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Conservation laws for interacting magnetic nanoparticles at finite temperature
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We establish a general Langevin dynamics model of interacting, single-domain magnetic nanoparticles
(MNPs) in liquid suspension at finite temperature. The model couples the Landau-Lifshitz-Gilbert equation for
the moment dynamics with the mechanical rotation and translation of the particles. Within this model, we derive
expressions for the instantaneous transfer of energy, linear, and angular momentum between the particles and
with the environment. We demonstrate by numerical tests that all conserved quantities are fully accounted for,
thus validating the model and the transfer expressions. The energy transfer expressions derived here are also
useful analysis tools to decompose the instantaneous, nonequilibrium power loss at each MNP into different loss
channels. To demonstrate the model capabilities, we analyze simulations of MNP collisions and high-frequency
hysteresis in terms of power and energy contributions.
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I. INTRODUCTION

Magnetic nanoparticles (MNPs) are currently under in-
tense study for a broad range of applications including
inductive components for power electronics [1], heating
catalytic reactions [2,3], drug delivery [4], hyperthermia treat-
ment of cancer [5–7], and various biosensor techniques [8]
such as magnetic particle imaging [9].

Central to these technologies is the response of MNPs to
applied, magnetic fields, in particular their hysteresis loops
and resulting heat dissipation. Analytical models for the mag-
netic response of an MNP ensemble do exist [10,11], but they
generally assume spatial homogeneity, linear response, and
quasiequilibrium. However, recent studies have highlighted
the importance of the local temperature profile [12], MNP
interactions [13–16], nonequilibrium dynamics [17], and ag-
gregation [18,19] in addition to coupling between magnetic
and mechanical degrees of freedom [20,21].

One of the most advanced and versatile methods for mod-
eling MNPs is Langevin dynamics [22], which incorporates
all of the aforementioned complexities. Here the equations of
motion are derived from the total system energy, with the
inclusion of stochastic and damping terms to model thermal
noise and dissipation, respectively. Some studies have treated
special cases or linearized versions of the equations analyt-
ically [23–27], but usually in their full nonlinear form they
are solved numerically. The most common method is direct
time-step integration [28,29] also known as a Langevin dy-
namics (LD) simulation, which we use in this paper. The main
alternative is kinetic Monte Carlo methods [30,31].

LD simulation studies include aggregation dynamics in
zero field [32–35], uniform [36,37], and gradient fields [38],
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as well as magnetic susceptibility computations [39–41] and
numerous simulations of hysteresis heating in alternating
fields, both in liquid suspension [34,42–47] and fixed in space
[13,16,30,48,49].

The standard way to implement Langevin dynamics of
MNPs is to assume a single magnetic moment μ, described by
the Landau-Lifshitz-Gilbert (LLG) equation [50]. The system
energy depends on the moment orientation relative to the
underlying atomic lattice, hence, the LLG is coupled to the
mechanical rotation of the particle. Recently, several authors
[25,43,51,52] derived a more complete model of this magne-
tomechanical coupling, which includes the intrinsic spin and
orbital angular momentum of electrons S = −μ/γ , however,
only for the single-MNP case. Unlike previous work, e.g.,
[39,42,47], this new model obeys conservation of total angular
momentum J. It has subsequently been studied both numeri-
cally [43,44] and analytically [24,51].

As stated by Usov and Liubimov [52], J conservation is
only important in low-friction cases, such as nanomagnets
suspended in vacuum. Nevertheless, conservation laws serve
as an important test of theoretical arguments in all cases,
leading to a more solid foundation upon which to impose
approximations. Also, there are examples of current [53] and
proposed [51,54] experiments where J conservation plays a
starring role.

Another recent branch of inquiry is the effect of tempera-
ture on energy transfer. By the fluctuation-dissipation theorem
[55], each dissipation channel has corresponding thermal fluc-
tuations, which lead to a mutual energy exchange between
particles and environment. These thermal power contributions
must be derived explicitly to understand the instantaneous
energy transfer at the nanoscale [14,49], which is essential to
predict the local temperature distribution.

In this paper we derive a generalization of the J-conserving
model to systems of multiple MNPs at finite temperature
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with dipole-dipole interactions. This leads to additional sub-
tleties in accounting for energy and angular momentum, so
we present a detailed analysis of the transfer of conserved
quantities that includes analytical and numerical demonstra-
tions of conservation up to entirely physical exchange with
the environment.

This paper may be regarded as a generalization of the work
by Helbig et al. [45] to multiple MNPs at finite temperature,
and of the work of Leliaert et al. [49] to include mechanical
motion.

A common simplification is the rigid dipole approximation
(RDA), where μ is assumed locked relative to the parti-
cle’s atomic lattice, effectively removing the LLG part of the
model. This circumvents the moment dynamics, which are
generally several orders of magnitude faster than mechanical
rotation [39], thus permitting far longer time steps. Another
simplification is the overdamped limit, where inertia is ne-
glected, as friction usually dominates for nanoparticles and
microparticles in liquid [56]. The RDA and the overdamped
limit as well as the micromagnetics of immobilized particles
can all be derived as limiting cases of our model.

Aside from model validation, the presented transfer formu-
las are useful analysis tools. Typically, energy dissipation is
determined by the area of a hysteresis curve, however, this is
only possible for the average dissipation rate of periodically
driven systems in steady state. From the formulas presented in
the paper, one can calculate the instantaneous power dissipa-
tion at each MNP and decompose into different loss channels.
In particular, magnetic losses from Gilbert damping heat the
MNP itself, while mechanical losses from viscous damp-
ing heat the surrounding fluid. This gives a detailed, local
perspective, applicable to nonequilibrium dynamics, which
we demonstrate by analyzing example simulations with and
without an external, alternating magnetic field. We note that
viscous losses correspond to Brownian relaxation where the
whole particle is rotating, while magnetic losses correspond to
Néel relaxation, where only the magnetic moment is rotating.

The paper is structured as follows. In Sec. II we sys-
tematically derive a Langevin dynamics model for MNPs in
fluid suspension, which has vacuum and solid suspension as
limiting cases. In Sec. III we formally derive expressions for
the transfer of conserved quantities and discuss their applica-
tion. In Sec. IV we discuss common model approximations in
the context of conservation laws and the many characteristic
frequencies of these systems. In Sec. V we present numerical
validation of the conservation laws at finite temperature and
example simulations of 1, 2, and 10 particle systems at zero
temperature. Video animations of the simulations are shown in
the Supplemental Material [57]. Finally, in Sec. VI we discuss
possible model generalizations, with supporting calculations
shown in the Supplemental Material [57].

II. MODEL

We consider a collection of identical, ferromagnetic, or
ferrimagnetic, spherical MNPs. Let μi be the net magnetic
moment of the ith MNP, R radius, V volume, ri the posi-
tion of its center and vi = ṙi its velocity. We assume internal
exchange coupling is strong enough to ensure uniform magne-
tization of constant magnitude M, hence, μi = μmi where mi

FIG. 1. Illustration of system with three magnetic nanoparticles
(MNPs). MNPs (spheres) and magnetic moments (yellow 3D vec-
tors) are drawn in Blender [58] with the same code used to visualize
simulations in Figs. 4 and 5, and the supplemental videos [57]. The
center positions ri, normalized moments mi = μi/MV and orienta-
tion vectors ui are indicated. The anisotropy axes are perpendicular to
the blue and green circles and parallel to ui, so the anisotropy energy
is lowest when ui ‖ mi which is the case for particle 2.

is a unit vector and μ = V M is constant. We specify particle
orientation by the unit vector ui which is fixed along the
chosen anisotropy axis (defined in Sec. II A 2), so u follows
the mechanical rotation. See Fig. 1 for an illustration. Finally,
let ωi denote angular velocity, in the sense that MNP i rotates
ωi radians per second counterclockwise around the vector ωi.
This is the model system we analyze in Secs. II–V, and we
discuss possible generalizations in Sec. VI.

