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Achieving multifunctional integration in two dimensions is highly desired for developing next-generation
nanoelectronic devices but remains a challenge. Here, combining the advantages of cold metal and a bipolar
magnetic semiconductor (BMS), three distinct functions, i.e., a spin filter, spin valve, and negative differential
resistance, are simultaneously realized in a cold metal 2H -TaS2/BMS2H -VS2/cold metal 2H -TaS2 lateral
homologous heterojunction, where the BMS 2H -VS2 is controlled by two electric gates placed on the left and
right parts. The spin filter and spin valve effects originate from the bipolar spin-polarized band structure of
2H -VS2, where its carriers’ spin orientation can be easily flipped by shifting the Fermi level into either the
valence or conduction band. Thus, in the junction, the current’s spin polarization (spin up or spin down) and
intensity (high or low conductance) can be switched by adjusting the polarities of the two applied gates: Once
two gate voltages are both positive or negative, the junction works as a spin filter with either a fully spin-down
or fully spin-up polarized current. While the two gate voltages possess opposite signs, the junction’s current
is prohibited due to mismatched spin orientations of carriers in the two parts of 2H -VS2, leading to the spin
valve effect. At the same time, the intrinsic energy gaps around the Fermi level in cold metal 2H -TaS2 and
the band-to-band tunneling of carriers from 2H -TaS2 to 2H -VS2 endow the junction with a significant negative
differential resistance behavior with a large peak-to-valley current ratio.

DOI: 10.1103/PhysRevB.109.054428

I. INTRODUCTION

Two-dimensional (2D) magnetic materials, showing great
potential for enhancing the functionality and improving the
integration density of electronic devices by utilizing the spin
degree of freedom, have attracted extensive research inter-
est [1–4]. Meanwhile, due to their isolated atomic planes,
2D magnetic materials exhibit great opportunities for gate
tunability and integrated flexibility, which is desirable for
next-generation functional spintronic devices [5–7]. In recent
years, some atom-thick magnetic materials were discovered
in experiments, such as FePS3 [8], CrI3 [9], Cr2Ge2Te2 [10],
Fe3GeTe2 [5], and MnSe2 [11]. To develop high-performance
nanospintronic devices, efficient and flexible control of the
carriers’ spin is required. In this aspect, bipolar magnetic
semiconductors (BMSs), whose valence band (VB) and con-
duction band (CB) edges possess opposite spin channels,
offer an ideal platform [12–15]. BMSs can be used to con-
struct bipolar field-effect spin filters and spin valves [13,15].
In BMS-based bipolar field-effect spin filters, 100% spin-
polarized currents with reversible spin orientation can be
generated and controlled by simply applying a gate voltage
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[12,13,16,17]. In BMS-based bipolar field-effect spin valves,
the on and off states of the current can be switched by chang-
ing the polarities of two applied gates [13,18]. To date, several
intrinsic 2D BMSs have been predicted by theoretical calcu-
lations, including monolayer 2H-VS2 and 2H-VSe2 [19,20],
the 2D MnPSe3 nanosheet [21], 2D metal-free B4CN3 [22],
2D metal-organic frameworks [17,23–31], and 2D cluster-
assembled sheets [NH4]3[Fe6S8(CN)6]Cr [32]. Encourag-
ingly, high-quality 2H-VS2 single-crystal nanosheets have
already been successfully synthesized [33,34]. In addition,
room temperature ferromagnetism of monolayer 2H-VS2 has
been experimentally confirmed [34].

