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Selective nonreciprocal localization of flat magnonic modes induced by a periodic
Dzyaloshinskii-Moriya interaction
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Spin waves excited in periodically modulated magnetic nanomaterials, known as magnonic crystals, exhibit
characteristic band structures. These bands can be tuned by material engineering and have been attractive for
potential spin-based applications. When periodic nanomaterials with handedness are introduced, spin waves
inherit the chiral feature in their behavior and manifest an exciting range of novel physics, including asymmetric
and unidirectional propagation, low-frequency magnonic flat bands, and indirect band gaps. This study inves-
tigates the properties of these chiral magnonic excitations. The analysis is performed in ferromagnetic films
patterned with nanowires of two different materials that produce periodically modulated perpendicular magnetic
anisotropy and interfacial antisymmetric exchange (Dzyaloshinskii-Moriya interaction). The low-frequency flat
modes are studied using a magnonic localization diagram that distinguishes the spatial confinement degree
in zones with and without antisymmetric exchange. An analytical expression is derived for the transition
region in the localization diagram that outlines the zones where magnonic confinement occurs. The findings
reveal the presence of flat modes with nonreciprocal magnetization oscillation amplitudes between waves with
opposite propagation directions when the spin-wave localization occurs in regions with Dzyaloshinskii-Moriya
interaction. Conversely, reciprocal oscillation amplitudes are observed when modes localize in the nanowires
with perpendicular anisotropy. Micromagnetic simulations demonstrate the amplitude asymmetry of the flat
modes, yielding perfect agreement with the theoretical predictions. This paper provides a deeper understanding
of the behavior of spin-wave modes in chiral magnonic crystals and establishes a method to control their
associated magnonic bands for designing spin-wave-based nanodevices.
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I. INTRODUCTION

Spin waves (SWs) are elementary excitations of magnet-
ically ordered materials, which emerge from the collective
motion of localized magnetic moments [1–3]. The research
on the magnetization dynamics in nanomaterials has unveiled
a range of linear and nonlinear phenomena, such as ferro-
magnetic resonance [4,5], parametric spin pumping [6], and
three and four-magnon scattering [7], for instance. At the
same time, solitons and breathers have been observed as lo-
calized, stable wave packets that propagate without changing
their shape [8,9]. It has been shown that SWs have numer-
ous advantages over conventional electric transport, including
reduced energy consumption, rapid information processing,
nonvolatility, and scalability down to the nanoscale [10,11].
As a result, it has been possible to confine and manip-
ulate SWs for the design of compact, high-performance,
and densely integrated magnon-based devices and circuits
[12–15], that have the potential to revolutionize how infor-
mation is processed and stored [16].

Recently, experimental evidence has attracted attention to
a specific kind of nanomagnets with broken inversion symme-
try, which can occur at the interface between a heavy-metal
layer and a ferromagnetic film [17–20], or at the crystal struc-
ture, as in the case of noncentrosymmetric magnets [21,22].
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The lack of inversion symmetry induces an antisymmetric
exchange interaction between neighboring spins, known as the
Dzyaloshinskii-Moriya interaction (DMI) [23,24]. A crucial
characteristic of SWs propagating in a material with DMI is
their nonreciprocal behavior under a wave-vector inversion
[25–27]. Specifically, two counterpropagating waves at the
same frequency exhibit different wavelengths [28,29]. The
effect of SW nonreciprocity is not exclusive to materials with
DMI. Nonlocal dipolar interactions can also induce a DM-like
coupling in a Damon-Eshbach configuration when the spatial
symmetry is broken across the film thickness, as happens in
oppositely magnetized bilayers [30–36]. A similar effect is
observed in curved magnetic structures [37–41]. The asym-
metry in the SW dispersion has been relevant for envision-
ing various technological applications, including magnonic
diodes, magnonic circulators, isolators, phase shifters, and
logic devices [42–44]. Indeed, under certain conditions, the
SW dispersion can exhibit unidirectionality in specific fre-
quency ranges, allowing waves to propagate unaffected by
reflections from defects or imperfections [41,45–48].