A. Magnetic interactions

1. Magnetic fields

The magnetic interactions of uniformly magnetized
spheres are (up to relativistic corrections) precisely those of
point dipoles located at their centers [59]. That is, each MNP
produces a dipole field outside its surface, and the interaction
energy between MNP i and j is E int

i j = −μi · Bdip
ji where Bdip

ji
is the field from MNP j evaluated at ri.

The total dipole interaction energy is then

E int = 1

2

∑
i

∑
j �=i

E int
i j = −1

2

∑
i

μi · Bdip
i

with a factor of 1
2 to avoid double counting. Bdip

i is the field on
the ith MNP from all the rest, which is given by [60]

Bdip
i = μ0

4π

∑
j �=i

1

r3
ji

[3(μ j · r̂ ji )r̂ ji − μ j], (1)

where

r ji = ri − r j, r ji = |r ji|, r̂ ji = r ji/r ji.

We also consider a uniform, but time-varying, field
Bext generated by external currents, which gives the
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Zeeman energy [61]

EZee
i = −μi · Bext. (2)

2. Uniaxial anisotropy

There are a number of energy terms which give the magne-
tization a preferred direction relative to the particle’s crystal
lattice, namely, shape, magnetocrystalline, surface, and strain
anisotropy [62]. The latter two primarily induce nonuni-
form magnetization, which we neglect entirely, and shape
anisotropy is absent for a sphere.

Magnetocrystalline anisotropy results from relativistic
spin-orbit and spin-spin coupling, which to lowest order yields
[63] EMC = 1

2V mT Km, where K is a rank-2 tensor. Because
this is a relativistic perturbation, we expect higher-order terms
to be substantially smaller. We can always pick a local coordi-
nate system such that K is diagonal. We call the corresponding
eigenvalues Kx, Ky, Kz. Then, using m2

z = 1 − m2
x − m2

y ,

1

V
EMC = 1

2
mT Km

= const + 1

2
(Kx − Kz )m2

x + 1

2
(Ky − Kz )m2

y .

If Kx, Ky, Kz are all different, then this defines a hard, easy,
and intermediate axis, i.e., triaxial anisotropy.

Typically, in MNP studies, it is implicitly assumed that
there is rotation symmetry about an axis u, so that two of the
eigenvalues are equal. For instance, if u = ex then Kx = K‖
and Ky = Kz = K⊥. The energy may then be written in the
coordinate independent form

EMC = const − KV (m · u)2, (3)

where K = 1
2 (K‖ − K⊥). Evidently Eq. (3) describes uniaxial

anisotropy, with either a hard axis (K < 0) or an easy axis
(K > 0).

We refer to the literature for higher-order anisotropy terms
with lower symmetry [62,64,65].

B. Conserved quantities

1. Momenta

The total angular momentum of MNP i in its own rest
frame is

Ji = Li + Si, Li = Iωi, Si = −γ −1μi, (4)

where I is the moment of inertia, γ is the gyromagnetic
ratio, Li is the mechanical angular momentum, and Si is the
angular momentum associated with the magnetic moment. Si

comprises electron spin and orbital angular momentum [66].
The angular momentum of the whole MNP system is

J = L + S,

L =
∑

i

(Li + ri × pi ), S =
∑

i

Si, (5)

where pi is the linear momentum. Aside from the sum of
intrinsic angular momenta Ji, there is an extrinsic mechanical
contribution from motion relative to the rest of the system, i.e.,∑

i ri × pi.

The system linear momentum is all mechanical and given
simply by

p =
∑

i

pi. (6)

We discuss the transfer of linear and angular momenta in
Sec. III, in particular proving that the model obeys physical
conservation laws.

2. Energy

The system energy is, up to a constant,

E = 1

2
I
∑

i

ω2
i + 1

2
m

∑
i

v2
i − 1

2

∑
i

μi · Bdip
i

−
∑

i

μi · Bext − KV
∑

i

(mi · ui )
2, (7)

where m is the mass of each particle. The first two terms are
rotational and translational kinetic energy, while the last three
are explained in Secs. II A 1 and II A 2.

C. Energy-conserving equations of motion

The torque τ on a rigid body is defined as the energy
gain under an infinitesimal rotation δφ. That is, when u −→
u + δφ × u we have by definition

�E [δφ] = −τ · δφ + O(δφ2).

To first order in δφ,

E [u + δφ × u] − E [u] = ∂E

∂u
· (δφ × u)

=
(

u × ∂E

∂u

)
· δφ,

thus, the time derivative of Li is

L̇i = τ i = ∂E

∂ui
× ui. (8)

Similarly [25], Ṡi = ∂mi E × mi for the variation of magnetic
angular momentum, and from an infinitesimal displacement,
one finds ṗi = −∂ri E for the variation of linear momentum.

It then follows from Eqs. (4) and (7) after some algebra that

ṁi = −γ mi × (
Bdip

i + Bext
i + Bani

i

)
, (9)

Iω̇i = −μimi × Bani
i , (10)

mv̇i = Fdip
i , (11)

where

Bani
i = 2

Ki

Mi
(mi · ui )ui (12)

is an effective field from uniaxial anisotropy and

Fdip
i = 3μ0

4π

∑
j �=i

1

r4
ji

[(μi · r̂ ji )μ j + (μ j · r̂ ji )μi

+ (μi · μ j )r̂ ji − 5(μi · r̂ ji )(μ j · r̂ ji )r̂ ji]. (13)

When differentiating the dipole-dipole interaction, note that
Bdip

j contains μi. We observe that the forces in Eq. (13),
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and the torques μi × Bdip
i , are precisely those between point

dipoles [67].
Equations (9) to (11) constitute a molecular dynamics

model, which amounts to zero-temperature dynamics in vac-
uum. In Langevin dynamics, there are also fluctuation and
dissipation terms to describe coupling with the environment,
i.e., all the degrees of freedom that are not modeled explicitly.

D. Fluctuations and dissipation

1. Gilbert damping

To model dissipative coupling between magnetic mo-
ments and internal degrees of freedom, such as electrons
and phonons, we use the phenomenological Gilbert damping
torque [50], which converts magnetic angular momentum to
mechanical:

Ṡi = Ṡi

∣∣
α=0 + τα

i and L̇i = L̇i

∣∣
α=0 − τα

i , (14)

where at zero temperature

τα
i

∣∣
T =0 = −αμγ −1[mi × ṁi + mi × (mi × ωi )], (15)

and α is the material-specific Gilbert damping constant. See
Sec. II D 3 for the effect of temperature.

The first term is the standard Gilbert torque in the rest
frame of the particle, and the second an additional torque from
transforming to the laboratory frame [25,43], which has been
argued to produce the Barnett effect (change in magnetization
from mechanical rotation) [25,68]. Indeed, the second term is
proportional to the Barnett field [25,54]

BBar
i = −γ −1ωi. (16)

2. Viscous damping

Often MNPs are studied in fluid suspension, in which case
there is viscous damping from MNPs colliding with the fluid
particles, e.g., water molecules. For an isolated sphere at low
Reynolds number (Stokes flow regime) in a stationary fluid,
the exact expressions for the damping force and torque are
[69]

Fvisc = −ζ tv, τvisc = −ζ rω,

where

ζ t = 6πηR, ζ r = 8πηR3 (17)

are the translational and rotational friction coefficients and η is
dynamic viscosity. We neglect hydrodynamic interactions be-
tween the MNPs (see Sec. VI for discussion and references).