Besides exploiting 2D magnetic materials, another route
to improve the integration is to develop multiple-valued logic
(MVL). MVL can transmit more information with fewer in-
terconnect lines between devices than conventional binary
logic by conveying multivalued signals. Thus, it has great
potential to reduce the complexity of modern integrated cir-
cuit design [35,36]. In this aspect, the nonlinear fold-back
I-V characteristics of negative differential resistance (NDR)
devices serve as a promising way to realize MVL applications
[37–39]. Various schemes for achieving the NDR property
in Esaki diodes [40,41], resonant tunneling diodes [42–45],
Gunn diodes [46,47], single-electron transistors [48,49], and
molecular devices [50,51] have been researched. In particular,
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NDR behavior based on band-to-band tunneling mechanism
remains a research hot topic. Band-to-band tunneling is
the quantum tunneling of carriers through a tunneling win-
dow located between two semiconductor regions [52–54] in
which NDR can be induced by a decrease in the available
states of the tunnel current with the increase of bias voltage
[40]. Along with the booming development of 2D van der
Waals heterojunctions, different varieties of 2D heterojunc-
tions exhibit NDR characteristics based on the band-to-band
tunneling mechanism, such as MoS2/WSe2, WSe2/SnSe2,
SnSe2/MoTe2, black phosphorus (BP)/ReS2/HfS2, BP/InSe,
BP/SnSe2, and BP/ReS2 [37,55–60]. However, the peak-to-
valley current ratios (PVCRs) in these heterojunctions are
usually lower than 10 at room temperature. Generally, a large
PVCR is desirable for providing a wide range of middle
states in MVL applications. Recently, it was predicted that
using cold metal MX 2 (M = Nb, Ta; X = S, Se) [61–64]
as an injection source would significantly improve the PVCR
[65,66]. Cold metals, which have intrinsic gaps around the
Fermi level and work like naturally p-type or n-type semi-
conductors [67], are an ideal solution to deliver a large PVCR
owing to the relatively localized electrons around the Fermi
level. As a typical cold metal, 2H-TaS2 has been extensively
studied experimentally and theoretically [64–67].

In this work, by using the cold metal 2H-TaS2 and the
bipolar magnetic semiconductor 2H-VS2, we construct a
2H-TaS2/2H-VS2/2H-TaS2 lateral homologous heterojunc-
tion, where 2H-VS2 is divided into two regions that are
controlled by two different gates. The spin-polarized transport
simulations of the heterojunction show that the spin filter,
spin valve, and negative differential resistance effect can be
realized simultaneously by changing the signs of the two gate
voltages.

II. METHODS

The geometric and electronic structures of 2H-TaS2 and
2H-VS2 are calculated using the projector augmented wave
method, within the framework of density functional theory
(DFT) as implemented in the Vienna Ab initio Simulation
Package (VASP) [68,69]. The exchange-correlation interac-
tion between electrons is described within the generalized
gradient approximation as parameterized by the Perdew-
Burke-Ernzerhof functional [70]. The kinetic energy cutoff
is set to 500 eV. A 15 × 15 × 1 Monkhorst-Pack k mesh
is used. An effective Hubbard term (Dudarev’s method) of
Ueff = 1 eV is added in for the 3d orbitals of V, as adopted in
a previous study [19]. The convergence criterion for the total
energy in the electronic iteration is 1.0 × 10−5 eV. Geometry
optimization is performed until the force acting on each atom
is less than 0.01 eVÅ−1.

The transport properties are explored by using the nonequi-
librium Green’s function DFT method implemented in the
Atomistic Simulation Toolkit (ATK) software package [71,72].
The on-site U correction is set to 1 eV for the V atom to
include the 3d electrons’ correlation effects. The PSEUDODOJO

pseudopotentials [73] with medium basis sets are adopted for
Ta, V, and S atoms. The medium basis sets are generated
by reducing the range of the original pseudoatomic orbitals,
requiring that the change in DFT-obtained total energies does

FIG. 1. Band structures (left panel) and density of states (DOS)
(right panel) of (a) 2H -VS2 and (b) 2H -TaS2. The Fermi levels
are set to zero. (c) The structure of the 2H -TaS2/2H -VS2/2H -TaS2

heterojunction device. (d) Schematic band structures for the left and
right regions of the BMS channel with two gate voltages (VGl, VGr)
applied. EF is the Fermi level of BMS.

not exceed 4 meV/atom [74]. A kinetic energy cutoff of 100
hartrees is set for the real-space grid. The bulk rigid relaxation
method implemented in ATK is adopted to optimize device
configuration: The center region is extracted from the device
with the right end of the unit cell extended by a vacuum
region, as shown in Fig. S1 of the Supplemental Material (SM)
[75]. Then, we fix the atoms of the left electrode extension
and apply a rigid constraint to the atoms of the right electrode
extension while other atoms are fully relaxed. Finally, the
device is reassembled from the relaxed center region. In the
self-consistent calculation, a k-point mesh of 13 × 1 × 180 is
used to calculate the Hamiltonian matrix and density matrix.
To calculate transmission coefficients, a 51 × 1 k mesh is
adopted.

