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Hybrid skyrmion and antiskyrmion phases in polar C4v systems
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We investigate the stability of the skyrmion crystal phase in a tetragonal polar system with the Dzyaloshinskii-
Moriya interaction by focusing on the symmetry of ordering wave vectors forming the skyrmion crystal. Our
analysis is based on numerical simulations for an effective spin model, which is derived from the weak-coupling
regime in the Kondo lattice model on a polar square lattice. We show that a hybrid square skyrmion crystal
consisting of Bloch and Néel spin textures emerges even under polar C4v symmetries when the ordering wave
vectors correspond to low-symmetric wave vectors in momentum space, which is in contrast to the expectation
from the Lifshitz invariants. We also show the instability toward the antiskyrmion crystal and rhombic skyrmion
crystal depending on the direction of the Dzyaloshinskii-Moriya vector in momentum space. Furthermore, we
show that the regions of the skyrmion crystal phases are affected by taking into account the symmetric anisotropic
exchange interaction. Our results open the potential direction of engineering the hybrid skyrmion crystal and
antiskyrmion crystal phases in polar magnets.
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I. INTRODUCTION

Spatial inversion symmetry is one of the important factors
in determining physical properties in solids. When the spatial
inversion symmetry is broken, the system acquires various
properties like chirality and polarity, which become the origin
of parity-breaking phenomena, such as the Edelstein effect
[1–5], nonlinear Hall effect [6–9], and piezoelectric effect
[10]. Such breaking of the spatial inversion symmetry also
leads to exotic states of matter, such as odd-parity multi-
pole orderings [11–19] and unconventional superconductors
[20–28]. In this way, noncentrosymmetric systems provide a
fertile platform to explore attracting quantum states and their
related physical properties in condensed matter physics.

The lack of spatial inversion symmetry often affects the
stability of magnetic phases in magnetic materials. The most
familiar example is the Dzyaloshinskii-Moriya (DM) interac-
tion that originates from the relativistic spin-orbit coupling
[29,30]. The DM interaction tends to favor the single-Q spiral
spin configuration by combining the ferromagnetic exchange
interaction. It also becomes the origin of multiple-Q spin con-
figurations, which are expressed as a superposition of multiple
spiral waves. Especially, a skyrmion crystal (SkX), which
is characterized by a multiple-Q state, emerges by further
considering the effect of an external magnetic field [31–33].
The SkX has been extensively studied in both theory and ex-
periments [34–39], since it exhibits not only parity-breaking
physical phenomena but also topological ones, such as the
topological Hall effect [40–42].

A variety of SkXs have been so far found in noncentrosym-
metric magnets, which are classified into Bloch SkXs, Néel
SkXs, and anti-SkXs depending on the sign of the topological
charge and helicity of skyrmion [43]. From the energetic
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viewpoint, their emergence is expected from the Lifshitz
invariants L(k)

i j = mi∂kmj − mj∂kmi (mi represents the magne-
tization field for the i = x, y, z component) that correspond to
the energy contribution by the DM interaction [31,32,44,45].
Since the form of the Lifshitz invariants is determined by
the crystallographic point-group symmetry, one can find what
types of SkXs are realized once the symmetry of the materi-
als is identified. For example, the Bloch SkXs appear in the
chiral point groups [34–38,46,47], the Néel SkXs appear in
the polar point group [48–51], and anti-SkXs appear in the
point groups D2d and S4 [52–55]. Furthermore, the hybrid
SkX characterized by a superposition of Bloch- and Néel-type
windings has been identified in synthetic multilayer magnets
[56–58], which can lead to intriguing helicity-dependent dy-
namics [59–61].

