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Scaling theory of magnetic order and microwave absorption
in amorphous and granular ferromagnets
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Magnetic order and microwave absorption in amorphous ferromagnets and materials sintered from nanoscale
ferromagnetic grains are investigated analytically and numerically within the random-anisotropy model. We
show that a scaling argument specific to static randomness allows one to make conclusions about the behavior of
a large system with a weak disorder by studying a smaller system with a strong disorder. The breakdown of the
scaling on increasing the strength of the magnetic anisotropy and/or the size of the grain separates two distinct
regimes in magnetic ordering and frequency dependence of the absorbed microwave power. Analytical results
are confirmed by numerical experiments on spin lattices containing up to 107 spins. Our findings should help
design materials with desired magnetic and microwave properties. The method can be extended to other systems
with quenched randomness.
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I. INTRODUCTION

Static randomness is a feature of many systems with a
continuous order parameter. They include amorphous and
sintered magnets (see, e.g., Refs. [1–4] and references
therein), arrays of magnetic bubbles [5], pinned charge-
density waves [6,7] and flux lattices in superconductors [8,9],
liquid crystals and polymers [10], thin films on imperfect
substrates [11], superfluid 3He-A in aerogel [12–14], and
others. The effect of static disorder on the order parameter is
stronger than the effect of thermal fluctuations [15]. It usually
destroys the long-range order even at zero temperature on a
scale that is inversely proportional to the disorder’s strength.
Consequently, observation of the effect of weak static random-
ness on the long-range order requires a large system. This
often inhibits numerical studies of the effect because they
demand a prohibitively large computing time even with the
use of the most powerful computers. In this paper, using an
example of amorphous and granular ferromagnets described
by the random-anisotropy (RA) model [16], we demonstrate
how this problem can be solved by applying scaling that is
specific to static randomness. Both statics and dynamics of
random magnets will be studied and practical results based
on that scaling method will be derived that must assist exper-
imentalists in designing materials with desired magnetic and
microwave properties.

Theoretical research on amorphous and sintered magnets
has been largely based on the Imry-Ma (IM) concept [15].
Amorphous ferromagnets are obtained by rapid quenching
from the melt of a substance that would become a crys-
talline ferromagnet on slow cooling. This does not allow the
neighboring atoms to develop a crystalline lattice. Neverthe-
less, the neighboring spins still develop parallel orientation
due to the strong overall ferromagnetic exchange. Directions
of local magnetic anisotropy axes are random, however, or

are correlated at short distances determined by the amor-
phous structure factor. The RA strength DR is typically small
compared to the exchange J because magnetic anisotropy is
produced by the relativistic spin-orbit interaction while the
exchange is due to the Coulomb interaction between elec-
trons [2]. Nevertheless, as suggested by Imry and Ma, weak
random pushes from the magnetic anisotropy make the direc-
tion of the magnetization slightly wander from one spin to
the other, disordering it at large distances as in the random
walk problem. The corresponding ferromagnetic correlation
length is R f ∼ (J/DR)2/(4−d )a, with a being the average inter-
atomic distance and d being the dimensionality of the system,
implying the destruction of the long-range order in less than
four dimensions. This magnetic state received the name of the
correlated spin glass (CSG) [2,17,18].

The question of the ground state of the RA model
has never been settled to everyone’s satisfaction. Numerous
studies of systems with static disorder [19–28] that used
renormalization-group, scaling, replica-symmetry-breaking,
and variational methods often suggested types of the ordering
that deviated from the random-walk picture. So did numer-
ical studies [29–35] that assumed full thermal equilibrium.
This effort subsided after it was realized that, from the prac-
tical perspective, the problem of the ground state (or the
low-temperature state) of a metastable system with quenched
randomness and an exponentially large number of local en-
ergy minima was largely irrelevant. Besides, even if the full
thermal equilibrium was achieved, the long-range correlations
would be strongly affected by the presence of topological
defects [36–38]. The low-temperature state of any many-body
system that exhibits hysteresis depends on history and initial
condition.

