shallow minimum with a size of 6.02 GHz.
Interestingly, it is not the global minimum, as according to
Eq. (23) the distance between the modes can reach 5.99 GHz,
which is in agreement with the analytical model. However,
according to the local-minimum criterion, it is considered to
be an AC. In the case of the frequency-limit criterion, only
the first three minima can be identified as ACs. The AC4
does not meet this criterion as f n=4

k=0 = 27.55 GHz exceeds
f DE
k→∞ = 26.66 GHz slightly.

Now that we have presented the similarities between the
systems, it is time to highlight the differences. First, the
symmetry of the system, specifically the boundary conditions,
leads to the symmetry of the dispersion relation with respect
to the wave vector. Therefore, the FBC and SSA systems
have symmetrical dispersions since K t

s = Kb
s . In contrast, the

OSA system has different surface anisotropy constants on the
top and bottom surfaces, resulting in a frequency difference
between negative and positive wave vectors. Additionally, the
presence of the negative surface anisotropy causes a slight
increase in the frequency of all modes. Comparing the results
in Figs. 2(a) and 2(b), for Ks = −700 µJ/m2 the increase does
not pass 1 GHz. Conversely, for a positive surface anisotropy,
a decrease in frequency would be noted.

The most significant difference between the systems lies in
the size of the ACs. Closeup plots are shown in Figs. 2(f)–2(i)
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TABLE I. AC size of AC1-AC5 for FBC, SSA, and OSA systems, the dispersion relations of which are shown in Figs. 2(a)–2(d).

System AC1 (MHz) AC2 (MHz) AC3 (MHz) AC4 (MHz) AC5 (MHz)

FBC 11.14 6.04 158.8 1137.2 6022.4
SSA 21.03 231.5 280.6 1327.7 5781.5
OSA (k−) 162.8 254.8 565.6 1389.2 5474.4
OSA (k+) 122.8 175.7 24.67 1396.0 6119.0

for AC1–AC4, respectively. They show the dispersion relation
for the values of wave vector and frequency relative to the AC
location (kAC, fAC), which is defined separately for each AC in
the following way — kACn represents the wave vector of the
local minimum of Eq. (20), while fACn represents

fACn = fn
(
kACn

) + fn+1
(
kACn

)
2

. (24)

The values of the AC size for each AC type can be found in
Table I. AC1 [Fig. 2(f)] exhibits a negligible size for the FBC
and SSA systems, but a more significant size of 162.8 MHz
for negative and 122.8 MHz for positive wave vectors in the
OSA system. As the dispersion relations for FBC and SSA are
symmetrical, the AC sizes are always equal for both negative
and positive wave vectors. The size of AC2 [Fig. 2(g)] remains
small only in the FBC system, whereas it opens up in the SSA
and OSA systems, reaching sizes larger than AC1. In the OSA
system, there is a slight asymmetry between the negative and
positive wave-vector range. In the case of AC3 [Fig. 2(h)], it
opens up for all the considered cases. The most interesting
case is present for the OSA system. In the range of negative
wave vectors, this AC is large, whereas in the range of positive
wave vectors, it is very small, measuring only 24.67 MHz.
AC4 is much larger than lower-order ACs, having a size above
1 GHz, however the size is very similar in all of the systems
[Fig. 2(i)]. AC5 shows a similar behavior to AC4, with its
size being even larger, measuring above 5 GHz. To explain
the complex behavior of the sizes of different ACs, we need
to investigate the distribution of the dynamic magnetization of
the SW modes for all systems.