3. Fluctuations

By the fluctuation-dissipation theorem [55], for each
dissipation mechanism there are corresponding thermal fluc-
tuations. For the viscous damping, random collisions between
fluid particles and MNPs lead to Brownian motion, described
by a thermal force Fth and torque τ th. Likewise, to the Gilbert
damping there corresponds an effective thermal magnetic field
[70] Bth, which modifies the Gilbert torque by

τα
i = τα

i

∣∣
T =0 + μi × Bth

i . (18)

These are stochastic vectors with zero mean, i.e.,〈
Bth

i

〉 = 〈
Fth

i

〉 = 〈
τ th

i

〉 = 0, (19)

where 〈. . .〉 is an ensemble average in thermal equilibrium. We
assume no correlation in the fluctuations of different MNPs,
e.g., 〈Bth

i,αBth
j,β〉 ∼ δi j where δi j is the Kronecker delta, and

α, β ∈ {x, y, z} denote vector components. We furthermore
assume that each vector component is described by a Gaussian
distribution with no correlation from one point in time to
another (no autocorrelation). This is justified for Bth in general
[70], and for Fth, τ th whenever the MNPs are much larger and
slower than the fluid particles [55]. That is because on the
characteristic timescales of MNP motion, there are enough
random collisions with fluid particles that the central limit
theorem applies (Gaussian distribution) and the time between
consecutive impacts is negligible (again, no autocorrelation).
It may then be shown that for a given MNP [70]〈

Bth
α (t )Bth

β (t ′)
〉 = 2kBT α

γμ
δαβδ(t − t ′) (20)

and [71,72] 〈
F th

α (t )F th
β (t ′)

〉 = 2kBT ζ tδαβδ(t − t ′), (21)〈
τ th
α (t )τ th

β (t ′)
〉 = 2kBT ζ rδαβδ(t − t ′), (22)

where kB is Boltzmann’s constant. δαβ signifies that different
vector components are uncorrelated, which is true in Eqs. (21)
and (22) only for spherical particles [73–75].

E. Full Langevin dynamics

Here we present the general equations of motion for our
Langevin dynamics model of interacting MNPs. Inserting
Eqs. (4), (9), (18), and (15) in Eq. (14) yields the LLG equa-
tion

ṁi = −γ mi × Beff
i + αmi × ṁi, (23)

where

Beff
i = Bext

i + Bdip
i + Bani

i + Bth
i − αmi × BBar

i (24)

is an effective magnetic field. Bext is a uniform applied field
and the other component fields are given in Eqs. (1), (12),
(16), and (20). We emphasize that only Bdip and Bext are
actual magnetic fields governed by Maxwells equations. In
Appendix A we isolate ṁi in Eq. (23), which yields

ṁi = −γ ′mi × Beff
i − αγ ′mi × [

mi × Beff
i

]
, (25)

where γ ′ = γ /(1 + α2).
The mechanical equations of motion are (cf. Appendix B

for intermediate steps)

Iω̇i = μγ −1ṁi + μmi × Bi − ζ rωi + τ th
i , (26)

mv̇i = Fdip
i − ζ tvi + Fth

i , (27)

u̇i = ωi × ui, ṙi = vi, (28)

where Fdip is given in Eq. (13) and Bi = Bext + Bdip
i is the

magnetic field from all sources outside MNP i. For a given
initial state specified by mi, ui,ωi, ri, vi, the time evolution of
the system is fully described by Eqs. (25)–(28).
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Equation 25 can alternatively be written

ṁi = �i × mi, �i = γ ′Beff
i + αγ ′mi × Beff

i , (29)

where � is the angular velocity of the magnetic moments.
This nonstandard form highlights the similarity between the
LLG and mechanical rotation, making comparison easier.

III. CONSERVATION LAWS

A. Angular momentum transfer

We consider the change in angular momentum (see
Sec. II B 1), given the equations of motion (25)–(28).

For the intrinsic angular momentum of a single MNP, we
find

Ṡi = −γ −1μ̇i, (30)

L̇i = γ −1μ̇i − ζ rωi + μi × Bi + τ th
i , (31)

J̇i = −ζ rωi + μi × Bi + τ th
i . (32)

Note that regardless of the exact dynamics of the magnetic
moment, described by μ̇i, the change in Si is compensated by
the torque

τEdH
i = −Ṡi = γ −1μ̇i. (33)

Thus, the only ways Ji can change are by viscous friction
or coupling to external fields. The effective fields Bani

i , Bth
i ,

and BBar
i can only convert between magnetic and mechanical

angular momentum within the ith MNP, so their exact form,
and whether they are included in the model, is irrelevant for J
conservation.

We dub τEdH the Einstein–de Haas torque because it
produces the Einstein–de Haas effect, i.e., changes in mag-
netization induce rotation. τEdH bears a striking resemblance
to the Barnett field equation (16) because they are two sides of
the same phenomenon, namely, that angular momentum con-
servation necessitates a direct coupling between magnetic and
mechanical rotation. We note that if the MNPs are fixed inside
a solid, the τEdH and μi × Bi torques are transferred to the
surrounding material so the whole sample rotates, which leads
to the macroscopic Barnett and Einstein–de Haas effects.

The change in total angular momentum is

J̇ =
∑

i

(J̇i + ri × ṗi )

=
∑

i

(
ri × Fdip

i + μi × Bdip
i + μi × Bext

i

− ζ tri × vi − ζ rωi + τ th
i + ri × Fth

i

)
.

The first two terms are identical to the case of magnetic point
dipoles alone in vacuum. This can be verified by repeating the
above calculation using Eqs. (9)–(11) at Bext = 0. We prove in
Appendix C that this contribution is 0. Thus,

J̇ =
∑

i

(
μi × Bext

i − ζ rωi − ζ tri × vi

+ τ th
i + ri × Fth

i

)
. (34)

The first term describes coupling to external B fields, which is
in general nonzero. Consider for instance a single dipole in a
uniform applied field. The next two describe losses to viscous
friction and the last two thermal transfer between MNPs and

fluid particles. In conclusion, the model is indeed angular
momentum conserving, except for entirely physical transfer
to and from the environment.

We note that the argument relies on the cancellation of∑
i mi × Bdip

i and
∑

i ri × Fdip
i . The former is the change in

intrinsic angular momentum of individual MNPs from dipole
torques. The latter is the change in extrinsic angular momen-
tum from dipole forces, i.e., the contribution from the MNPs
velocity relative to a shared center of mass. Thus, the dynam-
ics of interacting dipoles conserve angular momentum when
and only when one considers both rotational and translational
degrees of freedom.

B. Absence of field momentum

In Sec. III A, we proved that for MNPs isolated in vacuum,
our model conserves the vector J, which is the sum of me-
chanical and magnetic angular momentum (see Sec. II B 1).
However, in the context of electrodynamics, linear and an-
gular momentum are conserved only when also accounting
for momentum in the electromagnetic fields and the effect
of “hidden momentum” [76–78]. For instance, the net field
angular momentum is JEM = ε0

∫
r × (E × B)dr where ε0 is

vacuum permittivity and E is electric field [60].
As the MNPs move, their dipole fields change, inducing an

E field; so why did we not need to account for field momen-
tum? The answer is that we calculate all magnetic interactions
using magnetostatics. That is, we both neglect relativistic
effects like hidden momentum and induced E fields. Chris-
tiansen et al. [79] found that induced E fields from moment
precession in single-domain MNPs are indeed weak compared
to other nanoscale induction phenomena. With these approxi-
mations, forces, torques, and EM fields are the same as if the
instantaneous current distribution was steady.