Ferromagnets, and RA ferromagnets in particular, are a
good example of that [4,39–41]. Since the uniaxial anisotropy,
unlike the magnetic field, has two preferred directions, one
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can argue that the global ordering of all spins into a hemi-
sphere should be preferred energetically in the RA magnet due
to the ferromagnetic exchange. In real experiments, as well
as in the numerical work on systems below four dimensions,
however, the magnetic state of an RA ferromagnet depends on
the initial condition. Starting with a collinear initial condition
(CIC), that is with all spins looking in the same direction,
the minimization of the energy in zero field leads to the state
with a finite magnetization. In contrast, energy minimization
from a random initial condition (RIC), with spins oriented
randomly (which mimics cooling down from a paramagnetic
state), leads to a fully disordered state with the magnetization
wandering on a sphere on the spatial scale R f that decreases
on increasing DR/J . For a magnetized state, that evolved from
the CIC in the absence of the field, R f describes the scale of
wandering of the transversal component of the magnetization.

Until now, computer simulations of the RA problem, lim-
ited by the system size, addressed values of DR/J that were
large compared to DR/J ∼ 10−6–10−3 relevant to disorder at
the atomic scale in amorphous magnets. In this paper, we will
show that, due to the scaling, the physical case of a very small
DR is mathematically equivalent to DR ∼ J . This allows one
to greatly reduce the computing time when studying the RA
model numerically in application to amorphous ferromagnets.
A similar advantage of the proposed scaling must exist for
many other systems with the static disorder. For a granular
ferromagnet, the effective DR can be large. We shall demon-
strate that there exists a critical value of DR/J , that is, a critical
grain size, at which the scaling breaks down and the behavior
of the RA system changes qualitatively.

The above picture relates to the static properties of ran-
dom magnets that have been intensively investigated in the
past. By comparison, studies of their dynamic properties
were scarce. They were mainly focused on the ferromag-
netic resonance [42] (FMR) for which there are experimental
data [43–47], and on the localization of spin modes [48–59]
that has been reported in various magnetic systems with static
disorder [60–66].

More recently, it was shown [67–70] that nonconducting
amorphous ferromagnets, or granular materials composed of
coated magnetic particles of size below the skin depth, can
be promising systems for strong broadband microwave ab-
sorption. In this paper, we apply the scaling method to make
predictions about the dependence of the absorbed microwave
power on frequency, RA, and the size of the grain. We test
these predictions in numerical experiments using the model
of atomic spins on the lattice with RA and obtain good agree-
ment with the scaling theory The numerical method we used
is described in detail in Refs. [67,68].

The paper is organized as follows. Scaling of the static
properties of the RA magnets is discussed in Sec. II. It is
worked out for an amorphous ferromagnet with the atomic-
scale disorder in Sec. II A), and for a magnet sintered of
nanoscale ferromagnetic grains in Sec. II B. Evidence of the
transition on the strength of the RA and/or the size of the
grain is presented. Microwave absorption by granular ferro-
magnets is studied in Sec. III, with the scaling argument for
the peak frequency presented in Sec. III A and the scaling of
the power absorption worked out in Sec. III B. Our findings
are summarized in Sec. IV.

FIG. 1. Equilibrium spin structure obtained numerically in a two-
dimensional (2D) amorphous ferromagnet with random anisotropy
axes of individual spins and RIC. In-plane spin components are
shown by white arrows. The out-of-plane component is shown by
orange (green) corresponding to positive (negative).

II. MAGNETIC ORDER IN A RANDOM-ANISOTROPY
FERROMAGNET

The RA model reflects the fact that the exchange inter-
action and the magnetic anisotropy are determined by the
local atomic environment. If the exchange is predominantly
ferromagnetic (favoring parallel orientation of neighboring
spins), in the first approximation one can choose a single
constant J for all pairs of neighboring spins. Similarly, one can
choose a single constant DR for the strength of the magnetic
anisotropy for all spins. However, its direction n must be ran-
dom due to the absence of the global crystallographic order.
The profound effect on the magnetic ordering comes from that
random orientation of the anisotropy axes. In what follows we
shall distinguish between an RA magnet with anisotropy axes
disordered at the scale of individual spins, see Fig. 1, and the
magnet sintered from randomly oriented nanocrystallites. We
begin with the first case.

A. Amorphous ferromagnet disordered at the atomic scale

Here we consider an amorphous ferromagnet described by
the RA model in d dimensions with the Hamiltonian

H = 1

2

∫
dd r

ad
[Ja2(∇s)2 − DR(n · s)2], (1)

where s(r) is the unit vector of the dimensionless spin-field
density and n(r) is the unit vector of the magnetic anisotropy
that is assumed to be random on a spatial scale a representing
the average interatomic distance.