B. Mode profiles

The surface anisotropy has a significant impact on the
dynamic magnetization distribution of SW modes, with mode
profiles shown in Fig. 3. First, we present the profile of the
lowest-frequency mode at k = 0 in Fig. 3(a). Due to the
low external field, the spin precession is strongly elliptical
with the domination of the in-plane mx component. In the
case of FBC (blue lines), the mode is uniform throughout
the thickness. It is in line with DE theory, as for k = 0, it
is not interacting with PSSW modes. The negative surface
anisotropy leads to the reduction of the SW amplitude close to
the film boundary. The mode is symmetrical for SSA, while
for OSA it becomes asymmetrical. Interestingly, although
the surface anisotropy affects directly only the out-of-plane
mz component, the in-plane mx component is also impacted.
However, in the dipole-dominated low-wave-vector regime,
the effect of surface anisotropy is generally small. The im-
pact on the PSSW modes (not shown here) is even smaller.
However, the anisotropy has a substantial effect on the mode

profiles in the exchange-dominated large-wave-vector region,
as evidenced in Fig. 3(b) for the lowest frequency mode at k =
−5 × 108 rad/m. In both the SSA and OSA cases, the mode
amplitude is significantly lower near the boundary with sur-
face anisotropy in comparison to the FBC case. Interestingly,
in this case, the mz component exceeds the mx component, and
the precession is close to circular.

In Figs. 3(c) and 3(d), profiles of the third-lowest mode
are shown at k between AC2 and AC3 for the negative
[k = −2.5 × 106 rad/m, Fig. 3(c)] and positive [k = 2.5 ×
106 rad/m, Fig. 3(d)] wave vectors. The mode has a character
of a DE mode, although the first and second terms of Eq. (13)
connected with wave vector q1 also have a significant impact
on the mode shape, which results in the sinusoidal character of
these profiles. Their contribution is enhanced when the surface
anisotropy is present. The mx component is larger than the mz

component, but the precession is less elliptical than at k = 0.
For both FBC and SSA cases, where the boundary conditions

FIG. 3. Distribution across the film thickness of dynamic mag-
netization components mx (solid lines) and mz (dashed lines) for
(a) a first mode for wave vector k = 0, (b) a first mode for wave
vector k = −5 × 108 rad/m, (c) a third mode for wave vector k =
−2.5 × 106 rad/m, and (d) a third mode for wave vector k = 2.5 ×
106 rad/m. Mode profiles are presented for a system with FBC (blue
lines), SSA (orange lines), and OSA (green lines). Plots present
numerical simulation results only, which are in agreement with ana-
lytical results.
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FIG. 4. The AC size � fAC as a function of film thickness L for the system with (a) FBC, (b) SSA, and OSA for (c) negative and (d) positive
wave vector k. Odd-numbered ACs are shown with solid lines, even-numbered ACs with dashed lines. The y-axis is in the logarithmic scale.
Plots present results of numerical simulations.

are identical on both surfaces, the mode profiles for opposite
wave vectors are their mirror images. However, this is not
true for OSA as the mode profiles differ between negative and
positive wave vectors. For negative wave vectors [Fig. 3(c)],
the contributions from the first and second terms in Eq. (13)
are significantly stronger for both mx and mz components.

C. Analysis of thickness dependence

In the next step, we present a detailed analysis of the impact
of the surface anisotropy on AC formation. First, we study the
effect of the film thickness L on the AC size � fAC in four
cases—FBC [Fig. 4(a)], SSA [Fig. 4(b)], and OSA for both
negative [Fig. 4(c)] and positive [Fig. 4(d)] wave vector k. In
general, the increase of film thickness results in an increase
in the number of ACs. This phenomenon is well-explained
by the frequency-limit criterion. The thickness has no impact
on the maximum DE frequency f DE

k→∞ [Eq. (21)]. In contrast,
the formula for the PSSW frequency f n

k=0 [Eq. (22)] includes
thickness in the denominator; thus, an increase of thickness
results in a decrease of frequency. This allows for a higher
number of PSSW modes to satisfy the frequency-limit crite-
rion, resulting in more ACs. Another relevant effect is that the
AC size decreases with an increase of thickness.

