
PHYSICAL REVIEW B 109, 054425 (2024)

Effective interaction quenching in artificial kagomé spin chains
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Achieving thermal equilibrium in two-dimensional lattices of interacting nanomagnets has been a key issue on
the route to study exotic phases in artificial frustrated magnets. We revisit this issue in one-dimensional artificial
kagomé spin chains. Imaging arrested microstates resulting from a field demagnetization protocol and analyzing
their pairwise spin correlations in real space, we unveil a nonequilibrated physics. Remarkably, this physics can
be reformulated into an at-equilibrium one by rewriting the associated spin Hamiltonian in such a way that one
of the coupling constants is quenched. We interpret this quenching mechanism as a kinetic hinderance occurring
upon demagnetization, which induces the formation of local flux closure spin configurations that compete with
those energetically favored by the magnetostatic interaction coupling the nanomagnets.
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I. INTRODUCTION

Arrays of interacting magnetic nanostructures are powerful
experimental platforms [1–8] in which to probe and emu-
late a wide range of phenomena [9,10] often associated with
highly frustrated magnetism [11,12]. For example, spin ice
physics [13,14], and Coulomb phase properties more specif-
ically [15,16], have become accessible to real space imaging
and reciprocal space analysis using lithographically patterned
arrays of nanomagnets [17–28]. Recently, other forms of thus-
fabricated synthetic two-dimensional (2D) lattices have been
even designed to study a whole zoology of frustrated lattice
spin models [29] having no equivalent in bulk compounds
[30–36].

The properties of these artificially designed systems turn
out to be usually well described by a physics at thermody-
namic equilibrium. In particular, all measurable quantities
accessible through the imaging of spin microstates can be
rationalized with on-lattice spin models thermalized at a
given temperature [37–39]. The experimental challenge then
lies less in the ability to thermalize the system than in the
capability to access different temperatures [22,25]. This is par-
ticularly true when it comes to exploring physical phenomena
that emerge at low temperatures or when approaching a phase
transition [18,27,40–42].

While the vast majority of studies to date have fo-
cused on 2D arrays of various geometries, sophisticated
fabrication methods are being employed to build and im-
age three-dimensional (3D) [43–46] or quasi-3D [17,21]
artificial arrays. In contrast, there are few works only on
one-dimensional (1D) systems, and these works have been
devoted to the physics of Ising chains with ferromagnetic
[47] or antiferromagnetic [48] interactions. Interestingly, in
contrast to their 2D counterparts, artificial spin chains some-
times exhibit a phase diagram richer than the one expected
from their associated spin model. This is the case of Ising
spin chains with antiferromagnetic interactions [48], in which
metastable ordered patterns can be stabilized experimentally

due to micromagnetic effects [49,50], not accounted for by a
point dipole model. These effects open up new prospects for
the investigation of metastable configurations and illustrate
the value of comparing the thermodynamics of spin models
with their experimental emulation.

Pursuing this idea, we study in this work the magnetic
correlations in kagomé spin chains submitted to a field demag-
netization protocol, with the aim of understanding how their
physics potentially differs from that of their 2D parent lattices,
for which an abundant literature exists [2–6,51–55]. Follow-
ing the methodology employed previously [48], we fabricated
permalloy kagomé spin chains that were demagnetized using
an external applied magnetic field. The resulting spin mi-
crostates were then imaged by magnetic force microscopy.
Analysis of the magnetic correlations reveals that these chains
exhibit signatures of a nonequilibrated physics. In particular,
one magnetic correlator differs substantially and systemati-
cally from the predicted at-equilibrium value. Remarkably,
this nonequilibrated physics can be rationalized using a mod-
ified spin Hamiltonian in which a specific coupling constant
is quenched. The values of the correlations obtained with this
modified Hamiltonian, thermalized at a well-defined temper-
ature, nicely agree with the experimental measurements. In
other words, while the field procedure applied to our kagomé
spin chains does not allow us to obtain microstates repre-
sentative of configurations at thermodynamic equilibrium, an
effective thermodynamics does account for the experimental
data, provided that a certain coupling in the spin Hamiltonian
is quenched. In this sense, artificial kagomé spin chains have
a behavior upon field demagnetization that differs from that
of their parent 2D lattices. However, both systems share a
common property: after being field demagnetized, they re-
main frozen at a relatively high effective temperature, of the
order of a fraction of the coupling strength between nearest
neighbors. Thus, reducing the dimensionality does not appear
as an efficient means to reach low-energy configurations in
field-demagnetized artificial systems.
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FIG. 1. (a) Scanning electron micrograph of a series of 10 kagomé spin chains and schematics illustrating the typical dimensions of the
nanomagnets constituting the chains. (b) Atomic force microscopy image of an artificial kagomé spin chain. (c) Magnetic force microscopy
image of the same chain after a field demagnetization protocol. The dark/bright contrasts give the magnetization direction within each
nanomagnet. (d) From the magnetic image shown in (c) the spin microstate of the chain is derived.