The Imry-Ma argument describing the effect of this type
of disorder on magnetic ordering goes like this. Let R f be the
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characteristic distance where the directions of spins begin to
deviate strongly from the ferromagnetic alignment. From the
Hamiltonian (1) the density of the exchange energy per spin
would be of order J (a/R f )2, and the total exchange energy in
a system of size L in d dimensions would be

Eex ∼ J

(
a

R f

)2(L

a

)d

. (2)

If directions of the anisotropy axes were uniformly distributed
on a d-dimensional sphere, the anisotropy energy per spin
would be a constant DR/d due to 〈nin j〉 = δi j/d . The depen-
dence of the anisotropy energy on R f comes from statistical
fluctuations in the distribution of anisotropy axes which define
the direction of average magnetization in the volume of size
R f . They add the term of order Ean ∼ −DR(a/R f )d/2 to the
anisotropy energy per spin, which, in turn, adds

Ean ∼ −DR

(
a

R f

)d/2(L

a

)d

(3)

to the total anisotropy energy. The energy minimum of E =
Eex + Ean on R f is achieved at

R f = kd

(
J

DR

)2/(4−d )

a, (4)

where kd is a d-dependent numerical factor. The ferromag-
netic correlation length R f is finite for all d < 4, no matter
how weak the RA is. Various approximations show that kd is
large compared to 1, so that the condition of validity of Eq. (4),
R f � a, is satisfied even for DR > J . A rough estimate of the
limiting value of DR can be obtained from the condition that
the anisotropy energy of an individual spin, DR, is less than its
total exchange energy 2dJ with the nearest neighbors. Above
that value of the RA, the problem simplifies: directions of
spins are determined by the directions of the local anisotropy
axis.

The dependence of R f on DR/J in two dimensions (a
monolayer), computed on lattices of size 200 × 200 and
500 × 500 is shown in Fig. 2 (The inset shows results of the
computation on a 1000 × 1000 lattice in terms of 10 × 10
spin blocks.) It was obtained from the general formula for
the fluctuations of the magnetization, m = N−1 ∑

i si, in a
finite-size system of N spins. In the absence of a long-range
order

〈m2〉 = 1

N

∑
j

〈si · si+ j〉 = 1

N

∫ ∞

0

dd r

ad
C(r), (5)

with C(r) being the spin-spin correlation function. In 2D for
C(r) = exp (−r/R f )p one obtains [4]

m2 = Kp

πR2
f

Na2
⇒ R f

a
= m

√
N

πKp
, (6)

where K1 = 2 and K2 = 1. Figure 2 was obtained assuming
Gaussian spin-spin correlations but the difference for other
forms of C(r) is a factor of order unity. The functional de-
pendence of R f on DR is not affected by it.

As the magnetization of the disordered system is small
and strongly fluctuating, we performed an averaging of the
data over 32 realizations for each value of DR. At sufficiently

FIG. 2. Dependence of the ferromagnetic correlation length on
the strength of random anisotropy in two dimensions. The inset
shows computation for a larger system in terms of 10 × 10 spin
blocks.

large DR, the agreement of Fig. 2 with the IM theory that
suggests R f ∝ J/DR in 2D is rather good. Deviation at small
DR is due to the finite-size effect that results in the violation
of the condition R f 	 L. The energy barriers and topolog-
ical defects seen in Fig. 1, which are not accounted for in
the IM approximation, might prevent the system from fully
relaxing [37]. The scatter in Fig. 2 from all possible sources is
less than 7%.

Note that it is difficult to study larger systems in terms
of individual spins because the computing time increases
dramatically with the number of spins, especially at small
DR when the energy minimization is very slow. Remarkably,
when we rescale the problem in terms of blocks of spins, the
computing time for a large system reduces drastically and the
agreement with the theory becomes nearly perfect in a broad
range of DR; see the inset in Fig. 2. The scaling proposed
below allows one to avoid lengthy computations with a very
large number of spins and very weak RA.