Figure 4 shows that the rate of the AC-size decrease de-
pends on the boundary conditions and the parity of the AC
number. In the FBC system [Fig. 4(a)], the AC size decreases
rapidly, but much faster for even-numbered ACs than for
odd-numbered ACs. In the case of SSA [Fig. 4(b)], the rate
of decrease for odd-numbered ACs is slightly smaller, but for
even-numbered ACs the change is significant; in this case, the
decrease is much smaller compared to the odd-numbered ACs.
In the OSA system [Figs. 4(c) and 4(d)], the rate of decrease is
similar across all ACs and comparable to the even-numbered
ACs in the SSA system. This effect, which depends on parity,
originates from the symmetry of modes and boundary con-
ditions. Due to the dominant contribution of the k-dependent
term in the magnetization-profile shape, the DE mode has a
symmetry closer to the odd-numbered PSSW modes, which
are connected with the odd-numbered ACs. In the case of
FBC, there is no additional source of symmetry breaking and,
therefore, odd-numbered ACs are larger. On the other hand,

SSA causes a symmetric disturbance of all modes, primar-
ily affecting the dynamic-magnetization amplitude in close
proximity to the surface. Odd-numbered PSSW modes have
opposite amplitude on the opposite boundaries, therefore the
effect of the anisotropy on the mode symmetry cancels out. On
the other hand, both the DE mode and even-numbered PSSW
modes exhibit the same amplitude on the opposite surfaces, so
the anisotropy breaks the symmetry of these modes and, as an
effect, these modes induce larger ACs. In the case of OSA,
the asymmetry of the anisotropy generates the asymmetry
in the mode profiles, leading to large ACs in all cases. An
explanation based on a simplified model of mode profiles is
provided in Appendix B.

The final effect is present only in the OSA system in the
positive wave-vector k range [Fig. 4(d)]. It is the presence
of a local minimum of AC size with a change of thickness.
Interestingly, this effect only occurs for odd-numbered ACs.
Upon analyzing this effect, one may question whether this
local minimum reaches zero, or in other words, whether such a
critical film thickness exists for which AC does not occur, i.e.,
the mode crossing is present. Obviously, the numerical study
of the AC size cannot provide a definite answer while we were
not able to derive it from the analytical model. Nevertheless,
the mode profiles analysis can resolve this issue.

The closeup to the local minimum of the AC1 [Fig. 4(d),
solid blue line] is shown in Fig. 5(a). In this case, the step
in simulation was 0.2 nm. The minimum value of � fAC1 =
1.33 MHz was obtained for a thickness of 42.4 nm. We can
take a look at the magnetization profiles for the first and
second modes at wave vector kAC [the inset plots in Fig. 5(a)]
for the thickness smaller (39 nm, left plot) and larger (46 nm,
right plot) than the thickness of the AC1-size minimum. In
both cases, the mode profiles are very similar, indicating the
superposition of the DE and first PSSW mode. However, the
most important thing to notice is that the modes are inter-
changed. For L = 39 nm, the lower-frequency mode (orange
line) has a higher amplitude at the bottom of the film, while
for L = 46 nm, a higher amplitude is at the top of the film. The
higher-frequency mode (green line) demonstrates the opposite
trend. The detailed analysis of the profiles indicates that this
behavior is connected with each local minimum of � fAC,
i.e., the mode profiles at kAC interchange. According to our
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FIG. 5. (a) The AC1 size � fAC1 as a function of film thickness L
for the system with OSA for positive wave vector k—the close-up of
Fig. 4(d) to the AC1 local minimum in a small-thickness range. Inset
plots show the magnetization profiles of first (orange line) and second
(green line) mode at kAC1 for the thickness of 39 nm (on the left) and
46 nm (on the right). (b) Dispersion relation of three lowest modes
for the system with OSA for positive wave vector k for a thickness
of 42.4 nm. Inset in the bottom-right corner: the close-up to the
AC1 with marking of three wave vectors: kL = 4.853 × 106 rad/m,
kAC = 5.033 × 106 rad/m, and kR = 5.2 × 106 rad/m. Inset at top:
magnetization profiles of first (orange line) and second (green line)
mode at kL (left), kAC (center), and kR (right). Plots present results of
numerical simulations.

analysis, it indicates the existence of a critical thickness value
LC where a crossing occurs instead of AC, indicating the
absence of a gap between the first and second mode. This
observation suggests the possible occurrence of an accidental
degeneracy in the system [50,51], meaning that there are two
solutions with the same values of wave vector and frequency.