VASP can support high computational accuracy for the
structural and electronic properties of periodic systems, while
the ATK package is ideally suited for dealing with electron
transport calculations for nanoscale devices. It is generally ac-
cepted that the structural and electronic properties of periodic
crystals are studied with VASP before ATK is used to investigate
the electron transport of nanoscale devices [76,77]. Further-
more, we also use ATK to calculate the band structure of the
2H-VS2 monolayer, which is consistent with that calculated
by VASP (as shown in Fig. S2 of the SM [75]).

III. RESULTS AND DISCUSSION

As shown in Fig. 1(a), the 2H-VS2 monolayer is a BMS
with the VB and CB approaching the Fermi level through
opposite spin channels [19]. There are three energy gaps, �1,
�2, and �3, that describe the typical characteristics of BMS
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materials. �2 represents the spin-flip gap between VB and
CB edges from opposite spin channels. �1 and �3 reflect
spin splitting gaps in the VB and CB, respectively. For real
applications, �2 should be relatively small to ensure that it
is feasible to generate carriers in different spin channels by
adjusting the position of the Fermi level via moderate gate
voltages [12]. The 2H-VS2 monolayer has a narrow spin-flip
gap �2 of 0.26 eV, making it an excellent BMS material for
gate-controlled spin transport [12,19].

The band structure of the cold metal 2H-TaS2 is shown
in Fig. 1(b). 2H-TaS2 is a nonmagnetic metal, but unlike
conventional metals, it has an isolated partially occupied
band crossing the Fermi level, where an obvious energy gap
�V/�C appears between the partially occupied band and
its lower occupied VB/upper unoccupied CB band [65–67].
Thus, metallic 2H-TaS2 can work like a naturally p-doped or
n-doped semiconductor.

To gain insights into electronic structure changes in
2H-VS2 and 2H-TaS2 following device formation, we calcu-
late the electrostatic potential and the projected band structure
of the 2H-VS2/2H-TaS2 lateral heterostructure (Fig. S3 of
the SM [75]). The unit cell of the lateral heterostructure is
presented in Fig. S3(c) of the SM [75]. The direction per-
pendicular to the interface of 2H-VS2/2H-TaS2 is set as
the Y direction. The plane-averaged electrostatic potential
V (Y ) is represented by the oscillating black line. The oscil-
lations can be further filtered with the macroscopic averaging
technique as indicated by the red line, which is denoted as
V̄ (Y ). The electrostatic potentials of the isolated 2H-VS2 and
2H-TaS2 are also presented in Figs. S3(a) and S3(b) of the
SM [75]. V̄ (Y ) is flat, with a value of 0 eV in both isolated
2H-VS2 and 2H-TaS2 structures. For the 2H-VS2/2H-TaS2

heterostructure, V̄ (Y ) is nearly flat in the left 2H-VS2 re-
gion, with a value of −0.09 eV, and the right 2H-TaS2

region, with a value of 0.07 eV, but increases smoothly
and linearly across the interface. It is in agreement with
the behavior of metal-semiconductor junctions [78,79]. The
projected band structures show that 2H-TaS2 and 2H-VS2

basically retain their intrinsic electronic characteristics in the
2H-TaS2/2H-VS2 heterostructure: There is an obvious en-
ergy gap above and under the Fermi level in cold metal
2H-TaS2 bands, and the valence and conduction bands of
2H-VS2 carry opposite spin polarizations. Due to the slight
hybridization between 2H-TaS2 and 2H-VS2, the spin-flip
gap �2 of 2H-VS2 is reduced from 0.26 to 0.24 eV. The
valence band maximum in the spin-up channel is closer to
the Fermi level than the conduction band minimum in the
spin-down channel. This indicates that the spin-up carriers
would contribute a greater current than the spin-down carriers
when a small bias voltage is applied.