A remarkable property of the RA model is that it is nonper-
turbative on DR/J . As we show below, the case of DR 	 J is
mathematically equivalent to DR ∼ J . Thus, the RA problem
is a strongly correlated problem regardless of the RA strength.
The only difference is in the ferromagnetic correlation length
R f . On one hand, this makes it difficult to compute the exact
spin-spin correlation function analytically. On the other hand,
it greatly simplifies the numerical work. Indeed, for DR 	 J
of practical interest, R f can be very large. To distinguish such
a state from the long-range ferromagnetic order, one needs to
do computations on a system of size L 
 R f containing a very
large number of spins. Luckily, the mathematical equivalence
of this case to DR ∼ J allows one to have an insight into the
properties of the system by considering a much smaller R f .
With that purpose, instead of considering unit cells of size
a with the local exchange J and the local anisotropy DR, let
us consider blocks of spins of size r satisfying a < r < R f ,
coupled by the exchange Jeff and characterized by the effective
anisotropy Deff . The corresponding rescaled exchange and
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FIG. 3. Magnetic moment per spin in a two-dimensional RA
model, obtained numerically by relaxation from the initial state with
collinear spins.

anisotropy energy become

E ′
ex ∼ Jeff

(
r

R f

)2(L

r

)d

(7)

and

E ′
an ∼ −Deff

(
r

R f

)d/2(L

r

)d

. (8)

Equating the expressions for exchange and anisotropy ener-
gies before and after rescaling, we obtain

Jeff = J
( r

a

)d−2
, Deff = DR

( r

a

)d/2
. (9)

The last equation for Deff is an obvious consequence of statis-
tical fluctuations of anisotropy directions inside the block of
spins of size r. The expression for R f that follows from the
minimization of E ′ = E ′

ex + E ′
an is the same as before,

R f = kd

(
Jeff

Deff

)2/(4−d )

r = kd

(
J

DR

)2/(4−d )

a, (10)

confirming the invariance of the problem with respect to
rescaling to bigger blocks.

Since the scaling requires a < r < R f , it is clear that it
breaks at R f ∼ a, that is, at

DR = D(c)
R ∼ k(4−d )/2

d J (11)

on increasing DR. The practical consequence of this is that,
for any D < Dc, the answer for any global characteristic of
the RA system can be obtained numerically by making the
computation at D = Dc, which should provide an enormous
computational advantage because at D = Dc the condition
R f < L can be satisfied for a relatively small system as com-
pared to a very large system needed to satisfy that condition
at D 	 J .

Figure 3 shows the average magnetic moment per spin
of a two-dimensional RA system, obtained by relaxing from

the initial state with collinear spins. This can be achieved by
aligning all spins in a strong magnetic field and then switching
the field off. As soon as the condition R f 	 L is satisfied,
the curves in a broad range of DR tend to a horizontal line
corresponding to the universal value of m = 0.715 per spin,
which confirms the scaling property of the RA model demon-
strated above. Since R f increases as DR goes down, the scaling
region broadens with increasing the size of the system. The
scaling breaks at the critical value of the RA that is close to
D(c)

R = 5J . Substituting it into the fit R f /a = 11(J/DR) shown
in Fig. 2, we get R f ∼ 2a for the value of the ferromagnetic
correlation length below which the scaling breaks down. On
increasing DR the magnetic moment per spin tends to m = 0.5
as is expected for three-component spins directed randomly in
a hemisphere.

Similar formulas can be easily generalized for the RA film
of finite thickness h. Here the exchange energy per spin re-
mains the same, J (a/R f )2, but the anisotropy energy becomes
modified by statistical fluctuations in the direction normal to
the film. This adds the factor (a/h)1/2 to the formula (9) for
Deff with d = 2, making the anisotropy energy per spin of the
film −DR(a/h)1/2(a/R f ). The minimum of the total energy is
achieved at

R f

a
∼

(
h

a

)1/2 J

DR
. (12)

This formula is valid for h < R f . At h = R f it gives

R f

a
∼

(
J

DR

)2

, (13)

as it should be in three dimensions.

B. Granular ferromagnet

The scaling argument that is similar to the one presented
in the previous subsection can be developed for a granu-
lar ferromagnet sintered from nanocrystals. In practice, this
problem introduces another source of randomness due to the
random shape and size of the nanocrystals. Here we consider
a model of a granular ferromagnet made of identical densely
packed nanocrystals (see Fig. 4) with randomly oriented easy
anisotropy axes. We believe that such a simplified model
correctly catches static and dynamic properties of sintered fer-
romagnets. Due to the same anisotropy strength and direction
for all spins inside the individual grain, it permits rigorous
rescaling from atomic spins to the spins of the grains that can
be tested numerically.