A practical method to manipulate SW bands in a mag-
netic system is by introducing an artificial periodicity, for
instance, by patterning regions with alternating ferromag-
netic materials. Then, the magnonic band structure ex-
hibits characteristic forbidden-and-allowed frequency bands
[49–51]. These engineered periodic architectures, commonly
called magnonic crystals (MCs), allow the tailored control
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and manipulation of SWs. Hence, they have a strong
potential in spin-based nanotechnologies [52–54]. For ex-
ample, band gaps could be used to design magnonic filters
and isolators, which can selectively transmit or suppress
waves within specific frequencies [55–57]. Possible designs
of MCs include geometric modulation [58–62], bicompo-
nents [63–66], and periodic coupling of different magnetic
materials [32,67,68].

Under periodic exchange or dipolar interactions, the spin
excitations exhibit a symmetric frequency dispersion in ultra-
thin ferromagnetic films, with magnonic band gaps opening at
the boundaries of the Brillouin zone. This symmetry is broken
when a chiral interaction is introduced [69]. For instance,
patterning heavy-metal (HM) stripes in contact with a con-
tinuous film produces periodic regions with interfacial DMI
owing to the large spin-orbit coupling. Such a system exhibits
low-frequency flat bands represented by localized magnetic
excitations beneath the HM stripes. Such phenomenon was
predicted theoretically [70,71] and has recently been con-
firmed experimentally [72]. Additionally, indirect band gaps
can be observed for the high-frequency modes, with the gaps
shifted from the edges of the Brillouin zone [70,73]. Flat
bands originate from the reduction of the internal field in the
regions with DMI (the ones in contact with the HM stripes),
leading to the robust localization of SW modes in those areas,
where standing waves emerge with almost zero group veloc-
ity. According to this, flat bands can also be induced by a
periodic perpendicular surface anisotropy because it decreases
the internal field in an in-plane magnetized film. In contrast
to the localization of flat SW modes caused by anisotropy,
in materials with DMI these dispersionless modes have chi-
ral attributes, which imply that the magnetization oscillation
amplitude should be wave-vector dependent. Phenomena re-
sulting from the chirality and localization of SW modes in an
MC have yet to be fully understood. The analysis of these
physical processes is relevant to deepen the knowledge of
the physics of confined SWs in chiral periodic nanomaterials
and, hence, to extend the possibilities of tuning their band
structure.

This study focuses on a chiral one-dimensional magnonic
crystal based on an ultrathin film coupled with an array of
HM nanostripes, which generate a periodic interfacial DMI.
These HM nanostripes alternate with a second array of stripes
of a lighter metal, such as Ru [72]. The lighter metal regions
(without interfacial DMI) generate a significant perpendic-
ular surface anisotropy that is also periodic. This system
exhibits flat bands, and the behavior of the lowest-frequency
band is analyzed as a function of both anisotropy and DMI
strength. A localization diagram is calculated to analyze the
SW profiles of such a lowest-frequency flat band. Analytical
expressions that shed light on the transition between mag-
netization excitations localized inside and outside the DMI
regions are derived. Nonreciprocal SW amplitudes for the
flat modes are predicted when the Dzyaloshinskii-Moriya in-
teraction dominates, owing to its chiral nature. Conversely,
the low-frequency flat bands exhibit reciprocal magnetization
amplitudes when the anisotropy increases and the SWs lo-
calize beneath the lighter metals. Micromagnetic simulations
are performed to substantiate the validity of the proposed
model.

II. THEORY

The investigated system comprises a ferromagnetic ultra-
thin film coupled with an alternating array of heavy-metal
nanostripes and a second group of nanostripes made of a
lighter metal. At the interface between the magnetic film and
these two types of materials, either a perpendicular anisotropy
or an interfacial Dzyaloshinskii-Moriya interaction arises. The
ferromagnetic material chosen is CoFeB, while Pt is selected
as the reference HM due to its high spin-orbit coupling
[74–76], which induces a substantial interfacial DMI strength
D in ultrathin magnetic films [28,29]. In regions without HMs,
the ferromagnet is coupled with a lighter material that induces
perpendicular magnetic anisotropy. According to experimen-
tal observations, a prominent perpendicular anisotropy has
been observed in multilayer systems, such as CoFeB/Ta [77],
CoFeB/Pt [78], and CoFeB/Ru [72,79–82]. Thus, in areas
without HMs, the metal Ru is used as a reference to obtain a
significant perpendicular surface anisotropy. Note that a finite
perpendicular anisotropy in the CoFeB/Pt interface is also
expected [78]. Nevertheless, for the sake of simplicity, such
an anisotropy will be assumed null in this paper. In the case
of considering an anisotropy in the Pt zone, the results remain
unaffected by a rescaling of the anisotropy value in ruthe-
nium, namely HRu