For a formal proof of angular momentum conservation in
electrodynamics, we refer to [[80], problem 6.10]. In Ap-
pendix C we modify the argument in [80] to prove that linear
and angular momentum are conserved for any steady current
distribution when E = 0, without any momenta in the fields.
Magnetic dipoles are equivalent to infinitesimal current loops,
so the proof applies to MNPs.

This begs a second question: If the external field Bext

cannot gain or lose momentum, how can it exert forces and
torques on the MNPs? The answer is that Bext is itself gener-
ated by a current distribution, typically in a coil, and the dipole
fields from the MNPs exert corresponding forces and torques
on this current distribution, ensuring momentum balance.

Finally, we note that if the MNPs have ionizable surface
groups or are dispersed in polar solvent, they may carry a
surface charge, in which case even the static EM fields carry
momentum [81]. Then LEM changes as electric charges and
magnetic dipoles rearrange, which is exactly balanced by
mechanical torques. Whether these torques are significant is
beyond the scope of this study.

C. Linear momentum transfer

The change in system linear momentum is

ṗ =
∑

i

ṗi =
∑

i

miv̇i
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which is given in Eq. (27). Fdip is given by a pairwise,
velocity-independent potential, hence it obeys Newtons third
law. It follows that

ṗ =
∑

i

(−ζ tvi + Fth
i

)
. (35)

That is, linear momentum is conserved except for viscous
friction and Brownian forces, i.e., momentum exchange with
the fluid particles.

D. Energy transfer

The equations of motion (9)–(11) and (28) by construction
conserve the system energy [Eq. (7)]. For the complete model
with damping and fluctuations [Eqs. (25)–(28)], we find after
considerable algebra (see Appendix D)

Ė =
∑

i

(
Physt

i + Pmag
i + Prot

i + Ptrans
i

)
, (36)

where

Physt
i = −μmi · Ḃext, (37)

Pmag
i = −αμγ −1([�i − ωi] × mi )

2

+ μ[(�i − ωi ) × mi] · Bth
i , (38)

Prot
i = −ζ rω2

i + ωi · τ th
i , (39)

Ptrans
i = −ζ tv2

i + vi · Fth
i . (40)

Ė is the net energy transfer between the MNPs and their envi-
ronment. By environment we mean both the liquid or solid
medium, the external currents generating Bext, and internal
degrees of freedom in the particles, like electronic states and
lattice vibrations. Ė > 0 means the MNPs are gaining energy
while Ė < 0 means they are losing energy to the environment.

The hysteresis power Physt describes the power absorbed
by the magnetic moments from Bext. As shown in Eq. (42),
the area of a hysteresis curve measures the time- and system-
averaged value of Physt, hence the name. Physt is the main
source of energy into the MNP system, while the other terms
generally dissipate this energy into the environment.

Prot, Ptrans describe exchange of kinetic energy with the
fluid medium, so the resulting viscous losses go to heating
the surrounding fluid. Pmag describes Gilbert damping, i.e.,
energy transfer from the single-domain moments to internal
degrees of freedom like phonon modes [82], spin waves [82],
and electronic transitions [83]. We observe that Pmag depends
on the difference in angular velocity between mechanical and
moment rotation, so Gilbert damping is given by changes in
moment orientation relative to the particles’ atomic lattice.
Gilbert damping heats the MNPs themselves.

While there is thermal conduction between MNPs and
fluid, a nonuniform temperature profile is possible in driven
systems even in equilibrium. The magnitude of both viscous
and magnetic losses combined with heat transfer mechanisms
will determine the shape of this profile.

When setting ωi = 0, Eq. (38) is in complete agreement
with Ref. [[49], Eq. (6)], which included the thermal power,
but did not consider mechanical motion. To show the equiva-
lence, one may use the identity |� × m|2 = γ γ ′|Beff × m|2.

Equations (39) and (40) are consistent with known expres-
sions for rigid-body particles in fluid [84,85].

For Pmag, Prot, and Ptrans, the first term is pure damping,
while the second describes a two-way transfer from thermal
fluctuations. Over time, thermal fluctuations will typically
average to 0, but at a given instant, there may be a net energy
transfer from environment to system. The two terms are re-
lated by the fluctuation-dissipation theorem [55], so if α, ζ r or
ζ t is zero, the corresponding fluctuations are absent, in which
case Pmag, Prot, or Ptrans, respectively, is 0.

Each damping mechanism is local, so Pmag
i changes the

internal temperature of the ith MNP and Prot
i , Ptrans

i heat the
fluid in the vicinity of the ith MNP. That said, the distribution
of power dissipation in the fluid would require further analy-
sis. Also, some of the viscous dissipation may heat the MNP
surface directly, as the surface inelastically collides with fluid
particles. Likewise, by tracking the dissipation of momenta,
one can infer how much the MNP motion stirs the fluid, but
not the exact form of waves and vortices formed.

1. Hysteresis curve comparison

Consider if Bext is periodic with frequency fext. Then the
time-averaged power absorption is

Physt = − fext

∫
cycle

mtotal · Ḃextdt (41)

= − fext

∮
cycle

mtotal · dBext. (42)

In other words, the average energy gained by the MNPs per
field cycle is given by the area of the hysteresis curve, at least
when mtotal(Bext ) forms a closed curve. All of this energy
is eventually dissipated as heat, so the hysteresis area is a
standard way to estimate heating power [10,11,43]. For an
isolated MNP one can even distinguish magnetic losses by
computing the hysteresis curve in a local, coordinate system
that follows the mechanical rotation, as done in Ref. [45].

The hysteresis area approach has several limitations. The
mtotal(Bext ) curve must be closed and cyclic, which requires
periodic driving and that the system is in steady state, or at
least changes slowly relative to fext. It gives a time-averaged
power, so fext limits time resolution. Also, it only gives the
absorbed power averaged over all particles so there is no
information on where and how the energy is dissipated. In
simulations, one can compute the hysteresis curve of each
MNP, but this does not account for the dipolar fields and other
interactions. Because interactions transfer energy between
MNPs, the work done by Bext on MNP i may be dissipated
elsewhere. Therefore, as discussed in Refs. [14,15,49], hys-
teresis curves cannot determine local heating in interacting
systems.

Using Eqs. (37)–(40) directly gives a local perspective on
the instantaneous power, both input and loss channels, which
also works for transient and nonequilibrium dynamics of in-
teracting MNP systems. If coupled to a model of heat transfer,
one can in principle simulate the entire temperature distribu-
tion. Also plotting Eqs. (37)–(40) vs time gives an alternative
way to visualize and interpret various MNP dynamics, as we
demonstrate in Sec. V.
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TABLE I. Typical parameter ranges for modeling single-domain
MNPs made from Fe, Co, Ni, and their oxides.

Symbol Description Unit Values

γ Gyromagnetic ratio s−1 T−1 1.76 × 1011

R Radius nm 1..50
T Temperature K 0 . . . 1400
η Dynamic viscosity kg/(m s) �10−3

ρ Mass density g/cm3 1 . . . 10
M Magnetization A/m 105 . . . 106

Bext Applied field magnitude T 0...1
fext Applied field frequency Hz 0 . . . 107

K Anisotropy energy density J/m3 103 . . . 106

α Gilbert damping 1 10−3 . . . 0.5

IV. MODEL APPROXIMATIONS

Equations (25) to (28) constitute a highly general, numeri-
cally solvable model for the dynamics of an MNP collection.
It can be used to study aggregation, hysteresis, magnetic
susceptibility, Brownian diffusion, moment-dynamics in clus-
ters, etc. The price is heavy computations, with little hope
for analytical solutions, therefore it is common to consider
approximate models. Here we discuss several useful approxi-
mations in the context of conservation laws.