In the present study, we investigate the possibility of the
emergent hybrid SkX and anti-SkX under polar symmetry,
which are not expected from the Lifshitz invariants. By fo-
cusing on the symmetry of ordering wave vectors constituting
the SkX, we find that the instability toward such SkXs is
brought about by the DM vector lying on the low-symmetric
wave vectors, which has been recently observed in EuNiGe3

[62,63]. We demonstrate that such a situation naturally hap-
pens in the Kondo lattice model with the antisymmetric
spin-orbit coupling (ASOC) on a polar square lattice, where
long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
action [64–66] plays an important role. Then, we construct the
magnetic phase diagrams in a wide range of model parameters
by performing the simulated annealing for an effective spin
model with momentum-resolved DM interaction. We show
that three types of SkXs are realized in an external magnetic
field depending on the direction of the DM vector: square
SkX (S-SkX), rhombic SkX (R-SkX), and anti-SkX. In the
S-SkX, the constituent ordering wave vectors are orthogonal
to each other, while they are not in the R-SkX and anti-SkX.
Moreover, we find that the induced SkXs are characterized as
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the hybrid SkXs to have both Bloch and Néel spin textures.
We also discuss the effect of symmetric anisotropic exchange
interaction on the SkX phases. The present results provide
another possibility of material design in terms of the SkXs
by taking into account the symmetry of the ordering wave
vectors.

The rest of this paper is organized as follows. In Sec. II,
we introduce the Kondo lattice model in a tetragonal polar
system and derive the RKKY interaction. We show that there
is a directional degree of freedom in terms of the DM vector
at low-symmetric wave vectors. In Sec. III, we construct an
effective spin model and outline numerical simulated anneal-
ing used to investigate the ground-state phase diagram. Then,
we show the instability toward three types of SkXs in Sec. IV.
We examine the effect of additional magnetic anisotropy on
the stability of the SkX in Sec. V. We summarize the results
of this paper in Sec. VI.

II. EFFECTIVE SPIN INTERACTIONS IN ITINERANT
ELECTRON SYSTEMS

Let us start with the Kondo lattice model on a two-
dimensional square lattice under the C4v point group, which
consists of the itinerant electrons and classical localized spins
[67,68]. The Hamiltonian is given by

H =
∑
kσ

(εk − μ)c†
kσ

ckσ + JK

∑
kqσσ ′

c†
kσ

σσσ ′ck+qσ ′ · Sq

+
∑

k

gk · c†
kσ

σσσ ′ckσ ′ , (1)

where c†
kσ

and ckσ are the creation and annihilation opera-
tors of an itinerant electron at wave vector k and spin σ ,
respectively. Sq represents the Fourier transform of a local-
ized spin Si at site i with the fixed length |Si| = 1. The first
term represents the hopping term of itinerant electrons, where
εk is the energy dispersion and μ is the chemical potential.
We take εk = −2t1(cos kx + cos ky) − 4t2 cos kx cos ky with
the nearest-neighbor hopping t1 and next-nearest-neighbor
hopping t2; we set the lattice constant of the square lat-
tice as unity and choose t1 = 1 and t2 = −0.8, although the
choice of the hopping parameters does not affect the follow-
ing results at the qualitative level. The second term stands
for the Kondo coupling between itinerant electron spins and
localized spins, where JK is the exchange coupling con-
stant and σ = (σ x, σ y, σ z ) is the vector of Pauli matrices.
The third term stands for the Rashba ASOC that originates
from the spin-orbit coupling under polar symmetry; gk =
α(sin ky,− sin kx ) = −g−k; α is the amplitude of the ASOC.

By supposing the situation where JK is small enough
compared to the bandwidth of itinerant electrons, we derive
the effective spin Hamiltonian in the weak-coupling region.
Within the second-order perturbation in terms of JK, the spin
Hamiltonian is given by [68]

HRKKY = −J2
K

∑
q,ν,ν ′

χνν ′
(q)Sν

q Sν ′
−q, (2)

where ν, ν ′ = x, y, z. χνν ′
(q) with q = (qx, qy) represents the

spin-dependent magnetic susceptibility of itinerant electrons,
which depends on the hopping parameters, ASOC, and the
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FIG. 1. Contour plots of the normalized bare susceptibility
χ̃ (q) = λ(q)/λmax derived from the Kondo lattice model in Eq. (1)
with t1 = 1, t2 = −0.8, and α = 0.5 at (a) μ = −3, (b) μ = −2.5,
(c) μ = −1.4, and (d) μ = −1.3. The wave vectors that give λmax are
(a) q = (0, π/4), (b) q = (2π/5, 3π/20), (c) q = (π/12, 11π/20),
and (d) q = (π/20, 17π/30) and their symmetry-related wave vec-
tors. The arrows represent the direction of the DM vector at each
wave vector, whose lengths stand for the magnitude of the DM
interaction.