s → HRu
s − HPt

s , provided the perpendicular
anisotropy in Ru surpasses that in Pt. Figure 1(a) shows an
overview of the one-dimensional chiral MC defined for the
study.

The calculations assume that the equilibrium magnetiza-
tion M0 lies in the film plane, along the x axis and parallel
to the external field H0. The SW propagation occurs along
the z axis, corresponding to Damon-Eshbach modes with a
wave vector k = kẑ. The period of the MC is denoted by a,
and the width of the Pt nanostripes is represented by w [see
Fig. 1(a)]. A theory based on the plane-wave method (PWM)
is employed to calculate the magnonic band structure [70–72],
which considers Zeeman, exchange, dipolar, perpendicular
anisotropy, and interfacial DM interactions. In the theoretical
description, zero damping is assumed because, in the linear
regime, damping does not exert a significant influence on
the band structure. However, it is important to note that this
damping will impact the attenuation length of the waves.
For Pt/CoFeB the damping increment is well-known [83,84],
resulting in distinct lifetimes for modes propagating in the Pt
or Ru zones. To investigate the nature of the magnonic flat
modes, the function

�(ν)
η = 1

wη

wη∫
0

|m|dz, (1)

is defined to quantify the degree of localization of the SWs
in the regions in contact with Ru (η = Ru) and Pt (η = Pt).
Parameter ν represents the band number, being ν = 0 the
lowest-frequency mode, and ν > 0 the higher-order modes.
The function �(ν)

η represents the spatially averaged amplitude
of the normalized dynamic magnetization m. These aver-
ages are computed within the CoFeB zones in contact with
the Ru and Pt nanostripes. Such zones are defined by the
widths wRu = a − w and wPt = w, respectively, as illustrated
in Fig. 1(a). In Eq. (1), |m| =

√
m2

z (r, t ) + m2
y (r, t ), where
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FIG. 1. (a) Illustration of a one-dimensional chiral magnonic
crystal (MC) consisting of alternating ruthenium (Ru) and platinum
(Pt) nanowires of width w, coupled with a continuous layer of CoFeB
and thickness d = 1 nm. The unit cell of size a = 2w and the �η

function, related to the spatially averaged amplitude of the dynamic
magnetization, are illustrated. The magnetization of the MC is satu-
rated with an external magnetic field H0 = H0x̂ such that spin waves
are excited in the Damon-Eshbach configuration k = kẑ. (b) The
calculated SW band structure, obtained with μ0Hs = 200 mT, Ms =
900 kA/m, D = 2.5 mJ/m2, w = 150 nm, and a = 300 nm, reveals
the formation of flat magnonic bands.

mz(r, t ) and my(r, t ) represent the in-plane and out-of-plane
normalized dynamic magnetization components, respectively.
As �(ν)

η is directly proportional to the area under the curve

describing |m| [see Fig. 1(a)], a value of �
(ν)
Ru = 1 (�(ν)

Pt = 1)
indicates a complete localization of the SW modes under the
Ru (Pt) zone. A measure of the magnon localization can be
done using the following function:

��(ν) = �
(ν)
Pt − �

(ν)
Ru . (2)

In the case of ��(ν) = ±1, the modes exhibit a strong lo-
calization in the Pt (��(ν) = +1) or Ru (��(ν) = −1) region.
The primary characteristic of the dynamics of the chiral MC
depicted in Fig. 1(a) is the formation of flat magnonic bands
[70–72]. It can be seen from Fig. 1(b) that the low-frequency
modes exhibit flat bands. The analysis focuses on the lowest-
frequency mode (ν = 0) because it is more likely to show a
nondispersive character [70]. In the case of high-frequency
modes, the exchange interaction starts to dominate, leading
to dispersive SW bands. This is shown in Fig. 1(b), where
in this example the dispersive modes start from the fourth
lowest frequency band. In what follows, it will be denoted
that �(0) = �, and ��(0) = �� for simplicity.