A. Parameter ranges

In Table I we list the model parameters, including typical
ranges in MNP studies for ferromagnetic and ferrimagnetic
nanoparticles.

Spherical MNPs typically cease to be single domain at
[86] R = 50 nm or less, with some notable exceptions for
rare-earth compounds [87]. Studies are typically conducted
at room or body temperature for biomedical applications, but
T = 950 ◦C has been tested for catalysis [2] and the Curie
temperature of Co is 1400 K. Water, as one of the least vis-
cous liquids, has η = 1.0 mPa s at T = 300 K. Typical MNP
materials are iron oxides for biomedicine, e.g., maghemite
(γ−Fe2O3), and metals like Fe and Co for catalysis. The bulk,
saturation magnetizations are MFe2O3

s = 412 kA/m, MCo
s =

1.4 MA/m, and MFe
s = 1.7 MA/m, however, the magneti-

zation of nanomagnets is typically smaller than bulk due
to disordered surface spins [88]. The same surface effects
increase the effective anisotropy constant for very small parti-
cles [89]; for example [90], K = 20 kJ/m3 has been estimated
for bulk maghemite but for R = 2 nm particles experimental
results are around K = 90 kJ/m3.

Using ferromagnetic resonance Bhagat and Lubitz [91]
measured the Gilbert damping in monocrystalline, bulk Fe,
Co, and Ni as a function of temperature. Reading off their
relaxation parameter at T = 300 K and multiplying by [92]
4π/(μ0γ Ms) to convert to α, the results are αFe = 2.2 ×
10−3, αCo = 3.5 × 10−3, and αNi = 2.5 × 10−2. By doping
NiFe thin films αNiFe = 0.1 has been measured at 300 K [93].
At the other end of the scale is yttrium-iron-garnet (YIG),
which for a monocrystalline, R = 300 µm sphere was found to
have [94] αYIG = 2.7 × 10−5. In summary, α is generally � 1
with typical values around 10−3 to 10−2 and outliers down to

less than 10−4. However when simulating phenomena with a
weak α dependence, one can speed up magnetic relaxation
by using α near unity, thus potentially reducing computation
time.

When two MNPs are in surface contact, the field from one
at the center of the other is

Bdip
contact = μ0μ

16πR3
= 1

12
μ0M

which ranges from 1 to 100 mT for the considered magne-
tizations. Thus, it is case specific whether the external field
exceeds the dipole field.

For reference, the mass, moment of inertia, and mag-
netic moment of a spherical, single-domain magnet are m =
4π
3 ρR3, I = 8π

15 ρR5, and μ = 4π
3 MR3, respectively. Friction

coefficients are given in Eq. (17).

B. Overdamped limit

For micron scale and smaller objects moving in liquid, in-
ertia tends to be negligible [56]. The argument is that viscous
drag dampens away transient responses so quickly that objects
are essentially always moving at terminal velocity. Therefore,
in Langevin dynamics studies of microswimmers, the inertia
term is traditionally neglected [95]. For MNPs, torques and
forces can change on ns timescales or faster due to moment
precession [39], so it is not immediately clear if inertia can
always be neglected, and it has been shown to greatly affect
the rotation of macroscopic coupled dipoles [96]. That said,
some studies [43], including our own in Sec. V, have found
no apparent difference between the MNP trajectories for sim-
ulations with or without inertia.

In the overdamped limit (m, I −→ 0) Eqs. (26) and (27)
reduce to

ζ rωi = μγ −1ṁi + μmi × Bi + τ th
i , (43)

ζ tvi = Fdip
i + Fth

i , (44)

while Eqs. (25), (28), and (29) remain unchanged. Then linear
and angular velocities (v,ω) are given by the immediate forces
and torques, so the system state is specified just by mi, ui, ri.

The power expressions (37)–(40) are formally unchanged,
while ṗ = L̇ = 0. The reason is that the transient, inertial
dynamics are approximated as decaying infinitely quickly, so
the system is always in force and torque balance. In this case
one can still calculate momenta directly from v(t ) and ω(t ),
but Eqs. (31), (32), and (34) are pointless.

1. Characteristic frequencies

In the overdamped limit we can easily determine char-
acteristic frequency scales. For numerical estimates, we
consider the parameter ranges in Table I. Using that α �
1 we have γ ′ ≈ γ , so � ∼ γ Beff which is the well-known
Larmor frequency for moment precession. For mechanical ro-
tation, inserting Eq. (25) in (43) yields ζ rω ∼ μBani + αμBeff.
If αBeff � Bani then ω ∼ μBani/ζ r ∼ K/(3η), which ranges
from 300 kHz to 300 MHz in water. In general, ω � μBeff/ζ r,
so whenever the overdamped limit is applicable

ω

�
� μ

γ ζ r
= M

6γ η
� 0.001.
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FIG. 2. Conservation law tests. The test system is 10 MNPs with R = 10 nm, M = 400 kA/m, K = 10 kJ/m3, ρ = 4.9 g/cm3, and α =
0.01 dispersed in liquid with η = 1 mPa s and T = 300 K. There is an external field of the form Bext = Bext sin(2π f extt )ez where Bext = 50 mT
and f ext = 1 MHz. The maximal anisotropy field strength is then Bani

max = 2K/M = 50 mT. Initial conditions are random with a volume fraction
of 0.1, but the same across all simulations. An equivalent initial state is seen in Fig. 4(c). (a), (b) System energy and z component of magnetic
angular momentum in �t = 0.1 ps simulations, evaluated with both method 1 (direct evaluation) and method 2 (integration of time derivative).
(c) Relative difference between E2 and E1 vs time at different time steps. (d) Average error in z components of system momenta vs time step
for method 2 relative to method 1. Q refers to a time average over the whole 5-µs simulation, where Q is a placeholder for pz, Lz, Jz, and Sz.
(b), (d) Include inertia for tracking momentum but in (a) and (c) the overdamped limit is used and kinetic energy is excluded. For each data
point, the method 1 and 2 estimates are from the same simulation, so the thermal noise is identical. The simulation in a) is animated in the
Supplemental Material [57].

We conclude that for any overdamped MNP system in the
parameter space of Table I, mechanical rotation is at least
three orders of magnitude slower than moment precession.

The characteristic rate of magnetic relaxation is [39] α�

which also exceeds ω for all parameter combinations in Ta-
ble I. Both magnetic frequency scales are apparent in Fig. 3.

2. Neglecting the Barnett field

For the Barnett field (16), we have

BBar

Beff
∼ ω

�
� 0.001.

Thus, for typical MNP simulations in liquid, the Barnett field
is a tiny correction to Beff and, as pointed out in Sec. III A,
it does not change whether angular momentum is conserved.
Similarly, one can to a good approximation set ω = 0 in
Eq. (38), i.e., calculate Pmag in laboratory coordinates rather
than local coordinates. While this vindicates previous nu-
merical studies, e.g. [39,42,45,47,97], we find that using the
exact expressions does not significantly increase computa-
tional complexity.