chemical potential. Under the C4v symmetry, nonzero compo-
nents in χνν ′

(q) are generally given by [69]

χ (q) =

⎛
⎜⎝

Re[χ xx(q)] Re[χ xy(q)] −iIm[χ zx(q)]

Re[χ xy(q)] Re[χ yy(q)] iIm[χ yz(q)]

iIm[χ zx(q)] −iIm[χ yz(q)] Re[χ zz(q)]

⎞
⎟⎠,

(3)

where χνν ′
(q) = Re[χνν ′

(q)] + iIm[χνν ′
(q)]. The effective

interaction J2
Kχνν ′

(q) corresponds to the q component of
the generalized RKKY interaction [68,70]; the antisymmetric
imaginary components in χνν ′

(q) correspond to the DM in-
teraction, while the symmetric real components correspond to
the isotropic and anisotropic exchange interactions. The DM
vector at q is given by Dq = J2

K(Im[χ yz(q)], Im[χ zx(q)]).
The magnetic instability of the spin model in Eq. (2)

occurs at the wave vector that gives the maximum eigen-
value of χ (q) in Eq. (3). We show the contour plot of the
largest eigenvalues for magnetic susceptibility in each q,
λ(q), at α = 0.5 for several μ in Fig. 1; we set μ = −3
in Fig. 1(a), μ = −2.5 in Fig. 1(b), μ = −1.4 in Fig. 1(c),
and μ = −1.3 in Fig. 1(d). We take the grids of k and q
as 24002 and 1202, respectively. We normalize the magnetic
susceptibility as χ̃ (q) = λ(q)/λmax, where λmax represents
the largest eigenvalues for all q. χ̃ (q) exhibits the maxi-
mum value at q = (0, π/4) in Fig. 1(a), q = (2π/5, 3π/20)
in Fig. 1(b), q = (π/12, 11π/20) in Fig. 1(c), and q =
(π/20, 17π/30) in Fig. 1(d). It is noted that χ̃ (q) becomes
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maximum at the other wave vectors that are connected to
the above wave vectors by the rotational and/or mirror sym-
metries under the point group C4v. For example, χ̃ (q) also
becomes maximum at q = (π/4, 0) in the case of Fig. 1(a),
while χ̃ (q) becomes maximum at q = (−3π/20, 2π/5) and
q = (3π/20, 2π/5) in the case of Fig. 1(b). The spiral
state with these ordering wave vectors is chosen as the
ground state.

In the following, we focus on the behavior of the imagi-
nary part of the magnetic susceptibility, which corresponds to
the DM interaction. We show the momentum-resolved DM
vectors Dq/J2

K = (Im[χ yz(q)], Im[χ zx(q)]) as the arrows in
Fig. 1, where the length and direction of the arrows express
the magnitude and direction of the DM vectors, respectively.
One finds that the direction of the DM vectors in each wave
vector is fixed to the direction parallel to q̂z × q (q̂z represents
the unit vector along the qz direction) when q lies on the
high-symmetric 〈100〉 and 〈110〉 lines, while it is arbitrary for
the other q. This is attributed to the presence of the mirror
plane on the high-symmetric 〈100〉 and 〈110〉 lines, which
imposes the constraint on the direction of the DM vector.

The above result indicates that the spiral plane realized in
the ground state depends on the position of ordering wave
vectors that give the maximum magnetic susceptibility. When
the ordering wave vectors lie on the high-symmetric 〈100〉
and 〈110〉 lines as found in Fig. 1(a), the spiral plane is
parallel to q; the cycloidal spiral state becomes the ground
state. This is expected from the Lifshitz invariants under the
C4v symmetry, which is given by L(x)

xz + L(y)
yz with L(k)

i j =
mi∂kmj − mj∂kmi [31,32,44,45]. On the other hand, such a
situation qualitatively changes once the ordering wave vectors
lie on the low-symmetric points except for 〈100〉 and 〈110〉
lines and it lies on the position far from the origin that can-
not be described by a simple continuum limit as found in
Figs. 1(b)–1(d); there is no constraint on the spiral plane
owing to the arbitrariness of the DM vector direction. In
other words, the proper-screw spiral state with the spiral
plane perpendicular to q is possible, which is usually ex-
pected under the chiral point group like O and D4 rather
than the polar one. For example, in the case of Fig. 1(b), the
spiral plane lies perpendicular to Dq at q = (2π/5, 3π/20),
where Dq is given by Dq = J2