III. RESULTS

For the calculations, the exemplary ferromagnetic mate-
rial under investigation, CoFeB, is characterized by Aex =
15 pJ/m and a gyromagnetic ratio of γ = 186.6 GHz/T.
The saturation magnetization is varied between 900 and
1500 kA/m, while the remaining parameters associated with
CoFeB are held constant. The calculations are performed
using an external field in the range μ0H0 = 50 to 250 mT
and a film thickness of d = 1 nm. The band structure in
the Damon-Eshbach configuration is presented in Fig. 1(b).
The parameters used are a = 300 nm, w = 150 nm, μ0H0 =
250 mT, a perpendicular anisotropy field μ0Hs = 200 mT,
Ms = 900 kA/m, and a DMI strength D = 2.5 mJ/m2. Three
nondispersive low-frequency modes (flat bands) are obtained
in this case. These flat branches exhibit strong localiza-
tion within specific regions of the magnetic material, which
depends on the interplay between anisotropy, saturation mag-
netization, and DMI strengths.

To study the localization of the flat modes, the parameter
�� obtained from the PWM calculations is analyzed as a
function of μ0Hs and D. The results are illustrated in Fig. 2,
where three different saturation magnetization values and two
periods have been considered. The top row corresponds to
the magnonic crystals with period a = 300 nm, while the bot-
tom row represents a = 100 nm. All calculations consider the
case where the Ru and Pt have the same widths,
wRu = wDM = a/2. For positive values of �� (shown in
purple), the flat SW modes tend to localize in the regions
underneath Pt. In contrast, surface anisotropy dominates for
negative values of �� (shown in slate blue), leading to the lo-
calization of spin excitations beneath the Ru nanowires. From
the diagrams presented in Fig. 2, it can be observed that both
anisotropy and interfacial DMI can induce highly localized
states with �� = ±1. This localization is closely connected
to the formation of flat bands because wave propagation is
restricted.

The transition from �� = 1 to �� = −1 (or vice versa)
depends on the magnitudes of D and μ0Hs. At large values
of these magnetic parameters, the transition is abrupt, while
at small values, the transition becomes smooth (white zones).
These white zones broaden with Ms, evidenced by the contour
lines evaluated at �� = ±0.5, ±0.6, and 0. This behavior is
attributed, firstly, to the fact that the DMI strength follows a
D/Ms trend in the SW dispersion [27,70]. As a result, when
Ms increases, the influence of the DMI diminishes. Secondly,
the white zone is a region where neither DMI nor anisotropy
dominates. In this scenario, the magnetic excitations are dis-
tributed throughout the unit cell, preventing them from being
confined to specific zones of the magnetic layer. The two
combined effects produce a gradual SW-localization transi-
tion shown by a white region in Fig. 2, where �� ≈ 0. Note
that the white zone widens as the period is reduced, as can be
seen comparing the cases a = 300 nm and a = 100 nm. This
behavior is explained by the fact that as the period decreases,
the modes are forced to oscillate in smaller regions, thus
enhancing the exchange interaction that promotes a disper-
sive character of the SWs. In other words, the low-frequency
mode transforms from flat to dispersive as the period
decreases.
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FIG. 2. Magnonic localization diagrams for the lowest-frequency mode. The color code represents ��, the difference in the spatially
averaged amplitudes of the normalized dynamic magnetization beneath Pt and Ru, as a function of the anisotropy field and DMI strength. For
�� > 0 (�� < 0), the spin waves are localized in the Pt (Ru) regions, while for �� ≈ 0, the magnetic excitations are localized in both zones.
Contour lines for values �� = ±0.5, ±0.6, and 0, are depicted as references. Diagrams in (a)–(c) are calculated for a period a = 300 nm,
while in (d)–(f) a = 100 nm. For the columns, the saturation magnetization is 900, 1200, and 1500 kA/m. In all cases, μ0H0 = 250 mT and
w = a/2 (filling fraction 0.5).