For MNPs suspended in vacuum or low-density gas, the
mechanical rotation can be much greater, so the above ar-
gument breaks down. Indeed, in low friction conditions the
Barnett field has been theorized to produce additional lines

in a ferromagnetic resonance spectrum [25], and to enable
stable levitation of a nanomagnet even in a static applied field
[51,54]. Also, by rapidly rotating dried and frozen samples
of Fe3O4 nanoparticles the Barnett field has been measured
with enough accuracy to infer orbital corrections to the gyro-
magnetic ratio [53]. To simulate near-vacuum conditions, one
may use the full inertial model with a low value of the friction
coefficient η.

C. Rigid dipole approximation

The popular rigid dipole approximation (RDA) [32,44,98]
says that the moment is locked to the mechanical rotation of
the particle, i.e., m = u. Then Eq. (25) drops out, α is no
longer a model parameter, and Eq. (26) reduces to

Iω̇i + ζ rωi = μγ −1u̇i + μui × Bi + τ th
i (RDA).

Using that u̇ = ω × u this can be rewritten

Iω̇i + ζ rωi = +μui × (Bi + BBar
i ) + τ th

i (RDA).

Typically, the u̇i term is also neglected, which evidently is
equivalent to neglecting the Barnett field, hence justified in
liquid suspension.

Because you avoid the high-frequency moment dynamics,
the RDA enables a major increase in simulation speed, and
facilitates analytical solutions [44]. The power expressions

054421-8



CONSERVATION LAWS FOR INTERACTING MAGNETIC … PHYSICAL REVIEW B 109, 054421 (2024)

FIG. 3. Single MNP in liquid. Same parameters as in Fig. 2 except T = 0 and Bext = 40 mT. The initial state is shown in (e) and given
by m = 1√

2
(1, 0, −1), u = 1√

2
(−1, 0, −1). The plots are identical for inertial and overdamped simulations. (a), (c) Energy transfer vs time,

decomposed into Gilbert damping, rotational viscous damping, and power absorbed from the driving field. (a) Shows the full 4 µs but a subset
of the power axis for clarity, while (c) shows a 40-ns zoom onto the last moment reversal. (b) Same simulation in terms of the z components of
the normalized moment m, orientation vector u, and driving field B̂ext. (d) Energy decomposed into Zeeman and anisotropy energies. Both the
full simulation and the zoom in c) are animated in the Supplemental Material [57].

Eqs. (36), (37), (39), and (40) are unchanged but Pmag = 0,
i.e., Gilbert damping is excluded from the model.

The RDA relies on two assumptions: (1) that transient, mo-
ment dynamics are irrelevant for the phenomenon of interest
and (2) that Beff is dominated by Bani so that m‖u in steady
state. We refer to Ref. [44] for further analysis of when and
why the RDA is applicable.

In some regimes, even though m‖u is nearly true most of
the time, Gilbert damping is the primary loss channel [42,45],
so the RDA should be applied with great care when studying
energy transfer. An example is seen in Fig. 3. Conversely, we
also present a simulation of zero-field aggregation in Fig. 4
where the RDA would have been reasonable.

D. Immobilized particles

Consider a collection of MNPs immobilized in a solid
substrate, i.e., no mechanical rotation or translation possible.
Then BBar, Prot, Ptrans = 0 and Eqs. (26)–(28) drop out of the
model, leaving just the LLG part [Eq. (25)]. ri, ui are con-
stants which still enter through Bdip

i and Bani
i respectively,

but mi are the only dynamical variables. Then the model is
essentially an example of micromagnetics.

V. SIMULATIONS

A. Method

1. Time-step integration

To simulate the derived model, our method of choice is
time-step integration. The core idea is to discretize time into

steps of �t which are short compared to all characteristic
timescales in the system. This justifies a number of numerical
schemes for updating the configuration from t to t + �t . By
iteratively updating the system, its entire time evolution is
evaluated.

In addition to the model in Sec. II E we include the Weeks-
Chandler-Andersen (WCA) force:

FWCA
i =

∑
j �=i

{
12εWCA

[
(2R)12

r13
ji

− (2R)6

r7
ji

]
, r ji � 2R

0, r ji > 2R
(45)

and associated potential, as in [32]. This purely repulsive force
only takes effect when two particles are in contact, hence, its
sole impact on the dynamics is to prevent particle overlap
so the code can handle collisions. We use εWCA = 10−19 J
throughout, which produces a relatively tiny contribution to
the system energy [see Fig. 4(b)].

We present our algorithms in Appendix E. The mechanical
equations [(26) and (27)] are second order with inertia but first
order in the overdamped limit, so two different algorithms
are needed. We use the simple Euler method for updating
position, velocity, etc., and the Euler-Rodriguez formula for
rotations [99] because it is exceedingly good at conserving
vector magnitudes. For moment rotations, we also tested a
combination of Heuns method and the Euler-Rodriguez for-
mula, but for ease of reproducibility all presented data use the
simple scheme.

One can improve performance by various higher-order
integrators and adaptive time stepping [29] or symplectic al-
gorithms for the second-order equations [100]. However, there
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FIG. 4. 10 MNP collision. Same parameters as in Fig. 2, except
T, Bext = 0. (a) Dissipated power decomposed into Gilbert damp-
ing, rotational, and translational viscous losses. (b) System energy
decomposed into anisotropy, WCA, and dipole interaction energy.
(c) Initial state. Randomly generated at a volume fraction of 0.1.
(d) Final configuration after 15 µs. Only the first 3.5 µs are shown
in (a) and (b), because aside from a collision around t = 10 µs all
the curves are nearly flat after t = 3.0 µs. The plots are identical for
inertial and overdamped simulations. The simulation is animated in
the Supplemental Material [57].

are already a number of technical subtleties when integrating
stochastic equations [101], so we prioritized clarity over effi-
ciency.

2. Stochastic integration

Our model is a set of coupled stochastic differential
equations (SDEs) because it contains the stochastic vec-
tors Bth, Fth, τ th. Since these have zero autocorrelation [see
Eqs. (20)–(22)], they change significantly on an infinitesimal
timescale. Therefore, they obey different rules of calculus
than the deterministic vectors. See, e.g., [101–103] for an
introduction to SDEs and stochastic calculus.

When discretizing time, the closest we can get to zero au-
tocorrelation is to randomize the stochastic vectors every time
step. Formally this amounts to the substitution δ(t − t ′) −→
1
�t δnn′ in Eqs. (20)–(22) where n is time-step index. Between
updates, the thermal vectors are constant so the time evolution
is deterministic. When integrating an SDE like Eq. (34) or
(36), it matters at what point in the deterministic intervals
the integrand is evaluated because Ṡ, Pmag, Prot, and Ptrans all
contain multiplicative noise terms: products of deterministic
and stochastic variables like v · Fth or μ × Bth. If integrated
incorrectly, multiplicative noise terms may produce artificial

thermal drift, which is an error proportional to integration time
t . Unlike numerical errors from time discretization, thermal
noise results from a formal error in the interpretation of an
SDE, hence, it remains even as the time step approaches
zero.

For continuous processes, as are common in physical
systems, the correct choice is often midpoint integration,
also known as a Stratonovich integral. However, there are
counterexamples. For example, Ref. [104] experimentally
studies an electric circuit that can be tuned continuously from
Stratonovich calculus to Itô (initial point integration) depend-
ing on input parameters. We note that the regular rules of
differentiation apply only in Stratonovich calculus, so this is a
prerequisite for the derivation of Ė in Appendix D.

Here it should be mentioned that the LLG itself contains
multiplicative noise terms. However, it has been shown that
the drift is only in the magnitude of magnetic moments [105],
so as long as mi are held constant, one can use all the tools
and algorithms for time stepping regular ODEs [29]. For the
energy transfer we are not so lucky.