K(Im[χ yz(q)], Im[χ zx(q)]) =
J2

K(−0.00703,−0.05785); the spiral state is neither proper
screw nor cycloidal. Such a situation also happens in
EuNiGe3, where the observed spiral state is characterized by
a superposition of the proper-screw and cycloidal spiral waves
[62,63]. The deviation of the ordering wave vectors from the
high-symmetric 〈100〉 and 〈110〉 lines might be attributed to
a complicated long-range RKKY interaction in the Kondo
lattice model.

III. EFFECTIVE SPIN MODEL AND METHOD

The results in Sec. II indicate that there is a possibility
of realizing the hybrid SkX and anti-SkX when the ordering
wave vectors lie on low-symmetric ones, which makes the
direction of the DM vector arbitrary. We consider such a
situation in order to investigate the stability of these unconven-
tional SkXs in the ground state. For that purpose, we analyze
an effective spin model of the Kondo lattice model in Eq. (1)

[71], which is given by

Heff = −
∑

η

[
JSQη

· S−Qη
+ iDQη

· (SQη
× S−Qη

)

+
∑
ν=x,y

�ν
Qη

Sν
Qη

Sν
−Qη

]
− H

∑
i

Sz
i . (4)

This model is obtained by extracting the specific momentum-
resolved interaction that gives the dominant contribution to
the ground-state energy in Eq. (2). The first term repre-
sents the momentum-resolved interaction at wave vectors
Qη, where η is the index for the symmetry-related wave
vectors. For the specific wave vectors, we choose ±Q1 =
±(Qa, Qb), ±Q2 = ±(−Qb, Qa), ±Q3 = ±(Qa,−Qb), and
±Q4 = ±(Qb, Qa) with Qa = 13π/25 and Qb = 3π/25 so
that the ordering vectors are not on the high-symmetric 〈100〉
and 〈110〉 lines. It is noted that Q1–Q4 are connected by the
fourfold rotational and mirror symmetries of the square lattice
under the C4v point group.

At Q1–Q4, we consider the isotropic exchange interac-
tion in the form of JSQη

· S−Qη
, the DM interaction in the

form of iDQη
· (SQη

× S−Qη
) with DQη

= −D−Qη
, and the

symmetric anisotropic exchange interaction in the form of
�x

Qη
Sx

Qη
Sx

−Qη
+ �

y
Qη

Sy
Qη

Sy
−Qη

. The direction of the DM vector
is Qη-dependent; we set DQ1

= D(− cos θ, sin θ ) and other
DQη

so as to satisfy the polar symmetry [69]. We introduce
the parameter θ in order to investigate the instability toward
the SkX while varying θ , although it is determined by the
imaginary part of the magnetic susceptibility when the band
structure is given, as discussed in Sec. II. The skyrmion he-
licity can become 0 or π for DQη

⊥ Qη, while it can become
±π/2 for DQη

‖ Qη. For other cases, the helicity continuously
changes according to the direction of DQη

. The symmetric
anisotropic exchange interaction also has Qη dependence; we
set (�x

Q1
, �

y
Q1

) = (�, 0) and other (�x
Qη

, �
y
Qη

) to satisfy the
polar symmetry, which also affects the stability of the SkX
[72–81]. Although the magnitudes of the parameters (J, D, �)
in the model in Eq. (4) are determined by the magnetic suscep-
tibility in Eq. (2), we deal with them phenomenologically; we
take J = 1 as the energy unit of the model, and set D = 0.2
and � = 0 in Sec. IV or � = 0.1 in Sec. V. We ignore the
effect of other symmetric anisotropic exchange interactions
such as Sz

Qη
Sz

−Qη
and Sx

Qη
Sy

−Qη
+ Sy

Qη
Sx

−Qη
, the latter of which

arises from Re[χ xy(q)] in Eq. (3) for simplicity. The former
easy-axis anisotropy tends to favor the SkX phase, while the
latter bond-dependent anisotropy tends to change the helicity
of the SkX by collaborating (�x

Qη
, �

y
Qη

) and DQη
, as detailed in

Sec. V. In addition, we introduce the second term in Eq. (4),
which represents the Zeeman term under an external magnetic
field along the z direction. We do not consider the effect of the
dipolar interaction, which often assists the stabilization of the
SkX phase [78]. From the symmetry aspect, such an effect
is partly taken into account by the symmetric anisotropic
exchange interaction.