Spin-wave profiles have been computed for specific values
of D and μ0Hs. Figure 3(a) illustrates the localization diagram
for Ms = 900 kA/m and a = 300 nm. At point P1, a signif-
icant localization of the SWs in the regions adjacent to Ru
is obtained, while at points P2 and P4, the modes are mostly
active underneath Pt, where DMI dominates. Notice that the
temporal evolution of standing waves in the zones with DMI
is unusual, where the nodes move as time passes [70,85]. One
distinctive point in the diagram is point P3, where neither
anisotropy nor DMI dominates. As a result, magnetization
oscillations are present throughout the entire unit cell but
with an anomalous spatio-temporal profile, as depicted in the
subplot of point P3 of Fig. 3(b).

The dispersion relation of a continuous ferromagnetic film
(nonperiodic) is studied to comprehend the transition between
the two types of localizations (represented by the slate blue
to purple colors). When considering solely the effects of
anisotropy, the frequency of the SW dispersion of an extended
film exhibits a minimum at k = 0 ( f = f Hs

0 ), as illustrated in
Fig. 3(c). The occurrence of this minimum at k = 0 stems
from considering the scenario where μ0Ms > μ0Hs in the
calculations. When μ0Hs overcomes μ0Ms, the minima of the
spin-wave dispersion are given at finite wave vectors [86].
Nevertheless, if μ0Hs is only slightly larger than μ0Ms, the
frequency difference between the true minima and f (k = 0)
is negligibly small. In Fig. 3(c), the dashed, dot-dashed, and
dotted lines represent the cases evaluated at D = 0, corre-

sponding to the anisotropies of points P1 (μ0Hs = 1200 mT),
P3 (μ0Hs = 613 mT), and P4 (μ0Hs = 200 mT), respectively.
However, in the presence of DMI only, with zero anisotropy,
the frequency of the waves has a minimum at a finite wave
vector kc, but only for a specific wave vector direction. This
behavior is illustrated in Fig. 3(c), where the solid curve
represents the case of a continuous film with D = 2.5 mJ/m2

and μ0Hs = 0. By comparing the minima of the dispersion
relations shown in Fig. 3(c) ( f DM

0 and f Hs
0 ), one can antic-

ipate the nature of the SW localization of the flat bands in
a magnonic crystal. For instance, analyzing the minimum
of the dispersion only with DMI (solid line) f DM

0 , and the
minimum of the dispersion only with surface anisotropy f Hs

0 ,
evaluated at μ0Hs = 200 mT (dotted curve), one can observe
that the film with DMI exhibits a lower frequency minimum.
Therefore, in a nanoscale magnetic film composed of peri-
odic zones with coexisting anisotropy (with μ0Hs = 200 mT)
and DMI (with D = 2.5 mJ/m2) regions, it is expected that
the lowest-frequency flat mode is primarily localized in the
regions underneath the HM nanostripes since such an environ-
ment is compatible with the low-frequency spin excitations.
As the anisotropy increases, the frequency minimum f Hs

0 de-
creases, resulting in f Hs

0 < f DM
0 , as shown by the solid and

dashed lines in Fig. 3(c). Consequently, the low-frequency
modes are more likely to localize beneath the Ru zones, where
the anisotropy dominates. The analysis indicates that at the
critical state f Hs

0 = f DM
0 , the anisotropy and interfacial DM
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FIG. 3. (a) Magnon localization diagram for the lowest-frequency mode evaluated for Ms = 900 kA/m, μ0H0 = 250 mT and period
a = 300 nm, so the filling fraction is 0.5. Color code (see Fig. 2) results are obtained from the PWM calculations, while the circle dots
correspond to the analytical formula given by Eq. (8). The triangles, defined as (D [mJ/m2], μ0Hs [mT]), correspond to the points P1 = (2.5,
1200), P2 = (3, 613), P3 = (2.5, 613), and P4 = (2.5, 200). (b) Spatiotemporal profiles of the spin-wave modes evaluated at the points P1–P2,
where T is the temporal period of the magnetization oscillations. In P1, the modes are localized at the Ru zones, while in points P2 and P4, the
magnetic excitations live at the Pt areas. Point P3 describes cases where the excitations are simultaneously beneath the Pt and Ru nanostripes.
(c) Spin-wave dispersions of an effective continuous film without interfacial DMI (D = 0) and evaluated at μ0Hs = 1200 mT (dashed line),
μ0Hs = 613 mT (dot-dashed line), and μ0Hs = 200 mT (dotted line). The solid line considers the case of an extended film with D = 2.5 mJ/m2

and μ0Hs = 0, where kc is the critical wave vector at which the frequency is minimum.