The structure of the lateral heterojunction device built with
the cold metal 2H-TaS2 and the BMS 2H-VS2 is illustrated
in Fig. 1(c): the left and right metallic 2H-TaS2 are used as
electrodes, and the middle channel is composed of the BMS
2H-VS2, which is further divided into two regions with two
different applied gates. In the relaxed heterojunction device,
the V-S and Ta-S bond lengths are 2.38 and 2.45 Å at the
interface, respectively. The lengths of the V-S and Ta-S bonds
far from the interface are the same as those in the 2H-VS2 and
2H-TaS2 monolayers, which are 2.37 and 2.48 Å, respectively.

The V-S bond is slightly stretched, and the Ta-S bond is com-
pressed at the interface. The two gate voltages are labeled VGl

and VGr. For simplicity, here, we consider only |VGl| = |VGr|.
Figure 1(d) shows a schematic plot of the band shift for the
left and right regions of the BMS channel with the change in
the two gate voltages (VGl, VGr). At VGl = VGr = 0, the Fermi
levels of the left and right regions of the BMS are both in the
spin-flip gap �2, leading to an output current of almost zero.
When VGl = VGr < 0, both Fermi levels of the two regions
of the BMS channel shift down into spin splitting gap �1,
which induces BMS channel conductance with completely
spin-up polarized carriers and currents. If VGl = VGr > 0, both
Fermi levels move up into spin splitting gap �3, and the
conducting carriers and currents change to fully spin down
polarized [12,13]. At VGl > 0 and VGr < 0, the Fermi level
of left BMS moves up, and that of the right BMS shifts
down, which produces completely spin-down carriers in the
left region and spin-up carriers in the right region of the BMS.
Conversely, VGl < 0 and VGl > 0 result in completely spin-up
carriers in the left region and spin-down carriers in the right
region of the BMS. In these two cases, conduction carriers in
the two regions of the BMS channel are mismatched in spin
orientation, leading to nearly vanishing currents, i.e., the off
state. To sum up, once the signs of the two gate voltages are
both negative or positive, a completely spin-up or spin-down
current is generated, which realizes the function of a spin
filter. Furthermore, the on/off state of the heterojunction can
be switched by applying same- or opposite-sign gate voltages,
which equates to the function of a spin valve.

The above analyses are confirmed by our transport sim-
ulations of the heterojunction. The calculated spin-resolved
current vs bias voltage I − Vb curves under different gate
voltages are illustrated in Fig. 2. It is found that with two pos-
itive gate voltages, VGl = VGr = 1 V, the spin-down current
(blue line) passing through the heterojunction is remarkably
larger than the spin-up current (red line). Obviously, at each
bias voltage, the spin-up currents are almost zero, leading
to a 100% spin-down polarization. For example, the spin-up
and spin-down currents are 1.2 × 10−6 and 1.1 × 10−2 µA,
respectively, under a bias voltage of 0.15 V. On the other
hand, with two negative gate voltages (VGl = VGr = −1 V),
the spin-down currents are nearly zero, which results in a
100% spin-up polarization. For instance, under a bias voltage
of 0.15 V, the spin-up and spin-down currents are 2.4 × 10−1

and 1.5 × 10−7 µA, respectively. When the two gate voltages
have different signs (VGl = 1 and VGl = −1 V or VGl = −1
and VGl = 1 V), the spin-up and spin-down currents are both
nearly zero for bias voltage ranging from 0 to 0.15 V. Note
that when the bias voltage increases to 0.2 V or higher, the
current under VGl = 1 and VGl = −1 V becomes significant,
which will be discussed later. Above all, completely spin-
polarized currents with reversible spin polarization and the
on/off state, i.e., the spin filter and spin valve, can be achieved
simultaneously in the heterostructure by tuning the signs of
two applied gate voltages. Figure 2(e) gives the truth table
of the BMS-based spin valve. Furthermore, we calculate the
ratio of on-state to off-state currents of the spin valve with
the increase of two gate voltages. The on/off ratio is calcu-
lated as I++/I−+ at a bias voltage of 0.45 V or I−−/I−+ at a
bias voltage of 0.3 V, where I++, I−−, and I−+ are the total
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FIG. 2. The spin-resolved current vs bias voltage I − Vb curves
under different gate voltages: (a) VGl = VGr = 1 V, (b) VGl = VGr =
−1 V, (c) VGl = 1 and VGl = −1 V, and (d) VGl = −1 and VGl = 1 V.
(e) Truth table of the BMS field-effect spin valve. (f) The value of the
on/off ratio under different gate voltages. I++, I−−, and I−+ are the
total currents with two gate voltages of VGl = VGr > 0, VGl=VGr<0,
and VGl < 0 and VGr > 0, respectively.