The argument goes like this. Keeping the spin density s2 =
1 for the grains, Hamiltonian (1) can be rescaled by writing it
in terms of the rescaled exchange J ′ and anisotropy D′

R acting
on the spins of the grains of size Ra,

H = 1

2

∫
dd r

Rd
a

[
J ′R2

a(∇s)2 − D′
R(n · s)2

]
. (14)

Hamiltonians (1) and (14) can be understood as contin-
uous limits of the corresponding discrete problems with
atomic and grain spins. Comparing Eq. (14) with the original
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FIG. 4. Spin structure of a ferromagnet sintered from randomly
oriented nanograins having the same anisotropy direction for all
spins inside the grain. The RIC was used. The color code is the same
as in Fig. 1.

expression (1) for Ra = a, we obtain

J ′ = J

(
Ra

a

)d−2

, D′
R = DR

(
Ra

a

)d

(15)

Notice the difference from Eq. (9) in the scaling of the
anisotropy constant. It arises from the fact that for the atomic
disorder the direction of the local anisotropy axis fluctuates
within the block of size r, while for the grains it is uniform
inside the grain of size Ra.

For the atomic disorder defined by Ra = a, the ferro-
magnetic correlation length is given by Eq. (4). The same
argument must apply to the blocks of spins of size Ra. This
gives

R f

Ra
= kd

(
J ′

D′
R

)2/(4−d )

= kd

(
J

DR

)2/(4−d )( a

Ra

)4/(4−d )

,

(16)

R f

a
= kd

(
J

DR

)2/(4−d )( a

Ra

)d/(4−d )

. (17)

The ferromagnetic correlation length goes down as 1/Ra in
two dimensions, and as 1/R3

a in three dimensions.
The requirement that R f cannot go below a establishes the

range of validity of the above formulas on the size of the grain:

Ra

a
< k2

(
J

DR

)
=

(
R f

a

)
Ra=a

(18)

in two dimensions, and

Ra

a
< k1/3

3

(
J

DR

)2/3

=
(

R f

a

)1/3

Ra=a

(19)

FIG. 5. Dependence of the ferromagnetic correlation length on
the size of the grain, illustrating the crossover from the collective
magnetic behavior to the independent magnetic ordering within indi-
vidual grains in a two-dimensional granular ferromagnet.

in three dimensions. As R f decreases on increasing Ra, this
condition breaks at R f (Ra) ∼ Ra. At that point, the system
becomes equivalent to an array of densely packed, weakly
interacting, single-domain ferromagnetic particles of size Ra

with R f = Ra. The crossover of the granular ferromagnet
from the collective behavior extending over many grains to
the independent magnetic ordering within individual grains is
illustrated in Fig. 5.

III. MICROWAVE ABSORPTION

In this section, we will show how the scaling arguments
explored in the previous section help understand microwave
absorption by RA magnets. In numerical work, we solve the
discrete model with atomic spins. All computations use the
fluctuation-dissipation theorem as explained in Ref. [68].

A. Peak frequency

In Ref. [67] we argued that the absorption of microwaves
by the RA magnet is dominated by excitation modes that
can be interpreted as the FMR of regions of size R f . In a
crystalline ferromagnet with the anisotropy constant D this
would correspond to the FMR frequency D/h̄ in a zero field
if dipole-dipole interactions were neglected. Along this line,
the absorption peak in an amorphous ferromagnet must be
determined by statistical fluctuations of the anisotropy inside
ferromagnetically correlated regions. The corresponding fre-
quency is given by (DR/h̄)(a/R f )d/2, which was confirmed by
numerical work for d = 1, 2, 3.

Generalization for the peak frequency in a granular ferro-
magnet is straightforward:

ωmax = DR

(
Ra

R f

)d/2

. (20)
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FIG. 6. Frequency dependence of the absorbed microwave power
for a 2D system composed of 3 × 3 grains with DR/J = 0.1. Bézier
functions were used to draw a smooth curve.