The magnetic phase diagram at low temperatures is con-
structed by performing the simulated annealing from high
temperatures T0 =1–5 for the spin model with the system size
N = 502 under the periodic boundary conditions, where N
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represents the total number of sites. Starting from a random
spin configuration, we gradually reduce the temperature as
Tn+1 = 0.999999Tn to the final temperature T = 0.01, where
Tn is the nth temperature. In each temperature, the spin is
locally updated one by one following the standard Metropolis
algorithm. When the temperature reaches the final temper-
ature T , further Monte Carlo sweeps around 105–106 are
performed for measurements. The simulations independently
run for different model parameters. In order to avoid the
meta-stable solutions in the vicinity of the phase boundaries,
the simulations from the spin configurations obtained at low
temperatures are also performed.

The spin and scalar spin chirality quantities are calculated
to identify magnetic phases. The uniform magnetization along
the field direction is given by

Mz = 1

N

∑
i

Sz
i . (5)

The spin structure factor is given by

Ss(q) =
∑

ν

Sνν
s (q), (6)

Sνν
s (q) = 1

N

∑
i j

Sν
i Sν

j e
iq·(ri−r j ), (7)

for ν = x, y, z. ri represents the position vector at site i and
q represents the wave vector in the first Brillouin zone. The
scalar spin chirality is given by

χ sc = 1

2N

∑
i

∑
δ,δ′=±1

δδ′Si · (Si+δx̂ × Si+δ′ ŷ), (8)

where x̂ (ŷ) represents a shift by lattice constant in the x (y)
direction. The scalar spin chirality is one of the signals to
identify the SkX; i.e., χ sc �= 0 for the SkX.

IV. SKYRMION CRYSTAL PHASES

We discuss the effect of the DM interaction at low-
symmetric wave vectors on the stabilization of the SkX; we
set � = 0 and discuss its effect in Sec. V. Figure 2 shows
the H dependence of the z component of the magnetization
Mz and the squared scalar spin chirality (χ sc)2 at θ = 0.4π .
For H = 0, the ground-state spin configuration corresponds to
the single-Q spiral (1Q) state, whose ordering wave vector is
characterized by any of Q1–Q4. The spiral plane is determined
so as to align perpendicular to DQη

, which results in the energy
gain by the DM interaction. In the case of the Q1 ordering
wave vector, the DM interaction with θ = 0.4π is given by
DQ1

� D(−0.309, 0.951), which results in the spiral plane on
(0.951,0.309). When the magnetic field is turned on, the spiral
plane is gradually tilted to the plane perpendicular to the mag-
netic field to gain the energy by the Zeeman coupling. When
H reaches 1.05, the 1Q state is replaced by the SkX, which is
characterized by the double-Q spiral waves as detailed below;
the scalar chirality becomes nonzero, as shown in Fig. 2. Then,
the SkX turns into the 1Q state again by further increasing
H , where the spiral plane is almost perpendicular to the field
direction. Finally, the 1Q state continuously changes into the
fully polarized state.

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.0  0.5  1.0  1.5  2.0  2.5

SkX

1Q1Q fully polarized 

state

FIG. 2. H dependence of the z component of the magnetization
Mz and the squared scalar chirality (χ sc )2 for θ = 0.4π . The vertical
dashed lines represent the phase boundaries between different mag-
netic phases.