currents for VGl = VGr > 0, VGl = VGr < 0, and VGl < 0 and
VGr > 0, respectively. As shown in Fig. 2(f), the on/off ratio
increases significantly with the increase of gate voltages, with
the maximum value reaching 104.

To gain insight into the mechanism of manipulating spin-
polarized currents through the heterojunction, we present the
zero-bias transmission spectra under different gate voltages
in Figs. 3(a), 3(c) 3(e), and 3(g). The zero-bias transmission
spectrum without gate voltages is shown in Fig. S4(a) of
the SM [75]. By applying two positive gate voltages, the
transmission peaks of both spin channels move down to the
low-energy region. With VGl = VGr = 1 V [Fig. 3(a)], the peak
contributed by the perturbed spin-down CB of 2H-VS2 is
just above the Fermi level, while the peak contributed by
the perturbed spin-up VB is away from the Fermi level by
−0.33 eV. When the bias voltage ranges from 0 to 0.15 eV,
only the transmission peak contributed by the spin-down CB
resides in the bias window, resulting in a spin-down on state
of the heterojunction. When two gate voltages are negative,
the transmission peaks of both spin channels move up to the
high-energy region. With VGl = VGr = −1 V [Fig. 3(c)], the
transmission peak contributed by the perturbed spin-up VB
crosses the Fermi level, while the spin-down CB peak is 0.35
eV away. With a bias voltage from 0 to 0.15 eV, the spin-up
VB always makes the dominant contribution to the electron
transport, leading to a spin-up on state of the heterojunction.

When two applied gate voltages have opposite signs, e.g.,
VGl = 1 and VGl = −1 V, all transmission peaks of the left
2H-VS2 part shift to the low-energy region, while the right
2H-VS2 part moves to the high-energy region. Thus, the

carriers’ spin polarization directions in the left and right
2H-VS2 regions will be mismatched. Consequently, there are
no spin-up and spin-down transmission peaks in the energy
range from −0.20 to 0.27 eV for VGl = 1 and VGr = −1 V
and VGl = −1 and VGr = 1 V, as shown in Figs. 3(e) and 3(g).
When the bias voltage is in the range from 0 to 0.15 V, the two
spin channels are both blocked, which leads to an off state of
the heterojunction.

In order to further demonstrate the gate control of the
spin transport, the spin- and spatially resolved projected local
density of states (PLDOS) along the transport direction at dif-
ferent gate voltages is calculated and shown in Figs. 3(b), 3(d),
3(f), and 3(h). The PLDOS without gate voltages is presented
in Fig. S4(b) of the SM [75]. From top to bottom and left to
right, the PLDOS shows the electronic states arranged accord-
ing to their energies and spatial locations, respectively. The
device’s Fermi level is set to zero. Light yellow denotes the
spin-up and spin-down electronic states, while black indicates
no electronic states exist. It is clear that at VGl = VGr = 1 V,
the spin-down CB in the channel region is located just above
the Fermi level, while all the spin-up states remain far away;
hence, the spin-down electrons dominate the transport. At
VGl = VGr = −1 V, the channel’s spin-up VB passes through
the Fermi level, with all spin-down states far away; thus, only
spin-up electrons can transmit. At VGl = 1 and VGr = −1 V,
all states of the left 2H-VS2 channel are below those of the
right 2H-VS2 channel, with only the spin-up VB of the right
2H-VS2 channel crossing the Fermi level, which suggests
that no electrons can pass through at low bias voltage. For
VGl = −1 and VGr = 1 V, only the spin-up VB of the left
2H-VS2 channel crosses the Fermi level, and again, electron
transport through the whole heterojunction is blocked.