II. EXPERIMENTAL AND THEORETICAL DETAILS

A. Sample fabrication and demagnetization

The kagomé spin chains are made of permalloy and the
nanomagnets have w × 5w × 30 nm typical dimensions, with
w = 100 or 150 nm being the width of the nanomagnets
[see Fig. 1(a)]. To ensure a strong magnetostatic coupling
between the elements, the distance separating the extremity
of a nanomagnet from the vertex center is fixed to w/2. Each
chain consists of n = 29 (resp. 40) vertices, i.e., N = 59 (resp.
81) nanomagnets when w = 150 nm (resp. 100 nm). These
chains were fabricated by electron lithography (lift-off) on a
Si substrate and permalloy was e-beam evaporated.

Following previous works [56–58], the sample was ro-
tated within an external magnetic field with an oscillating
and slowly decaying amplitude, and a direction within the
sample plane. The applied magnetic field typically decays
from ±250 mT to 0 within 80 hours, while the sample ro-
tation frequency is of the order of 10 Hz. The resulting
magnetic configurations are imaged at room temperature us-
ing a magnetic force microscope. Figures 1(b) and 1(c) show
respectively a topographic and magnetic image of a kagomé
chain. In the magnetic image, dark and bright contrasts in-
dicate the north and south poles. The absence of contrast
between the two extremities of the nanomagnets shows they
are single domain, and their magnetic state can be approxi-
mated by an Ising variable [Fig. 1(d)].

From the imaged magnetic configurations, spin-spin corre-
lations can be measured. Pairwise spin correlations are defined
as Ci j = 1/Ni j

∑
i �= j σiσ j ei · ej, where σi is an Ising variable

(σi = ±1) residing on the site i defined by the local unit vector
ei, whereas Ni j is the number of i j pairs [59]. The corre-
lations between the first six neighbors were computed from
the measurements (the nomenclature for these correlations is
illustrated in Fig. 2: Cα j with j = β, γ , . . . corresponding to
j = i + 1, i + 2, . . .). To improve the statistics, three series

of 10 kagomé chains are considered in this work, two series
(series 1 and 2) for w =150 nm and one series (series 3) for
w = 100 nm, and each series has been demagnetized twice
[one series is shown in Fig. 1(a)]. Each correlation measure-
ment is therefore the average of 20 chains consisting of 59 or
81 Ising variables.

B. Tensor matrix approach

The correlations measured experimentally are then com-
pared to those predicted by the thermodynamics of an
on-lattice Ising spin Hamiltonian Hk , which includes dipolar
spin-spin interactions up to the kth neighbors. The Hamil-
tonian is thus of the form Hk = ∑

Ji jσiσ j , with Ji j taking
k = 1–6 possible values (see Table I) according to the notation
described in Fig. 2.