The above phase sequence against H is independent of
θ within the discretized data in Fig. 2. Meanwhile, we find
two characteristic features in terms of the θ dependence. One
is the θ -dependent spiral plane in the 1Q state. We show
the real-space spin configurations at H = 0 for different θ in
Figs. 3(a)–3(f), where the ordering wave vector is chosen as
Q1. One finds that the spiral plane of the 1Q state changes
according to θ , which is understood from the fact that the
spiral plane is determined by the direction of the DM vector,
as discussed above. Thus, the cycloidal spiral state with the
spiral plane parallel to the wave vector, which usually appears
under the polar symmetry, is not necessarily realized once
the ordering wave vectors lie at the low-symmetric ones. In
other words, the proper-screw spiral state with the spiral plane
perpendicular to the wave vector can be also induced at the
low-symmetric wave vectors. Indeed, such a tendency has
been found in the tetragonal polar magnet EuNiGe3, where
the ordering wave vector lies at the low-symmetric position
[62,63]. For almost all of θ , the spiral plane is neither parallel
nor perpendicular to the ordering wave vector.

The other characteristic feature of the θ dependence ap-
pears in nonzero H . We show the θ dependence of Mz and
(χ sc)2 at H = 1.1 in Fig. 4, where the SkX with nonzero
(χ sc)2 appears irrespective of θ . Intriguingly, the three dif-
ferent types of SkXs are realized depending on θ : the
anti-SkX for −0.01π � θ � 0.01π and 0.99π � θ � 1.01π ,
R-SkX for 0.49π � θ � 0.51π and 1.49π � θ � 1.51π , and
S-SkX for other θ . We show the real-space spin configurations
for several different θ in Fig. 5; the spin configurations in
Figs. 5(a) and 5(e) correspond to those in the anti-SkX, the
spin configurations in Figs. 5(c) and 5(g) correspond to those
in the R-SkX, and the spin configurations in Figs. 5(b), 5(d),
5(f), and 5(h) correspond to those in the S-SkX. The anti-SkX
and the R-SkX are characterized by a superposition of double-
Q spiral waves at Q2 and Q3 [Fig. 6(a)], while the S-SkX is
characterized by that at Q1 and Q2 [Fig. 6(b)]. Reflecting the
direction of the DM vector, the SkXs with various values of
helicity, i.e., the hybrid SkXs, are realized for almost all of θ .

The above results indicate that there are two possibilities
for constructing the double-Q SkX in the tetragonal system.
One is the case where the constituent double-Q ordering wave
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FIG. 3. Real-space spin configurations in the 1Q state for H = 0
at (a) θ = 0, (b) θ = 0.16π , (c) θ = 0.36π , (d) θ = 0.44π , (e) θ =
0.56π , and (f) θ = 0.8π . The arrows represent the direction of the
in-plane spin moments and the color shows its z component.

vectors are connected by the mirror symmetry and the other
is the case where the constituent double-Q ordering wave
vectors are connected by the fourfold rotational symmetry; the
former leads to the R-SkX (or anti-SkX) and the latter leads
to the S-SkX, where the alignments of the skyrmion cores

 0.2

 0.4

 0.0  1.0  2.0

S-SkX

anti-SkX R-SkX

FIG. 4. θ dependence of Mz and (χ sc )2 at H = 1.1. The vertical
dashed lines represent the phase boundaries between different mag-
netic phases. The SkX is stabilized in all the regions against θ . The
regions in blue (pink) represent the R-SkX (anti-SkX) phase, while
those in white represent the S-SkX.

(a) anti-SkX

0

1

-1

(c) R-SkX

0

1

-1

(e) anti-SkX

0

1

-1

(b) S-SkX

0

1

-1

(d) S-SkX

0

1

-1

(f) S-SkX

0

1

-1

(g) R-SkX

0

1

-1

(h) S-SkX

0

1

-1

FIG. 5. Real-space spin configurations in the SkX for H = 1.1 at
(a) θ = 0, (b) θ = 0.25π , (c) θ = 0.5π , (d) θ = 0.75π , (e) θ = π ,
(f) θ = 1.25π , (g) θ = 1.5π , and (h) θ = 1.75π . The spin configu-
rations in (a) and (e) correspond to the anti-SkX, those in (b), (d), (f),
and (h) correspond to the S-SkX, and those in (c) and (g) correspond
to the R-SkX, The arrows represent the direction of the in-plane spin
moments and the color shows its z component.