It is worth noting that the off state at VGl = 1 and VGr =
−1 V will be switched to the on state with the increase of
bias voltage [Fig. 2(c)]. As a comparison, the off state at
VGl = −1 and VGr = 1 V can remain within the considered
bias voltage [Fig. 2(d)]. In our calculations, the left electrode
is applied with negative bias voltage, − 1

2Vb, while the right
electrode is applied with positive bias voltage, + 1

2Vb. Under
such bias voltage, electron carriers are transferred from the
left electrode to right electrode. At VGl = 1 and VGr = −1 V,
all the spin-up and spin-down energy levels of the left
2H-VS2 channel are below those of the right 2H-VS2 channel
[Fig. 3(i)]. The spin-up VB of the left 2H-VS2 channel is
below the Fermi level, and that of the right 2H-VS2 channel
is just above the Fermi level. Consequently, to pass through
the junction, spin-up electron carriers need to overcome the
energy gap between the left and right 2H-VS2 channels.
Similarly, for spin-down electrons, an energy gap also exists
between the left and right 2H-VS2 channels. In addition,
because the spin-down CB is located above the Fermi level,
an energy barrier emerges between the left electrode and left
2H-VS2 channel. Under the action of bias voltage (coun-
teracted by the gate voltage), all the energy levels of the
left channel move up, and those of the right channel move
down. The energy gap between the left and right channels will
gradually disappear with the increase in bias voltage
[Fig. 3(i)]. Simultaneously, the spin-down energy barrier be-
tween the left electrode and left 2H-VS2 channel will become
thinner step by step [80,81]. Thus, with a large bias voltage,
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FIG. 3. The zero-bias transmission spectra of the 2H -TaS2/2H -VS2/2H -TaS2 heterojunction under different gate voltages: (a) VGl = VGr =
1 V, (c) VGl = VGr = −1 V, (e) VGl = 1 and VGr = −1 V, and (g) VGl = −1 and VGr = 1 V. Here, the blue and red lines stand for the spin-down
and spin-up channels, respectively. The spin- and spatially resolved projected local density of states (PLDOS) under different gate voltages:
(b) VGl = VGr = 1 V, (d) VGl = VGr = −1 V, (f) VGl = 1 and VGr = −1 V, and (h) VGl = −1 and VGr = 1 V. Schematic band diagrams with
different bias voltages (left panel for Vb = 0 V and right panel for Vb > 0.15 V) with (i) VGl = 1 and VGr = −1 V and (j) VGl = −1 and VGr = 1
V. EL and ER are the Fermi levels of the left and right electrodes, respectively. VBM and CBM are the valence band maximum and conduction
band minimum, respectively. The arrow indicates the direction of electron transport.
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FIG. 4. The spin-resolved current vs bias voltage I − Vb curves
under different gate voltages: (a) VGl = VGr = 0 V and (b) VGl =
VGr = −0.5 V. (c) Schematic band diagrams under different bias
voltages (Vb = 0, 0.3, 0.6 V) with VGl = VGr = 0 V. EL and ER are
the Fermi levels of the left and right electrodes, respectively. VBM
and CBM are the valence band maximum and conduction band
minimum, respectively. The arrow indicates the direction of electron
transport.

the spin-up VB and spin-down CB both make a dominant
contribution to the transmission, resulting in the on state. At
VGl = −1 and VGr = 1 V, all spin-up and spin-down energy
levels of the left channel are above those of the right channel
[Fig. 3(j)]. The spin-up VB of the left channel just crosses
the Fermi level, and that of the right channel is far below the
Fermi level, leading to an energy barrier between the right
channel and right electrode in spin-up electron transmission.
At the same time, because the left channel’s spin-down CB
is far above the Fermi level, a large energy barrier occurs
between the left electrode and left channel in spin-down elec-
tron transmission. With the increase in bias voltage (which
cooperates with the gate voltage), the spin-up and spin-down
energy levels of the left channel become higher than those of
the right channel. In this case, significant energy barriers still
exist in both the spin-up and spin-down channels. Hence, the
two spin channels remain blocked [Fig. 3(j)]. The calculated
PLDOS and transmission spectrum further confirm this pic-
ture (Fig. S5 of the SM [75]).