Another observation concerns the system with the low-
est value of � fAC1 found for the thickness of 42.4 nm. Its
dispersion relation is shown in Fig. 5(b). The AC1 is not
visible in the full dispersion. Interestingly, the AC1 is still
too small to be visible even after a close-up of the AC1
vicinity (inset plot in the lower right corner). To study the
mode profiles in the vicinity of AC1, we chose three wave
vectors: kAC = 5.033 × 106 rad/m, kL = 4.853 × 106 rad/m,
and kR = 5.2 × 106 rad/m. The mode profiles are shown in
the inset plot at the top part of Fig. 5(b). For kAC (middle plot),

the profiles are similar to the case of L = 39 nm. It suggests
that the critical value of the thickness LC > 42.4 nm. In the
case of kL (left plot), the profile of the first mode (orange
line) has a character of the DE mode with a small amplitude
reduction at the bottom due to the surface anisotropy. The
second mode (green line) has the character of the first PSSW
mode. This mode has a slightly larger amplitude at the bottom
than at the top. The modes at kR (right plot) have the same
character as the modes at kL, but their order is reversed. It
clearly shows that far from the AC (where f2 − f1 
 � fAC1),
the modes have the same character on both sides of the AC, as
if the interaction between them is negligible. It is worth noting
that this interchange is not so clear in the case in which � fAC

is relatively large. In this case, the intermixing of the effects
of the wave-vector dependence and the short distance between
the ACs relative to their size leads to a significant change in
the mode profiles.

D. Analysis of surface-anisotropy-constant dependence

The analysis presented above was done for the case in
which the surface anisotropy constant Ks has a negative value,
resulting in the partial-pinning condition for the out-of-plane
dynamic component of the magnetization. Now we can look
at the case in which Ks is positive, so the magnetization
amplitude close to the surface is enhanced. The dispersion
relation for the system with SSA for K t

s = Kb
s = 2500 µJ/m2

is shown in Fig. 6(a). The small-k range is comparable to the
case of negative Ks. However, for about k = 107 rad/m, the
DE mode reaches the local maximum at about 23 GHz and
obtains negative group velocity. This effect is analogous to
the effect of the volume perpendicular magnetic anisotropy
[52]. On its way, the DE mode produces additional ACs,
which did not occur in the case of FBC and negative Ks. The
frequency difference between the adjacent modes [Fig. 6(b)]
shows that additional ACs are present for the first, second, and
third PSSW modes. These ACs are marked with the letter “x.”
Also, an AC5 is present. However, it is not related to the AC5
occurring for negative anisotropy, therefore, it is also marked
with “x.”

Next, we study the AC size as a function of the surface
anisotropy constant Ks for the case of SSA [Fig. 6(c)] and
OSA for negative [Fig. 6(d)] and positive [Fig. 6(e)] wave vec-
tor k. We calculated it numerically in the range from −3000
to 3000 µJ/m2 with a step of 100 µJ/m2. Almost all curves
have a minimum similar to the one present in Fig. 4(d). A
detailed analysis of the mode profiles agrees with the pre-
vious observation—in each case, the mode profiles at kAC

interchange, so we expect that for a critical value of Ks, a
crossing between modes should occur. The position of the
minimum depends on the AC parity. AC2 has the smallest
size at Ks = 0 (however, we expect the critical value to be very
low, i.e., |Kcritical