are different from each other, as shown by the real-space spin
configurations in Fig. 5. The choice of two alignments is deter-
mined by the direction of the DM vector; from the simulation
results, the R-SkX (or anti-SkX) tends to be stabilized when
DQη

is almost characterized by only one component, such
as DQη

� (D, 0, 0) and DQη
� (0, D, 0). From an energetic

viewpoint, the R-SkX (or anti-SkX) is almost degenerate to
the S-SkX, which implies that the lower-energy state might
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FIG. 6. The square root of the spin structure factor in the anti-
SkX at (a) θ = 0 and (b) S-SkX at θ = 0.25π . The spin structure
factor of the R-SkX is the same as that in the anti-SkX.

be accidentally determined. Thus, the contribution from high-
harmonic wave vectors that are not taken into account in
the present model plays an important role in enhancing ei-
ther of the SkXs [82–84]. For example, the contributions
from the wave vectors Q2 + Q3 = (Qa − Qb, Qa − Qb) and
Q2 − Q3 = (−Qa − Qb, Qa + Qb) tend to stabilize the R-SkX
(or anti-SkX), while those from Q1 + Q2 = (Qa − Qb, Qa +
Qb) and Q1 − Q2 = (Qa + Qb,−Qa + Qb) tend to stabilize
the S-SkX.

The different choices of the constituent ordering wave vec-
tors in the SkXs result in the sign change of the scalar spin
chirality. In the S-SkX, the scalar spin chirality always takes
negative values, since the constituent spiral waves at Q1 and
Q2 are related by the fourfold rotational symmetry; the spin
texture around each skyrmion has the skyrmion number of −1.
Meanwhile, the situation changes in the R-SkX and anti-SkX,
whose ordering wave vectors are related by the vertical mirror
symmetry. For θ = 0 (θ = π ), DQ2

are related to DQ3
by the

rotation π/2 (−π/2), which indicates that the superposition
of the spiral waves at Q2 and Q3 leads to the SkX with the
skyrmion number of −1 (+1). Indeed, the in-plane component
of the spins surrounding the skyrmion core form the vortex
(antivortex) winding for the R-SkX (anti-SkX), as shown
by the real-space spin configuration in Figs. 5(c) and 5(g)
[Figs. 5(a) and 5(e)]. Thus, the anti-SkX with the positive
skyrmion number is possible even in polar magnets when
the low-symmetric wave vectors become the ordering wave
vectors.

V. EFFECT OF SYMMETRIC ANISOTROPIC
EXCHANGE INTERACTION

In this section, we consider the effect of the symmetric
anisotropic exchange interaction �, which can be the origin of
the hybrid SkX and anti-SkX even without the DM interaction
[82,85–87], on the stability of the SkX in Sec. IV. We set
� = 0.1.

Figure 7 shows the magnetic phase diagram in the
plane of θ and H . Compared to the result in Fig. 2,
where the SkX is stabilized for 1.03 � H � 1.23, the region
of the SkX becomes large for 0.2π � θ � 0.8π , while that
vanishes for 0 � θ � 0.2π and 0.8π � θ � π . Thus, the anti-
SkX no longer appears in the phase diagram for � = 0.1.
We show the H dependence of Mz and (χ sc)2 for θ = 0 in
Fig. 8(a), θ = 0.4π in Fig. 8(b), and θ = 0.5π in Fig. 8(c).

FIG. 7. Magnetic phase diagram of the model in Eq. (4) with
changing θ and H at � = 0.1.

In the low-field region, the 1Q state is stabilized irrespec-
tive of θ , although its direction of the spiral plane depends
on θ . The real-space spin configuration and the spin structure
factor of the 1Q state are shown in the left and right panels
of Fig. 9(a), respectively. Since � = 0.1 tends to favor the
oscillation in terms of the x (y) spin component for Q1 and
Q3 (Q2 and Q4), the spiral plane is tilted from the plane
perpendicular to DQη

to gain the energy by �.
In the intermediate-field region, the stability region of the