Rather than using a Monte Carlo approach to probe the
thermodynamics of our spin chains, we opted for an exact
resolution using the transfer matrix method. Here, we go
beyond the textbook treatment known for 1D spin chains with
magnetic interactions up to the third neighbor [60]. More

J1

J2 J3

J4

J5

J6

Spine

Ribs

Ribs

FIG. 2. Schematics of a kagomé spin chain showing the coupling
strengths Jk between the kth neighbors and the notations used to iden-
tify pairwise spin correlations. The topology of the chain consists
of a longitudinal spine bridging all vertices, and two transverse ribs
composed of dangling spins.

054425-2



EFFECTIVE INTERACTION QUENCHING IN ARTIFICIAL … PHYSICAL REVIEW B 109, 054425 (2024)

TABLE I. Coupling strengths used in the dipolar spin Hamiltonian.

J1 J2 J3 J4 J5 J6

1 −0.137 0.045 −0.036 0.014 0.037

specifically, taking into account the coupling terms beyond
the nearest neighbors requires to define spin cluster matrices
having 2N × 2N dimensions, where N is the number of spins
comprised within the cluster. Resolution is obtained numeri-
cally and is not analytical, contrary to what was achieved for
couplings up to the third neighbor [60].

III. RESULTS

The experimental measurements obtained for the three se-
ries of kagomé spin chains are reported in Table II. Several
observations can be made. First, the Cαβ correlator is al-
ways equal to 1/6, demonstrating that the ice rule is strictly
obeyed (no local 3-in or 3-out configuration is observed).
Second, the Cαγ and Cαδ correlators are significantly nega-
tive. If this is expected from magnetostatic considerations, we
note that these two correlators are substantially larger in abso-
lute value than what is found in 2D kagomé lattices [3,6] (see
Table II). This result may suggest that a field demagnetiza-
tion protocol brings more efficiently 1D kagomé chains into
a low-temperature regime than 2D kagomé lattices. Finally,
the correlators involving the third, fifth, and sixth neighbors
(Cαν , Cατ , and Cαη) are lower in absolute value than the three
other correlators, and their values are scattered around zero.
Interestingly, these three correlators, and Cαν in particular,
markedly differ from the values reported in 2D networks (see
Table II), where they are significantly positive. The question
is then why the spin model describing chains and networks
differs, and whether this is a dimensionality effect.

To address this question, we first consider the spin Hamil-
tonian Hk (we recall that k = 1–6 is the range of the spin-spin
interactions, up to the kth neighbor) described in Sec. II B. The
temperature dependencies of the spin correlations deduced
from the transfer matrix analysis are reported in Fig. 3(a)
for the six Hk Hamiltonians. As expected, a nearest-neighbor
description leaves the system macroscopically degenerate in
its low-energy configuration, with spin correlations close to
those predicted for 2D lattices [6,61]. Once the ice rule is
satisfied (Cαβ = 1/6), all correlators are temperature inde-
pendent. Conversely, with an interaction cutoff radius beyond
nearest neighbors (H2 . . .H6), ordered patterns emerge at low

TABLE II. Pairwise spin correlators measured for the first six
neighbors in our three series of kagomé chains and from previous
works on 2D kagomé lattices [59].

Cαβ Cαγ Cαν Cαδ Cατ Cαη

Series 1 0.167 −0.146 −0.029 −0.278 −0.005 −0.026
Series 2 0.167 −0.134 −0.004 −0.215 0.007 −0.022
Series 3 0.167 −0.117 0.035 −0.189 −0.010 0.007
2D [3] 0.167 −0.079 0.165 −0.130
2D [6] 0.164 −0.056 0.151 −0.063 0.013 0.056

TABLE III. Pairwise spin correlators measured for the two sub-
families of the third neighbors in our three series of kagomé chains.
C′

αν is the correlator involving dangling bonds and C′′
αν the one

involving a spin pair within the spine of the chain.