s | < 50 µJ/m2). The odd-numbered ACs (AC1
and AC3) have the smallest size for positive Ks in the system
with SSA and OSA at negative k, while for the system with
OSA at positive k, the smallest value occurs for negative Ks.
Interestingly, for the system with OSA, Kcritical

s of the same AC
is different for the positive and negative wave-vector range,
which means that we can get a situation in which the AC is
present only on one side of the dispersion relation, while on
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FIG. 6. (a) Dispersion relation of the lowest six modes of the system with SSA for Ks = 2500 µJ/m2. (b) Frequency difference between
the neighboring modes of the system with SSA presented in (a). The x-axis is in the logarithmic scale. (c)–(e) The AC size � fAC as a function
of the surface anisotropy Ks for the system with (c) SSA and OSA for (d) negative and (e) positive wave vector k. Odd-numbered ACs are
shown with solid lines, even-numbered ACs with dashed lines, and second-order ACs with dotted lines. The y-axis is in the logarithmic scale.
Plots present results of numerical simulations.

the opposite side a crossing will be present. In general, the
AC tends to have a larger size for positive surface anisotropy
than for negative surface anisotropy of the same value. In
addition, we can see that for a wide range of positive surface
anisotropy, additional ACs (marked with the letter “x”) occur
in all systems. Their source lies in the negative-slope range of
the dispersion relation, as discussed above. Their minima also
follow the rule of the mode-profile interchange, so we should
expect these minima to go to zero as well.

E. Analysis of external-magnetic-field dependence

Finally, the effect of the external magnetic field B0 on the
AC size is shown in Fig. 7. The ACs have been calculated
in the field range between 10 and 500 mT with a step of
10 mT. Almost all ACs are increasing with the increase of
the external field. This observation correlates with the fact that
kAC also increases with the increase of external field. Then, the
k-dependent terms in the DE-mode profile [Eq. (13)] give a
stronger contribution, and the profile asymmetry is increased,
resulting in a stronger interaction with PSSW modes and
a larger AC size. The most remarkable example is AC4 in
the FBC system, which increases by a factor of 4.06 in the
investigated field range. On the other hand, AC5 in the SSA
system increases by only 3% in the same range. Interestingly,
in the OSA system, the local minimum for the AC3 occurs in
the positive wave-vector range. The lowest detected value is
0.94 MHz at 280 mT. This minimum also has the source in the
mode-profile interchange at kAC, indicating the closing of the

AC gap. In the direction of lower fields, the local maximum is
present for 100 mT with the AC size of 27.4 MHz, while for
higher fields it increases up to 120 MHz in the upper limit of
the study of 500 mT. The results show that the external field
provides a simple way to control the AC size, which is the
easiest source of control from the experimental point of view.

IV. CONCLUSIONS

In this article, we provide a comprehensive investigation
of the SW dynamics in the ferromagnetic film in the DE
geometry in the presence of surface anisotropy with the use of
an analytical model and numerical simulations. We compare
three different cases: free boundary conditions, symmetri-
cal surface anisotropy, and one-sided surface anisotropy. We
show that the surface anisotropy significantly increases the
size of the AC between DE and PSSW modes. In the case of
OSA, the mirror symmetry breaking leads to the asymmetrical
dispersion relation with respect to the wave vector k, which
particularly affects the AC size. The surface anisotropy also
has a strong influence on the shape of the mode profiles.

We have studied in detail the impact of various parameters
(i.e., film thickness, surface anisotropy constant, and external
magnetic field) on the AC size. In general, the ACs shrink with
the increase of film thickness or the decrease of the external
magnetic field. Also, the parity of the AC has a strong influ-
ence on the AC size. For a large positive surface anisotropy
constant, the mode of DE character has a nonmonotonic dis-
persion relation, which leads to the appearance of additional
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FIG. 7. The AC size � fAC as a function of the external magnetic field B0 for the system with (a) FBC, (b) SSA, and OSA for (c) negative
and (d) positive wave vector k. Odd-numbered ACs are shown with solid lines, even-numbered ACs with dashed lines. The y-axis is in the
logarithmic scale. Plots present results of numerical simulations.