Substituting here Eq. (16), we obtain

ωmax = DR

kd/2
d

(
DR

J

)d/(4−d )(Ra

a

)2d/(4−d )

, (21)

which gives

ωmax = DR

k2

(
DR

J

)(
Ra

a

)2

(22)

in two dimensions and

ωmax = DR

k3/2
3

(
DR

J

)3(Ra

a

)6

(23)

in three dimensions.
Notice a very strong dependence on DR/J and Ra in three

dimensions. For physical values DR that are smaller than J
by orders of magnitude, one should choose sufficiently large
grains if the absorption in the GHz range is desired. As the
grain size Ra approaches the domain wall thickness a

√
J/DR,

the FM correlation length R f for all d approaches Ra, and, as
follows from the above equations, the peak frequency in both
two and three dimensions tends to the FMR frequency DR/h̄
of the grain. Frequency dependence of the absorbed power for
a 2D system composed of 3 × 3 grains with DR/J = 0.1 is
shown in Fig. 6. The numerical method is described in detail
in Ref. [68]. For small DR local modes [69] are sparse and
the statistics is not great even for system sizes as large as
300 × 300. We used Bézier functions [71] to draw a smooth
curve. Figure 7 shows the frequency dependence of the ab-
sorbed power by a granular ferromagnet with different grain
sizes. For small grains, the dependence of the peak frequency
on the size of the grain, shown in Fig. 8, follows the theoretical
formula (22). In agreement with the theory, it switches to
ωmax = DR/h̄ for large grains. The peak in Fig. 7 becomes
narrow, tending to the delta function at Ra → ∞ in the ab-
sence of dissipation.

FIG. 7. Frequency dependence of the absorbed microwave power
for different grain sizes computed on a 300 × 300 spin lattice at
DR/J = 0.1. Bézier functions for raw data were used.

B. Power absorption

In Ref. [67] we showed that

P ∼ h2
0N

D2
R

J2

(
J

ω

)(4−d )/2

, (24)

(with h0 being the amplitude of the microwave field and N
being the total number of spins) provides a good fit for the
microwave absorption at ω > ωmax by a d-dimensional RA
ferromagnet with N spins and atomic-scale disorder. Cases of
d = 1, 2, 3 were studied numerically. Equation (24) also ex-
plains the numerical finding that the peak power at ω = ωmax

is weakly dependent on DR in all dimensions. Indeed, for the
atomic disorder with DR 	 J , substituting Eq. (21) at Ra = a
into Eq. (24) gives Pmax ∼ h2

0N , which is independent of DR.
The proportionality of the power to D2

R/ω in two dimensions
and weak dependence of the peak power on DR are illustrated
by Fig. 9.

FIG. 8. Dependence of the peak frequency in the absorption of
microwaves by a granular ferromagnet on the size of the grain.
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FIG. 9. Scaled dependence of the absorbed power on the com-
bination of frequency and RA strength in two dimensions. The
unscaled data are taken from Fig. 4 of Ref. [67].

We shall now try to come up with the dependence of the
power at ω > ωmax on the size of the grain in a granular
ferromagnet by writing it in the form

P ∼ h2
0

J

(
N ′ D

′2
R

J ′

)(
J

ω

)(4−d )/2

, (25)

with the rescaled exchange and anisotropy constants given by
Eq. (15) and

N ′ = N

(
a

Ra

)d

(26)

for the number of grains. The reason we are rescaling that par-
ticular combination N ′D′2

R/J ′ is that it determines the power
in the second order of the perturbation theory on RA. The
rescaling yields

D′
R

2

J ′ N ′ = DR
2

J
N

(
Ra

a

)2

, (27)

so the power absorbed by the grains is

Pg ∼ h2
0N

D2
R

J2

(
Ra

a

)2( J

ω

)(4−d )/2

. (28)

Substituting here Eq. (21) for ω, we obtain for the peak power

(Pg)max ∼ h2
0N

(
a

Ra

)d−2

. (29)

In two dimensions it does not depend on Ra. In three dimen-
sions it scales as a/Ra. We speculate that the weak dependence
of the peak on the grain size at Ra < R f , seen in two dimen-
sions in Fig. 7, may be due to energy barriers and topological
defects unaccounted for in the theoretical model.