interactions are equally important. This critical state should
be consistent with point P3 shown in Fig. 3(b), where ��

approaches zero. To obtain an analytical expression for f Hs
0

and f DM
0 , the spin-wave dispersion of the continuous film must

be analyzed. In the case of a continuous film with perpendicu-
lar anisotropy and DMI, the SW dispersion is given by [27,70]

f = γ

2π

[
−2D

Ms
k +

√(
μ0H0 − μ0Hs + Dexk2 + μ0Mse− d|k|

2
)(

μ0H0 + Dexk2 + μ0Ms
(
1 − e− d|k|

2
))]

, (3)

where Dex = 2Aex/Ms, being Aex the exchange constant. From
Eq. (3), the frequency f Hs

0 , with D = 0 and k = 0, is readily
determined, namely

f Hs
0 = (μ0γ /2π )

√
H0(H0 + Ms − Hs ). (4)

On the other hand, it is necessary to realize some approxima-
tions to obtain an analytical expression for the dynamic state
f DM
0 shown in Fig. 3(c). First, the limit kd � 1 is considered,

so that the SW dispersion evaluated to Hs = 0 is

f DM = γ

2π

[
(μ0Ms)2|k|d

4ξ (k)
− 2D

Ms
k + ξ (k)

]
, (5)

where

ξ (k) =
√

(μ0H0 + Dexk2)(μ0H0 + μ0Ms + Dexk2). (6)

Second, from the condition df DM/dk = 0, an expression for
the term kc can be obtained. In order to obtain an analytical
form for kc, a parabolic behavior of the dispersion will be
assumed so that Eq. (5) is expanded up to second order in

the wave vector k. Thus, the critical wave vector obtained is

kc = 8D
√

H0(H0 + Ms) − dμ0M3
s

4DexMs(2H0 + Ms)
. (7)

Finally, replacing Eq. (7) into Eq. (5), the minimum of the dis-
persion, f DM

0 is obtained. As mentioned above, the condition
f Hs
0 = f DM

0 allows to obtain an expression for the dynamic
state �� = 0. Thus, by equating the frequency minima, and
after some algebraic manipulations, a relationship between D
and μ0Hs can be established at the transition point, resulting
in

μ0Hs(D) = μ0Ms + μ0H0 − F (D), (8)

where

F (D) = 1

μ0H0

[
(μ0Ms)2|kc|d

4ξ (kc)
− 2D

Ms
kc + ξ (kc)

]2

. (9)

The circles depicted in Fig. 3(a) correspond to the analytical
formula given in Eq. (8), while the inset shows the evolution
of μ0Hs(D) for different values of the saturation magnetiza-
tion, reproducing the cases illustrated in Fig. 2. Therefore,
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FIG. 4. The plot on the left shows a localization diagram (evaluated for the lowest-frequency band), illustrating the evolution of �� as a
function of D and f f . A constant anisotropy field of μ0Hs = 400 mT is used in the calculations. Similar to previous figures, the color map
distinguishes whether the mode is localized in Pt or Ru (refer to Fig. 2). Spin-wave profiles, depicted by the absolute value of the dynamic
magnetization |m|, are computed for various points on the diagram, as illustrated in the right panels. Notably, at points A2, B2, and C2, it
is observed that the function �� ≈ 0, indicating that the mode is distributed almost equally between the Ru and Pt zones. In other cases, a
notable localization in Ru (points A1, B1, and C1) and Pt (points A3, B3, and C3) is given.