ACs for large wave vectors. In most cases, the increase in
anisotropy leads to the increase in AC size. Interestingly, we
found that under certain conditions, the AC can close and
turn into a crossing. This phenomenon, known as accidental
degeneracy, occurs for some particular ACs when the value
of the surface anisotropy constant, the layer thickness, or the
external magnetic field is changed. In the system with SSA,
it occurs for both negative and positive wave vectors, while
in the system with OSA it occurs only on one side of the
dispersion relation for a given set of parameters. The transi-
tion through the accidental degeneracy point in any parameter
space is always associated with the exchange of the order of
the mode profiles in the AC region. It is worth noting that the
results shown in the paper are calculated for typical material
parameters of CoFeB, but the presented effects are universal
and should also occur for different materials.

One can think about the experimental verification of the
theoretical results presented in this paper. The effect of the
surface anisotropy on the dispersion relation was already pre-
sented in Vaňatka et al. [12] for a Ta/CoFeB(100 nm)/vacuum
system. It uses the variable-gap propagating SW spectroscopy
to measure the dispersion relation of the sample. This method
is suitable for the further verification of the theoretical find-
ings. Another suitable method is Brillouin light scattering
spectroscopy, which can measure SW frequency as a function
of k with high resolution and should be useful especially for
thin films. The existence of the maximum wave-vector value,
which can be measured using these methods, does not limit
them as the ACs are present almost exclusively in this range of
wave vector. For a detailed verification, the experiment should
be carried out on different samples having different thick-
nesses of magnetic material (alternatively, it should be possi-
ble to use a wedge sample) and using different contact layers
leading to different values of surface anisotropy constant.

The presence of surface anisotropy in magnetic thin films
is ubiquitous. It is often considered a detrimental feature, but
it can also be an essential property. The ability to control
the anisotropy by voltage as well as to control its effects
by an external magnetic field gives an additional advantage.
Moreover, surface anisotropy of different strength on opposite
surfaces provides a simple way to induce the nonreciprocity
in the structure. We believe that surface anisotropy can be

exploited in magnonic devices where asymmetrical transmis-
sion or the possibility to control the propagation of the SW is
a fundamental property.

The raw data files that support this study are available via
the Zenodo repository [53].
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APPENDIX A: RELATION BETWEEN
WAVE VECTORS k AND q1

Figure 8 shows the wave vector q̃1 = q1L as a function of
wave vector k for three cases studied in the manuscript—FBC
[Fig. 8(a)], SSA with K t

s = Kb
s = −700 µJ/m2 [Fig. 8(b)],

and OSA with K t
s = 0 and Kb

s = −1500 µJ/m2 for negative
[Fig. 8(c)] and positive [Fig. 8(d)] wave vector k. In the low
wave-vector range (up to about 107 rad/m), the plots are very
similar to the dispersion relations shown in Figs. 2(a)–2(d),
including the presence of the gaps between the modes. For
the case of FBC, the PSSW modes are placed exactly at q1 =
nπ/L, while for DE mode the value of q1 is increasing and
produces ACs with PSSW modes exactly as in the dispersion
relation. Nevertheless, the large value of q1 for DE mode is not
decisive for the shape of the mode profile since the coefficients
in Eq. (13) associated with q1 give a smaller contribution
than those associated with k (however, this contribution is not
negligible). For the case of SSA and OSA, values of q1 of
PSSW modes are larger than nπ/L. It is clear that a larger
value of q1 results in a larger frequency of PSSW modes
according to Eq. (10).