We can double check these formulas by computing the in-
tegral power (IP),

∫
dω P(ω), for which we have independent

theory confirmed by numerics; see Ref. [70]. The bulk of the

IP comes from ω > ωmax. For d = 2 we obtain from Eq. (28)

(IP)2 ∼ h2
0N

D2
R

J2

(
Ra

a

)2

J
∫ J

ωmax

dω

ω

= h2
0N

D2
R

J

(
Ra

a

)2

ln(J/ωmax)

= h2
0N

D2
R

J

(
Ra

a

)2

ln

[
C

(
J

DR

)(
a

Ra

)]
(30)

with C being the integration constant of order unity.
This is exactly what we had for the IP in two
dimensions [70]. For d = 3 we get

(IP)3 ∼ h2
0N

D2
R

J2

(
Ra

a

)2√
J

∫ J

ωmax

dω√
ω

∼ h2
0N

D2
R

J

(
Ra

a

)2

,

(31)

which is again exactly what we had for the IP in three dimen-
sions [70].

Thus, with good confidence, the scaling of the absorbed
power with the frequency and the grain size for a granular
ferromagnet in d dimensions at ω > ωmax is given by Eq. (28).

IV. DISCUSSION

The RA model has been used in the past to describe amor-
phous and sintered ferromagnets. Regardless of the strength
DR of the RA that produces the static random potential for
the spins locally ordered by the ferromagnetic exchange J ,
the model is nonperturbative on DR/J . In amorphous ferro-
magnets, this parameter is very small due to the relativistic
smallness of the magnetic anisotropy. This always hindered
numerical work on real systems because it required a linear
size of the system that is large compared to the ferromagnetic
correlation length, which scales as J/DR in two dimensions
and (J/DR)2 in three dimensions. Consequently, even a very
large (by physical standards) value of DR/J , such as 10−3,
requires modeling of systems that consist of the prohibitively
large number of spins.

Here we have demonstrated that, due to the existence of
the scaling specific to static randomness, the RA model of
an amorphous ferromagnet with the atomic-scale disorder
and DR 	 J can be mapped onto the model with DR ∼ J .
This makes static magnetic properties of the magnet, such as
magnetization, invariant with respect to DR/J up to a critical
large value of that ratio. Consequently, one can make con-
clusions about the behavior of a large system with realistic
small values of the magnetic anisotropy by modeling much
smaller systems with DR ∼ J . It must somehow be related to
the fractal structure of the random walk which is behind the
Imry-Ma argument, that is the invariance of the random walk
with respect to the rescaling of its trajectory to a map with a
different scale.

The scaling concept is also extremely helpful in application
to granular ferromagnets for which the effective anisotropy
constant D′

R scales as the size of the grain squared in two
dimensions (thin film) and as the size of the grain cubed in
three dimensions, while the exchange J ′ equals the original
exchange constant in two dimensions and scales linearly on
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the grain size in three dimensions. This, in principle, permits
any values of the ratio J ′/D′

R in experiments with granular
ferromagnets depending on the grain size. The scaling breaks
down at the critical grain size of the order of the domain wall
width in a conventional ferromagnet, δ = a

√
J/DR. Above

such a grain size the behavior of the granular magnet changes
qualitatively. The ferromagnetic correlation length, which was
going down on increasing the grain size below the critical size,
begins to grow with the grain size above the critical size. As a
result, the static properties of the granular magnet switch from
soft to hard magnetic behavior.

Using the scaling arguments, we also studied the ab-
sorption of microwave power by the granular ferromagnet.
The peak frequency is expressed in terms of the magnetic
anisotropy and the size of the grain, and was tested in a numer-
ical experiment. The dependence of the power on frequency,
magnetic anisotropy, and the size of the grain were obtained
analytically and numerically, with good agreement between
the two methods. Our results apply to insulating amorphous
materials or materials made of coated metallic ferromagnetic
grains of size which is small compared to the skin depth,
which would typically be in the submicron range for the
microwaves.

The breakdown of the scaling at the critical value of the
grain size, besides its effect on the static properties, has a dra-
matic effect on microwave absorption. On increasing the grain
size above the critical value, the absorption peak narrows and
increases in height. It makes the grain size of the order of the
domain wall width (in the ferromagnetic material of the grain)
optimal for achieving high absorption and the broad band at
the same time. These predictions can be tested on recently
synthesized numerous insulating amorphous/nanocrystalline
magnetic materials [72,73].

Scaling concepts developed in this paper can be used for
other systems with quenched randomness. They should facil-
itate numerical studies of disordered materials by extending
conclusions made from the modeling of small systems with a
strong static disorder to large systems with a weak disorder.
In application to random magnets, they should assist material
scientists in manufacturing materials with desired magnetic
and microwave properties.
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