an excellent agreement between the analytical formalism and
the transition region computed via the PWM is found, which
validates the expression obtained in Eq. (8). Furthermore,
from the analysis of Fig. 3(c), one notices that the wave-
lengths λc of the modes excited underneath Pt [see point P4 in
Fig. 3(b)] are directly related to the critical wave vector kc [see
Eq. (7)] derived for the continuous film. Specifically, these
wavelengths can be determined by λc = 2π/kc. The match
between the wavelengths evaluated at k = kc and one of the
lowest-frequency modes in the chiral MC substantiates the
derivation of Eq. (8). Furthermore, in Fig. 3(b), it is observed
that the modes localized in the Ru zone (point P1) have an
infinite wavelength. This observation aligns with the concept
presented in Fig. 3(c), where the lowest-frequency modes
localized in Ru are linked to states with k = 0, resulting in
λ → ∞. Hence, concerning the nature of the flat modes, there
is a direct relation between a continuous film and a chiral
magnonic crystal.

One can observe that Eq. (8) is independent of the filling
fraction f f = w/a, so if the width w is modified, the tran-
sition line should be similar to the one shown in Fig. 3 for
f f = 0.5. To validate this hypothesis, the localization degree,
denoted by ��, is examined as a function of f f and D. This
result is illustrated in Fig. 4, wherein the case with μ0Hs =
400 mT is chosen as a reference. This analysis demonstrates
that the expression μ0Hs(D) remains applicable even as the
filling fraction changes. Here, the transition from positive to
negative (or vice versa) values of �� is characterized by
the zone with �� = 0 (indicated by the white color), which
remains independent of f f . The purple and slate blue colors
exhibit a slight dependence on the filling fraction, as evident
from the modulations of the white color in Fig. 4. Spin-wave
profiles are also presented in Fig. 4 (see states A1–A3, B1–B3,
and C1–C3), where the absolute value of the dynamic
magnetization is plotted as a function of z. Notably, points

A2, B2, and C2 are consistent with Eq. (8) and represent the
dispersive modes with similar localization in both Pt and Ru
regions. Nonetheless, the filling fraction does influence the
localization of the spin waves. For example, for low filling
fractions, mode A2 is localized both at Ru and at the center of
the Pt nanowires (see Fig. 4), while for large filling fractions
(modes B2 and C2), the modes localize in both regions but
towards the edges of the Pt wires. The behavior shown in
Fig. 4 does not change qualitatively as the anisotropy changes
(not shown).

Another property of a chiral MC refers to the nonrecipro-
cal properties of the magnetization oscillation amplitude for
low-frequency flat modes. Owing to the chiral nature of the
DMI coupling, it is inferred that the flat bands of modes lo-
calized underneath the HM nanostripes exhibit nonreciprocal
amplitudes. Namely, by considering the SW dispersion with
DMI of the continuous film shown in Fig. 3(c), it is expected
that flat modes localized beneath Pt have a robust localiza-
tion at positive wave vectors. On the other hand, at negative
wave vectors, the magnetization oscillation amplitudes are
smaller. This behavior implies that the system exhibits a more
prominent occupation of these modes at positive k. In con-
trast, when anisotropy dominates over DMI, the flat modes
are localized in the Ru zones, where the system is achiral,
and, hence, the flat bands have similar intensities at negative
and positive wave vectors since the SW dispersion for D = 0
is reciprocal.

Micromagnetic simulations using the MuMax3 code
[71,72] have been performed to corroborate the predictions
about the intensity of the SW modes. The simulations com-
pute the Fourier amplitude of SW modes excited with a small
alternating external field in wave vector and frequency space.
Results of simulations are shown in Fig. 5. Here, the min-
ima in spin-wave intensity at specific k values arise from
numerical artifacts in the simulations, which are caused by
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FIG. 5. Panels (a) and (b) illustrate the magnonic band structure associated with points P1 and P4 of Fig. 3(a). The dotted green lines
represent the calculated dispersion, while the power spectrum of the MuMax3 simulations is depicted using gray scale. The insets display the
spin-wave profiles for the lowest-frequency band evaluated at k = 0. In panel (a), a symmetric intensity of the simulated power spectrum is
obtained under the inversion of the wave vector. At point P4, panel (b), the low-frequency flat modes exhibit an amplitude asymmetry due
to the influence of the interfacial Dzyaloshinskii-Moriya interaction. Panels (c)–(f) illustrate the variation of band structure as a function of
external fields with a selected unit cell, whereas (g)–(j) exhibit band structures for different unit cells with a fixed external field. Vertical dotted
lines illustrate the Brillouin zone edges. In all cases, w = a/2.