In the large-k range for the case of FBC, the values of q1 go
back to nπ/L, but this time for n starting from 0. To achieve
this feat, all modes in the range of the DE mode are decreasing
in the value of q1 in the dipole-exchange regime of the wave
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FIG. 8. Wave vector q̃1 = q1L as a function of wave vector k of
the six lowest modes of a CoFeB film of thickness L = 100 nm with
(a) FBC, (b) SSA with K t

s = Kb
s = −700 µJ/m2, and (c),(d) OSA

with K t
s = 0 and Kb

s = −1500 µJ/m2 for (c) negative and (d) pos-
itive wave vector k in the external magnetic field μ0H0 = 50 mT.
Horizontal dashed black lines represent the values q1 = nπ/L for
n = 1, 2, 3 . . . . To make a comparison with q̃1, on the top axis
we show the modified wave vector k̃ = kL. Plots present analytical
results.

vector k. In the case of SSA and OSA, the values of q1 are
also larger than nπ/L but the difference is much larger than in
the small-k range.

APPENDIX B: TOY MODEL OF INTERACTION
BETWEEN MODES

The interaction between the modes can be explained using
a simplified model of mode profiles. In the case of FBC at
k = 0, the modes form a basis of cosine functions,

mn = An cos

[
nπ

(
z − L

2

)]
, (B1)

FIG. 9. The absolute value of overlapping integral I as a function of film thickness L for the system with (a) FBC, (b) SSA, and OSA for
(c) negative and (d) positive wave vector k. Odd-numbered ACs are shown with solid lines, even-numbered ACs with dashed lines. The y-axis
is in the logarithmic scale.

where m0 represents the DE mode and mn>0 represents nth-
order PSSW modes. An is the normalization constant, which
ensures that

∫ L/2
−L/2 m2

ndz = 1.
Assume that in the regime of small k, the PSSW modes

remain unchanged with the change of the wave vector k, so
their profiles are represented by Eq. (B1). On the other hand,
the DE mode is described by the function

m0(k) = A0ekz. (B2)

In the presence of negative surface anisotropy, the PSSW
modes are “squeezed” to satisfy the boundary conditions. Due
to this effect, their profiles are modified such that q1 = (n +
pn)π/L, where pn is the relative shift of the wave vector. In
the case of SSA, the mode profile is modified in the following
way:

mn = An cos

[
(n + pn)π

(
z − n

n + pn

L

2

)]
. (B3)

In the case of OSA, the mode profile of PSSW modes is
represented by the function

mn = An cos

[
(n + pn)π

(
z − L

2

)]
. (B4)

We assume that the change in DE mode due to surface
anisotropy is negligible. Based on the results in Fig. 8, we
assume that pn has a constant value of 0.03 for all PSSW
modes and all thicknesses.

The strength of the interaction between the modes is de-
scribed by the overlapping integral

Ii j =
∫ L/2

−L/2
mimjdz. (B5)

Figure 9 shows the overlapping integral between the DE
mode and the nth-order PSSW mode at kACn as a function
of layer thickness L. The model qualitatively reproduces the
behavior shown in Fig. 4 showing that the overlapping integral
is connected with the AC size. First, there is an identical
dependence on the PSSW mode parity. In the case of FBC
[Fig. 9(a)], the overlapping integral has a larger value for the
function representing odd-numbered PSSW modes than for
even-numbered PSSW modes. In the case of SSA [Fig. 9(b)],
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the overlapping integral for even-numbered PSSW modes
grows over the integral for odd-numbered PSSW modes,
which only increases slightly compared to the FBC case. In
the case of OSA for negative wave vectors k [Fig. 9(c)], the
value of the overlapping integral is similar for all modes.
In the case of positive wave vectors k [Fig. 9(d)], we have

successfully reproduced the presence of the minima for odd-
numbered PSSW modes shown in Fig. 4(d). The positions of
the minima—at 48, 104, 154, and 204 nm for the first, third,
fifth, and seventh PSSW modes, respectively—are in good
agreement with the positions of the minima in Fig. 4(d) (42,
98, 148, and 200 nm, respectively).
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