3. Evaluating conserved quantities

For the instantaneous values of energy and momenta at a
given time, we simply insert the simulated system configu-
ration in Eqs. (5)–(7). Similarly, the transfer rates are given
by Eqs. (34)–(36). This directly gives a way to visualize and
interpret MNP dynamics in terms of energy, as we demon-
strate in Sec. V C. One caveat is that at finite temperature, the
Pmag, Prot, and Ptrans curves tend to be dominated by noise,
so we set T = 0 in Sec. V C. Also, because MNP mass is
neglected in the overdamped limit, we set kinetic energy to
0 for self-consistency.

For practical applications, it is often more informative to
consider time averages. For example, for magnetic hyperther-
mia, the figure of merit is the average power absorption. This
can be estimated from the area of the hysteresis curve, but
can equivalently be calculated by the time average Physt =
1
t

∫ t
0 Physt(t ′)dt ′. With the present formalism we can likewise

average magnetic and viscous loss power, as well as forces
and torques.

To model a macroscopic sample, it is more appropriate to
consider ensemble averages, say 〈P〉. By the ergodic hypoth-
esis, P is equivalent to 〈P〉, assuming the system has time
to fully explore configuration space. Often MNP systems get
stuck in energy minima though, e.g., when aggregating into
stable clusters or when the anisotropy barrier KV is large com-
pared to kBT , in which case 〈P〉 is more efficiently computed
by averaging P over multiple simulations with different initial
conditions.

To test the self-consistency of our analytical results, we
consider two different methods for evaluating the total en-
ergy and momenta numerically. Method 1 is to take the
system configuration directly. For example, in the overdamped
case E1(t ) = E [m(t ), u(t ), r(t )]. Method 2 is to integrate the
transfer rates, e.g.. E2(t ) = E (t = 0) + ∫ t

0 Ė (t ′)dt ′ where Ė
is given in Eq. (36). The numerical results are presented in
Sec. V B and Fig. 2. Method 2 involves the same integral as
the time-averaged transfer rates, so the consistency of the two
methods at vanishing time step demonstrates the elimination
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TABLE II. The conditions where we can integrate power and net
linear and angular momentum transfer for the MNP system (method
2). Comparing to direct energy and momenta computations (method
1) is useful for validation of models and benchmarking of numerical
implementations.

Energy Momenta

Overdamped T = 0 � ×
Overdamped T > 0 � ×
Inertial T = 0 � �
Inertial T > 0 × �

of thermal drift, and that we can numerically integrate the
transfer rates in practice. The comparison can also be used
to benchmark a given numerical implementation.

We find that in the overdamped limit, using midpoint
integration eliminates thermal drift, so the Stratonovich
interpretation is correct and we can integrate all power con-
tributions at finite temperature. This also justifies using the
regular rules of differentiation in deriving Eq. (36). As dis-
cussed in Sec. IV B, ṗ = J̇ = 0 in the overdamped limit, so
we cannot compute changes in the MNP momenta. One can
still integrate the individual forces and torques, but running
our self-consistency test on momenta requires inertia.

Ṡ is prone to thermal noise because unlike the single-
particle moments the magnitude of S fluctuates, but midpoint
integration works. Thus, with inertia and midpoint integration
specifically for Ṡ we can integrate all momentum components
at finite temperature. However, when integrating the total
power with inertia, significant thermal drift is present for both
Itô and Stratonovich integration regardless of time step, and
we have not found a suitable alternative. It is possible the
correct SDE interpretation depends on the magnitude of the
inertia, analogously to [104]. See Table II for a summary of
when we can integrate the transfer rates.

We note that for all simulations presented in Secs. V B and
V C we simulated both the overdamped limit and full, inertial
model, and also compared methods 1 and 2 for energy and
momenta to the extent it was possible without thermal drift.
There was no apparent difference between inertial and over-
damped curves, so MNP mass is negligible for all presented
simulations.

B. Conservation law tests

In Fig. 2 we compare the two presented methods for com-
puting conserved quantities at different time steps. Note that
the test simulations include moment relaxation, an alternat-
ing external field, dipole interactions, MNP collisions, and
thermal fluctuations in all degrees of freedom, all with exper-
imentally relevant parameter values.

In Fig. 2(a) we see excellent agreement in the energy inte-
gration for short times. At longer times, variations in the red
and blue curves are still nearly identical over short intervals,
but the red is shifted down. This indicates a persistent, erro-
neous drift in method 2. In Fig. 2(c) we see that regardless
of time step, the error increases linearly in time at long time,
like thermal drift. But unlike thermal drift the error decreases
with decreasing time step, so as �t −→ 0 the methods con-

verge. Furthermore, using our modified Heuns’ method for
the moment rotations, the drift is reduced by several orders
of magnitude. We conclude that the two integration methods
are formally identical and the drift is a purely numerical error.
This self-consistency check in turn validates our analytical
energy transfer analysis [cf. Eq. (36)].

In Fig. 2(b) we see the time variation in Sz which is pro-
portional to the z component of the systems net moment.
Interestingly, while the external driving field is sinusoidal,
the moment switches in a steplike manner. In some cases the
switching happens in several smaller steps, as thermal fluctu-
ations and dipole- nteractions make some of the 10 MNPs flip
before others.

We see excellent agreement between methods 1 and 2
throughout, i.e., midpoint integrating Ṡ has eliminated thermal
drift and there is no discernible drift from numerical error.
Thus, we can meaningfully consider the time-averaged de-
viation of the two methods for momenta. In Fig. 2(d) it is
seen that the methods converge with decreasing time step
as expected and at �t = 0.1 ps the relative deviation is less
than 1%. The same qualitative behavior is found for the x
and y components. This validates the analysis in Sec. III, so
we conclude that all momenta and momentum transfer in the
model is accounted for.

1. The computational bottleneck

With our homemade Python implementation, a 50-particle
simulation on a single cpu core runs roughly 103 iterations per
second. At �t = 0.1 ps, as in Fig. 2, this amounts to almost
3 h of cpu time per μs simulated, which limits the timescale
and MNP number that can be studied.

The fastest intrinsic timescale is moment precession (cf.
Sec. IV B 1), and from Fig. 2(d) we see that the moment
dynamics are far more time step sensitive than the mechanical
motion. But at say Beff = 100 mT, the precession period is
0.4 ns, which suggests a much longer time step should be
possible, e.g., 10 ps.

The limiting factor is the magnetic loss power Pmag, which
varies at the precession frequency [see Fig. 3(c)] and, un-
like Physt, Pmag contains multiplicative noise terms, hence is
prone to numerical drift. The issue is exacerbated when the
magnetic field B and anisotropy axis are noncollinear, as both
the anisotropy field magnitude Bani ∼ m · u and the moment
direction then oscillate at the precession frequency, but not
in a self-consistent manner. The evaluation of S in Fig. 2(d)
by method 2 is similarly demanding, but one can always
compute S from the individual moments μi (method 1), so
integrating Ṡ is never required in practice. We only do it for
model validation.

For Pmag one option is to compute the total energy change
directly from Eq. (7), integrate Physt, Prot, Ptrans, then use en-
ergy conservation to estimate

∫
Pmagdt . This only works at

the system level though, not for the magnetic losses locally
at a given particle. To integrate Pmag directly at finite tem-
perature and reasonable computational expense, an advanced
time-step method is necessary for the moment rotation. For
example, with our modified Heuns’ method just on moment
dynamics, the drift remains, but is reduced by approximately
a factor of 100. We recommend comparing energy estimates
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from methods 1 and 2 like in Figs. 2(a) and 2(c) for method
validation.