Series C′
αν C′′

αν

1 0.004 −0.061
2 0.032 −0.025
3 0.062 0.008

temperatures. The presence of longer range couplings lifts the
degeneracy observed when only J1 is considered. Remark-
ably, the low-temperature magnetic pattern is identical for all
Hk (k > 1), with the correlators reaching the same values
whatever the Hamiltonian. We note that this low-energy con-
figuration, shown in Fig. 3(b), is the one of the (2D) dipolar
kagomé spin ice [62,63].

The question that now arises is whether these models
account for the experimental observations. To answer this
question, it is instructive to compare the calculated tempera-
ture dependencies of the spin correlators to the values reported
in Table II. Interestingly, the measurements clearly show that
Cαδ is always smaller than Cαγ (almost by a factor of 2),
whatever the chain series we consider. These measurements
are incompatible with the first three Hamiltonians H1, H2, and
H3 [in these three cases, Cαγ is close, but smaller than Cαδ;
see red and orange curves in the upper panels of Fig. 3(a)].
Conversely, the other three models (H4, H5, H6) predict Cαγ

and Cαδ values agreeing with the experimental ones within
a certain temperature range, indicated by the gray shaded
areas [see lower panels of Fig. 3(a)]. Nevertheless, within this
temperature window, the agreement is poor with the other spin
correlators. In particular, Cαν is not captured by the models
[see inset in the bottom-left graph of Fig. 3(a) where the
discrepancy between numerical and experimental results is
reported for this correlator]. Results are similar for Cαη and
Cατ , whose experimental values are lower than the predicted
ones, and whose sign is sometimes opposite to the expected
one. These observations suggest that a nontrivial mechanism
is at work in our experiment.

At this point, it is worth mentioning that the Cαν correlator
(like Cαβ ) has a specific feature compared to the other correla-
tors: It involves a pair of spins belonging both to the spine of
the chain or both to the ribs. Contrary to the other correlators,
Cαν can thus be calculated for two distinct subsets of spin
pairs [see inset of Fig. 4(a)]. Experimental measurements of
the corresponding correlators, C′

αν (involving dangling spins)
and C′′

αν (spins within the spine), reveal a surprising result: C′
αν

is systematically larger than C′′
αν (see Table III). Recalling that

these pairs of spins are coupled by a third-neighbor term J3

(Fig. 2), this experimental observation questions the relevance
of a single J3 value. In the following, we define J ′

3 as the
coupling involving dangling spins and J ′′

3 involving a spin pair
in the spine of the chain [see inset of Fig. 4(a)]. Since the Cαν

correlator is smaller than the predicted value, it is reasonable
to assume that J3 is effectively smaller than what it should
be. Experimentally, C′

αν > C′′
αν , suggesting that J ′

3 could be
larger than J ′′

3 . We emphasize that, from a dipolar point of
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FIG. 3. (a) Temperature dependence of the magnetic correlations between the first six nearest neighbors as defined in Fig. 2. Six scenarios
are considered depending on the range of the dipolar interaction. From the upper-left panel to the lower-right panel, the range of the interaction
extends from the first to the sixth neighbor, as indicated by the index k in the spin Hamiltonian Hk . The gray shaded area in the lower
three panels indicates the temperature window compatible with the measured Cαβ , Cαγ , and Cαδ correlators. This temperature window is
also compatible with the measured value of the sixth correlator Cαη (except for H6). However, it is clearly incompatible with the third and
fifth correlators, and Cαν more specifically. This is evidenced in the inset corresponding to H4 where the temperature dependence of Cαν is
shown together with the average values obtained experimentally for the three spin chains. (b) Schematics of the configuration found at low
temperature in all cases but H1. This configuration is the ground state found in the dipolar kagomé spin ice. It is characterized by local flux
closure configurations with alternating chirality represented by yellow (clockwise) and purple (anticlockwise) circular arrows (see head-to-tail
arrangements of the spins along the edges of open hexagons).