Obviously, when the two gate voltages are VGl = VGr =
−1 V, the NDR phenomenon is observed in the I − Vb curve
[Fig. 2(b)]. To further confirm the NDR effect, we also calcu-
late the I − Vb curves at VGl = VGr = 0 V and VGl = VGr =
0.5 V [Figs. 4(a) and 4(b)]. The results imply that at zero
and negative gate voltages, the dominating spin-up current
passing through the heterojunction first increases and then
decreases with the increase in the bias voltage, showing a
typical NDR effect. Moreover, a large peak-to-valley spin-up
current ratio and total current ratio of 1.3 × 104 and 54.6
are achieved, respectively. To understand such NDR behavior,
we give the band alignments for the spin-up channel of the
heterojunction varied with bias voltage Vb in Fig. 4(c). At
Vb = 0 V, the energy gap �V in the cold metal 2H-TaS2

locates below the valence band maximum (VBM) of 2H-VS2.
When a small bias voltage is applied (0 < Vb < 0.3 V), the
current increases because more electron carriers from the left
2H-TaS2 electrode tunnel into the VB states of the 2H-VS2

channel. The current continuously increases until the top edge
of the energy gap �V of the left 2H-TaS2 electrode aligns with
the Fermi level of the right 2H-TaS2 electrode. At this critical
point (Vb = 0.3 V), the filled states in the left 2H-TaS2 are
maximally overlapped in energy with states of the 2H-VS2

channel, resulting in a maximum current (peak current). Fur-
ther increasing the bias voltage (0.3 < Vb < 0.6 V) leads to
a decrease in the current. At Vb = 0.6 V, the current comes
to the valley point. On the other hand, the spin-down current
always has a low value, with 0 < Vb < 0.6 V. When a high
bias voltage is applied (Vb > 0.6 V), the energy barrier be-
tween the left electrode and left channel will become thinner,
and the spin-down CB will cross the Fermi level of the left
electrode and enter the bias window (Fig. S6 of the SM [75]).
Meanwhile, the Fermi level of the right electrode gets close
to the bottom edge of the energy gap �V of the left electrode.
Thus, the current increases again as a result of the enhanced
electron tunneling and thermionic emission. The calculated
PLDOS and transmission spectra further confirm this picture
(Figs. S6 and S7 of the SM [75]). Consequently, a significant
NDR effect with a large PVCR is realized.

Overall, the proposed 2H-TaS2/2H-VS2/2H-TaS2 lateral
heterojunction has the following four significant achieve-
ments and advantages: First, we developed a spintronic
lateral heterojunction based on transition metal dichalco-
genides, while previous studies mostly focused on their
optical and electrical properties [65,66,82,83]. Second, this
spintronic heterojunction is expected to work at room tem-
perature and can easily be synthesized by employing the
mature and popular in-plane epitaxial growth technique
[82,84,85]. Third, three distinct functions, i.e., the spin valve,
spin filter, and negative differential resistance, are simulta-
neously integrated into the spintronic heterojunction. Finally,
fully electrical manipulation of these three spintronic func-
tions was realized.

IV. CONCLUSION

In conclusion, the present study proposed a cold metal
2H-TaS2/bipolar magnetic semiconductor 2H-VS2/cold
metal 2H-TaS2 lateral homologous heterojunction, where
2H-VS2 is divided into two regions and controlled by two
different gate voltages. The spin-polarized electronic trans-
port simulations showed that the on/off state of the current
in the heterojunction is achievable by applying two gates
with the same/opposite polarity. Furthermore, once two gates
possess the same polarity, 100% spin-polarized current with
reversible spin orientation can be created by altering the signs
of gate voltages. In addition, the heterojunction exhibits sig-
nificant negative differential resistance effect behaviors with a
large peak-to-valley current ratio. These results show that the
combination of cold metals and bipolar magnetic semiconduc-
tors is quite promising for making multifunctional spintronic
devices with simultaneous spin valve, spin filter, and negative
differential resistance functions.
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