multiple factors such as the boundary conditions at the mate-
rial interfaces (regions with and without DMI), the numerical
discretization, and the definition of the excitation pulse. This
effect has been reported in other studies such as Ref. [87],
and might be avoided using an alternative frequency-space
numerical method. The simulations are realized for the cases
P1 and P4 (see Fig. 3). Figure 5(a) illustrates the simulated
(and calculated) SW dispersion for point P1, with the lowest-
frequency flat mode localized beneath Ru. In this scenario,
the simulations display a flat band with a reciprocal SW
power-spectrum amplitude, in agreement with the theoretical
picture. Conversely, at point P4, where the DMI dominates,
the flat band exhibits a nonreciprocal amplitude, as depicted
in Fig. 5(b). Here, it is noted that the simulated flat modes have
a stronger power-spectrum amplitude at positive wave vec-
tors, which is consistent with the idea presented in Fig. 3(c)
(see solid lines), where the minimum of the SW dispersion
evaluated at a finite DMI strength happens at a positive
kc.

To complement the analysis of the amplitude asymme-
try observed in the micromagnetic simulations, the period a
and the external field are varied for the chiral flat modes.
Figures 5(c)–5(f) correspond to the SW band structure eval-

uated at point P4 but for different external field values. As
observed, the asymmetry on the SW amplitudes remains un-
altered under the modification of the external field. In the
cases shown in Figs. 5(g)–5(j), the external field is fixed to
μ0H0 = 250 mT, while the period of the system is varied (with
w = a/2 for all cases). When the period increases the width of
the Brillouin zones reduces, resulting in a limited dispersion
of wave modes with more flat bands [72] than in the cases
with varying magnetic fields. Alternatively, when the period
is decreased, the width of the Brillouin zones increases, and
the SWs within the BZ exhibit a more dispersive behavior,
inhibiting the formation of flat bands. Concerning the ampli-
tude of the simulated power spectrum, it is observed that the
asymmetry is more pronounced as the period increases, where
all the lowest-frequency flat modes start to become nonrecip-
rocal. This behavior is due to the tendency of all flat bands to
be localized beneath the HMs as a increases. Therefore, chiral
MCs featuring a periodic DMI offer a remarkable capability
of selective localization of the flat SW modes, demon-
strating both reciprocal and nonreciprocal magnetization
oscillations, depending on the interplay between anisotropy
and DMI strength. Consequently, in addition to the nonre-
ciprocity in frequency induced by DMI, the amplitude-based
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nonreciprocity of flat modes emerges as an extra degree of
freedom to effectively manipulate the dynamic characteristics
of chiral magnonic crystals.

IV. CONCLUSIONS

This paper focused on the physics of magnonic flat bands
and their nonreciprocal magnetization oscillation amplitudes
in a nanoscale ferromagnetic film with periodic perpendicular
anisotropy and interfacial Dzyaloshinskii-Moriya interaction.
The study employed a localization diagram to examine the
spatial confinement of magnonic modes in zones with and
without DMI. The findings demonstrate the presence of flat
modes with nonreciprocal amplitudes when SW localiza-
tion occurs beneath the Pt nanowires, which is induced by
the chiral Dzyaloshinskii-Moriya coupling. In contrast, when
perpendicular anisotropy dominates, the flat modes localize
in regions beneath the Ru nanowires, exhibiting a recip-
rocal amplitude. An analytical expression was derived to
explain the selective localization of SW modes, establishing a

relationship between anisotropy and interfacial DMI at the
transition curve that separates the regions with SW modes
localized in the zones with and without DMI. Micromagnetic
simulations were conducted to verify the power-spectrum
amplitude asymmetry of the flat modes, yielding perfect
agreement with the theoretical predictions. This mechanism,
linked to the amplitude asymmetry of flat magnonic bands,
introduces an opportunity to enhance the control over SW
excitations at the nanoscale. It opens up further opportunities
for manipulating SWs, offering a promising alternative path-
way for developing future magnon-based nanotechnological
applications.
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