view, there is however no reason to consider two distinct J3

coupling terms, and such a distinction can only be effective.
The correlators deduced from the models studied previ-

ously (Fig. 3) were thus recalculated by imposing J ′′
3 = 0,

leaving J ′
3 = J3 = 0.045 unchanged. The choice to set J ′′

3 = 0
is simply based on the fact that J3 is already small (see
Table I), a natural smaller value being 0. Unsurprisingly, the
H1, H2, and H3 models are still not compatible with the
experimental data. However, good agreement is obtained as
soon as the model includes interactions up to at least the fourth
neighbor (H4, H5, and H6 to a lesser extent). Figure 4(a)
illustrates this agreement when considering the H4 model. In-
terestingly, besides the six studied correlators, the distinction
between C′

αν and C′′
αν is also well described [see purple dashed

curves and open symbols in Figs. 4(a) and 4(b)]. This overall

agreement between experiments and numerical predictions is
actually very good for both H4 and H5, but less so when J6 is
taken into account. This is again consistent with the fact that
the effective coupling involving a spin pair within the spine
of the chain is reduced. Indeed, J6 being ferromagnetic (like
J3) and involving spin pairs within the spine (and only within
the spine; see Fig. 2), taking it into account degrades the
agreement with the experiments (we will see why in the next
section). In other words, a good match is obtained when the
coupling terms J ′′

3 and J6, both involving spin pairs belonging
to the spine of the chain, are quenched.

We emphasize that the predictions from the modified H4

Hamiltonian fit sufficiently well the experimental data to
associate distinct effective temperatures to the three chain
series. As illustrated in Fig. 4(b), the (thermal) energy of the
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FIG. 4. (a) Temperature dependence of the magnetic correlations between the first six nearest neighbors as defined in Fig. 2 for the H4 spin
Hamiltonian in which J ′′

3 is set to 0. The predictions fit well the experimental findings marked by colored dots, stars, and squares for samples
1, 2, and 3, respectively. The difference between the J ′

3 and J ′′
3 couplings is illustrated in the inset. The corresponding C′

αν and C′′
αν correlators

are plotted as purple dashed lines and open symbols. (b) Zoom-in of the full temperature window reported in (a).

configurations we image is typically about 1/2 or 1/3 of the
J1 energy term, meaning that our demagnetization protocol
brings the kagomé spin chains into relatively low-energy con-
figurations. We observe that the first two series (series 1 and
2) have a lower effective temperature than the third one (series
3), suggesting that wide nanomagnets are better suited for
reaching low-energy configurations.

IV. INTERPRETATION

The natural question that arises is why a modified Hamil-
tonian, in which J ′′

3 is quenched, is able to account for the
experimental measurements. It is striking that this is the case
for three series of chains, found to be equilibrated at different
effective temperatures [see Figs. 4(a) and 4(b)]. Although
these effective temperatures lie in a narrow window (from
J1/3 to J1/2 typically), some correlators (Cαδ in particular)
vary abruptly within this range, whereas others (like Cατ ) are
essentially constant. The Hamiltonian in which J ′′

3 is quenched
captures well all these temperature dependencies.

We stress again that the couplings are experimentally ruled
by magnetostatics, and there is no reason why some couplings
should be screened. For reasons likely originating from the de-
magnetization procedure, the kagomé chains are not found in
configurations representative of thermodynamic equilibrium,
but rather exhibit nonequilibrium behavior. The quenching of
a specific coupling can only be understood in an effective
manner.

Given the fact that the spin dynamics is governed exper-
imentally by magnetization reversal processes, considering
two coupling terms J ′

3 and J ′′
3 might be relevant. Indeed, a spin

pair in the spine of the chain involves nanomagnets having a

coordination number of 4, whereas it is 2 for spins involving
dangling bonds. Since magnetization reversal is triggered at
the nanomagnet extremities, we might expect that dangling
spins fluctuate more on average because of their free end
than spins within the spine. We could then argue that dan-
gling spins fluctuate sufficiently to reach an equilibrated state,
whereas the dynamics of the spins belonging to the spine
freezes quickly, being weakly correlated, especially when the
associated coupling strength is small (like J3). More gener-
ally, we could argue that the physics of our spin chains is
essentially governed by Ji j couplings involving at least one
dangling spin (with the exception of Jαβ , for which the in-
teraction is very strong due to the small distance between
the extremities of neighboring nanomagnets). Since only J ′′

3
and J6 couple spins all belonging to the spine of the chain,
these two couplings could be effectively quenched because of
the intrinsic field-induced magnetization dynamics within the
chains.