SkX is enhanced for 0.2π � θ � 0.8π , while it is suppressed
for 0 � θ � 0.2π and 0.8π � θ � π ; the real-space spin con-
figurations and the spin structure factors of the S-SkX and
R-SkX are shown in the left and right panels of Figs. 9(b) and
9(c), respectively. This stability tendency is understood from
the effect of �. For example, for θ = 0.5π , the DM interaction
at Q1 tends to favor the spiral wave in the xz plane, while
the symmetric anisotropic exchange interaction at Q1 tends
to favor the x spin oscillation. Thus, the effects of D and �

are cooperative in enhancing the stability of the spiral wave
in the xz plane. A similar tendency also holds for other Qη;
for example in the case of Q4, both D and � tend to favor the
spiral wave in the yz plane. On the other hand, for θ = 0, D
and � lead to different spiral states; D at Q1 tends to favor the
spiral state in the yz plane and � at Q1 tends to favor the spiral
state in the xz plane. This indicates frustration between D and
�, which avoids the stabilization of the SkX in the region near
θ = 0 and θ = π . It is noted that the opposite tendency can
happen when we consider � = −0.1 so that the spiral state in
the yz (xz) plane is favored at Q1 (Q4); the anti-SkX remains
stable, whereas the R-SkX vanishes. In the end, the relative
relationship between D and � is important whether the SkX
appears or not.

In the high-field region, the double-Q (2Q) state appears
instead of the 1Q state irrespective of θ . The spin configura-
tion of the 2Q state is almost characterized by the in-plane
spin modulations at Q3 and Q4 or Q2 and Q3, as shown by
the real-space spin configurations and spin structure factors
in Figs. 9(d) and 9(e). Since the energy in the 2Q state with

054422-6



HYBRID SKYRMION AND ANTISKYRMION PHASES IN … PHYSICAL REVIEW B 109, 054422 (2024)

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.0  0.5  1.0  1.5  2.0  2.5

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.0  0.5  1.0  1.5  2.0  2.5

(a)

(b)

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.0  0.5  1.0  1.5  2.0  2.5

(c)

1Q 2Q

1Q 2Q

S-SkX

1Q 2Q

R-SkX

FIG. 8. H dependence of Mz and (χ sc )2 for (a) θ = 0, (b) θ =
0.4π , and (c) θ = 0.5π . The vertical dashed lines represent the phase
boundaries between different magnetic phases.

Q3 and Q4 is almost the same as that in the 2Q state with Q2
and Q3, it is difficult to distinguish them in the present phase
diagram; the additional effect such as Sx

Qη
Sy

−Qη
+ Sy

Qη
Sx

−Qη
will

lift such a degeneracy. The 2Q state continuously turns into
the fully polarized state when the magnetic field increases, as
shown in Figs. 8(a)–8(c).

VI. SUMMARY

To summarize, we have investigated the role of the DM
interaction at low-symmetric wave vectors. We have analyzed
the effective spin model on the polar square lattice, which is
derived from the Kondo lattice model in the weak-coupling
regime, by performing the simulated annealing. We have
found that the direction of the DM vector affects the formation
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FIG. 9. Left panels: Real-space spin configurations in (a) the 1Q
state at θ = 0.4π and H = 0, (b) the S-SkX at θ = 0.4π and H = 1,
(c) the R-SkX at θ = 0.5π and H = 1.1, (d) the 2Q state at θ =
0.4π and H = 1.8, and (e) another 2Q state at θ = 0.4π and H =
2. The arrows represent the direction of the in-plane spin moments
and the color shows its z component. Right panels: The square root
of the spin structure factor corresponding to each left panel.
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of the SkXs as well as the helicity of the spiral wave. We have
shown that the R-SkX is realized when the DM vector lies
in the 〈100〉 direction, while the S-SkX is realized for other
cases. Furthermore, we have shown that the anti-SkX is also
realized depending on the direction of the DM vector, which
provides another root to realize the anti-SkX even under polar
symmetry. The present results indicate that the low-symmetric
ordering wave vectors become a source of inducing further
intriguing SkXs.

The present situation also holds for other noncentrosym-
metric systems. For example, the system with the chiral-type
DM interaction under the D4 (422) point group, which
usually favors the Bloch SkX, can also lead to the hy-
brid SkX and anti-SkX once the ordering wave vectors
lie at the low-symmetric ones. In addition, one can ex-
pect such generations of the hybrid SkX and anti-SkX

induced by the DM interaction at low-symmetric wave vec-
tors in centrosymmetric systems with the lack of local
inversion symmetry [88–91]. In this case, the sublattice-
dependent DM interaction becomes the origin of the above
unconventional SkXs.
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