We may also argue that the demagnetization procedure
favors the formation of local flux-closure configurations. In-
deed, the spin microstates we image clearly reveal local
windings, sometimes over several successive open hexagons.
This effect is illustrated in Fig. 5 for four chains in which
local flux closure configurations are indicated by yellow
and pink oriented loops. Importantly, the formation of these
local loops imposes a negative Cαν correlation along the spine
(antiparallel spins), competing with the positive correlations
expected from the magnetostatic interaction. We note that the
formation of such local loops is compatible with the argument
above suggesting that dangling spins fluctuate more than spins
within the spine of the chain. In fact, these two effects could be
intimately related, explaining why J ′′

3 is effectively quenched.
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FIG. 5. Experimental magnetic images and their corresponding
spin states for four different kagomé spin chains. Each chain is
characterized by several local flux closure configurations represented
by clockwise (yellow) and anticlockwise (purple) circular arrows.
Successive yellow/purple loops impose an antiferromagnetic align-
ment of αν (and αη) spin pairs belonging to the spine of the chain
(two of such αν spins are marked by a black circle).

V. CONCLUSION

In this work, we have investigated experimentally the mag-
netic correlations that develop in field-demagnetized artificial
kagomé spin chains. The central result is the observation
of a specific pairwise spin correlator whose value substan-
tially and reproducibly deviates from the one expected at
thermodynamic equilibrium. This suggests that an out-of-
equilibrium physics is at play in our experiment, and like
antiferromagnetically coupled Ising chains [48], the arrested
microstates we imaged are not accounted for by a canonical
spin Hamiltonian. However, whereas a metastable ordered
pattern emerges in antiferromagnetic Ising chains [48], the
kagomé spin chains remain disordered. In both types of
chains, unpredicted configurations can be reached after a field
demagnetization protocol, opening new prospects to access
metastable and/or unusual correlations in artificial spin sys-
tems.

As a natural extension of our work, we could now inves-
tigate how the field demagnetization protocol itself impacts

the properties of the resulting magnetic microstates. Since
metastable configurations are obtained with a slowly decay-
ing and oscillating magnetic field, we might wonder whether
other metastable states could be stabilized by ramping down
the field differently. This could be done for example with
a simple linear decay of the field amplitude [58], using the
same protocol with various field step sizes [56,57] or with-
out rotating the sample to demagnetize the lattice in one
direction only. Here, the strategy we followed is the one we
have employed in several other studies that have revealed that
equilibrated low-energy configurations could be reached suc-
cessfully and reproducibly, regardless of the system geometry
[6,8,17,22,23,25]. Using this previously benchmarked field
protocol then allows direct comparison with previous works,
especially with what has been observed in antiferromagnetic
Ising chains [48]. In addition, investigating thermally active
kagomé spin chains would be of particular interest to un-
derstand to what extent the metastable states we imaged are
linked to the presence of an applied magnetic field.

Finally, our results demonstrate that the physics of artificial
spin structures is long-ranged, and a short-range spin Hamil-
tonian clearly fails to capture the experimental findings. Our
correlation analysis indicates that it is reasonable to consider
that the effective cutoff radius of the magnetostatic interaction
extends up to the fourth/fifth neighbors at least, consistent
with what is found in 2D lattices [6,23]. Our measurements
also suggest that the physics of small-size 2D kagomé spin
ice might be affected by the presence of dangling spins at
the lattice edges. As a result, magnetic correlations might be
different in the bulk of the system and at the vicinity of the
lattice edges. To what extent such effects could impact the
physics in 2D networks remains an open question.
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