C. Example simulations at zero temperature

1. Single-particle hysteresis

Figure 3 shows a single MNP under a sinusoidal driving
field. In the first 100 ns we have the transient dynamics of
the moment relaxing towards the anisotropy axis, as m, u
start with a 90◦ relative angle. This results in major magnetic
losses (green curve) rapid variation in the energy transfer
from the external field (purple curve) and a smaller quantity
of viscous losses. In general, magnetic losses are dominant
in this parameter regime. Rapid variation is also seen in
Zeeman and anisotropy energies (blue and light blue curves,
respectively).

The green spikes in Fig. 3 signify moment reversals. Before
each reversal, viscous losses increase as the MNP mechani-
cally rotates towards Bext (tails in red curve), but as the field
reaches some critical value, the moment flips to the other
anisotropy minimum instead. This flip is followed by about
5 ns of precessional motion and associated Gilbert damping,
as seen in Fig. 3(b). The reversal events are also marked by
spikes in E ani, sudden drops in EZee, and seen directly on the
mz curve.

We note that Pmag oscillates at the precession frequency
[green curve in Fig. 3(c)]. The reason is that Bani oscil-
lates when u and Bext are noncollinear. Indeed, when the
mechanical orientation is fixed with u ‖ Bext the oscillations
are absent, and their amplitude increases with the angle be-
tween u and Bext. Interestingly, the precession frequency
increases over time as Beff changes. The maximal frequency is
about 1.3 GHz which is consistent with the Larmor frequency
γ Bext/(2π ) = 1.4 GHz.

The integrated area of Physt = −μmzḂext
z is positive in ev-

ery half-cycle, so there is a net transfer of energy from driving
field to MNP. This asymmetry is only possible because the
MNP moves in response to the field. In particular, when mz

is positive, Bext is mostly decreasing and for mz negative, Bext

is mostly increasing. Without changes in u or m, the Physt and
EZee curves would both follow the Bext curve and average to 0.
Indeed, Physt, EZee vary sinusoidally between reversal events
like Bext.

Over time, the purple curve is shifted upwards, which
means the net energy transfer increases both absorption and
subsequent dissipation. This is accompanied by an increase in
the scale of EZee. The reason is the gradual relaxation of the
anisotropy axis towards vertical (uz −→ −1). The correspond-
ing mechanical rotation also explains the viscous losses and
E ani changes between reversal events, which are visible in the
first 1.5 µs. Finally, we note that reversal events happen twice
every field cycle, so all the power and energy contributions
have double the frequency of the driving field.

To conclude, while the system energy builds gradually over
each half-cycle of the driving field, it is dissipated in the
span of a few ns by Gilbert damping. This means the internal
temperature of the MNP will increase in sudden jumps, after
which the energy is gradually conducted to the surrounding
fluid.

This analysis is specific to the chosen parameters, in fact
it has been shown in previous numerical studies that viscous,
rotational losses dominate in some regimes [42,45]. Also, the
number of moment oscillations during magnetic relaxation,
and hence the timescale of a reversal event, is proportional to
α, which varies greatly between materials.

2. Zero-field aggregation

In Fig. 4 we consider 10 randomly initiated MNPs at zero
temperature and no external field. Consequently, no energy is
added to the system, so this is a pure relaxation. The particles
are initiated randomly as seen in Fig. 4(c), form into a single
chain within the first 3 µs, then after about 10 µs the two ends
snap together, forming the ring seen in Fig. 4(d).

The initial spike in Pmag and rapid decrease in E ani corre-
spond to the initial relaxation of all moments towards their
respective anisotropy axes. After this relaxation there are vir-
tually no Gilbert losses and E ani is nearly constant, i.e., even
though the LLG equation is used throughout, the moment ro-
tation remains locked to the mechanical rotation. This would
have justified using the rigid dipole approximation, especially
since the random, initial moment configuration is implausible
in an experiment.

For the first 3 µs there are steady rotational losses, while
the translational losses are marked by spikes. The reason is
that whenever two or more MNPs collide, the translational
loss rate increases as the MNPs accelerate, then drops sharply
while they settle in the combined minimum of the dipole and
WCA potentials. EWCA is seen to increase as more and more
MNPs reach surface contact. The dissipated energy largely
comes from the dipolar interactions, as seen by the consistent
decrease of Edip. The curves all remain nearly flat after 3 µs,
except around t = 10 µs when the MNP chain snaps into a
ring causing one more spike in Ptrans. This illustrates how the
relaxation of MNP systems occurs across many timescales.

This example simulation is in stark contrast to Fig. 3, as
the losses from a few ns and onwards are exclusively viscous.
Thus, for a more realistic initial state with relaxed moments,
instead of heating the MNPs directly, the energy goes to excit-
ing the surrounding fluid. In reality, thermal fluctuations will
transfer kinetic energy from the fluid back into the particles,
so the whole system reaches a uniform temperature eventu-
ally, but at no point will the MNP cores be hotter than the
surrounding fluid.

3. Hysteresis during collision

As a final use case, in Fig. 5 we consider two MNPs
colliding under a 1-MHz sinusoidal driving field. We have
Bani = 50 mT and found by repeated simulations that for Bext

between 25 and 50 mT, a sudden change in behavior occurs
as the MNPs get nearer. In Fig. 5 we chose Bext = 40 mT to
illustrate this.

The first part of the curve is similar to Fig. 3 even though
there are now two interacting MNPs. This is because at the
initial distance of d = 50 nm the field from one MNP on the
other is at most 2µ0μ/(4πd3) = 2.7 mT [cf. Eq. (1)], i.e.,
their interaction is much weaker than the driving field, so
they respond nearly as if isolated. From Fig. 5(b) we note
spikes in Edip during each moment reversal, which are small
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FIG. 5. 2MNPs colliding in an alternating field. Same parameters as in Fig. 3. The initial state is seen in (d) with coordinate axes in (f). The
plots are identical for inertial and overdamped simulations. (a), (b) Evolution of power and energy contributions in time. Vertical, gray lines
correspond to the configuration pictures in (d)–(f). The anisotropy axes are perpendicular to the blue circles, the arrows represent magnetic
moments, and the sizes and distances are to scale. (c) Hysteresis curves simulated with the MNPs free to rotate, but fixed at a center-to-center
distance of d . mz is the z component of system moment relative to the moment per particle. A single-particle hysteresis curve is shown for
comparison. The simulation is animated in the Supplemental Material [57].

compared to the E ani spikes. The reason is that the MNPs
flip simultaneously, so their moments remain nearly aligned,
thus limiting the variation in Edip. The Edip spikes grow with
decreasing distance, indicating increased losses from the dipo-
lar coupling.

In Fig. 5(c), we confirm that the hysteresis losses grow
as the MNPs approach each other, by computing hysteresis
curves with positions fixed. The height is locked by the total
moment, but the width increases with decreasing d . That is
the dipole interaction increases the coercive field, making the
two-MNP system a harder magnet. Indeed, when the coercive
field exceeds Bext, the loop closes entirely and the MNP be-
havior qualitatively changes.

In the second part of Figs. 5(a) and 5(b) moment rever-
sal ceases as the MNPs collide. The collision is signified
by a drop in Edip, due to the rapidly diminishing distance
[cf. Figs. 5(e) and 5(f)], and a spike in translational dissipa-
tion, due to the velocity changes around impact. This same
decrease in distance means stronger dipole coupling, which
is why moment reversal ceases. Because both velocity and
dipole field strength scale nonlinearly with distance, most of
the coercivity change occurs in the last fraction of the col-
lision. Therefore, the moment locking nearly coincides with
the impact for a broad parameter range. After some final
rotational relaxation, the MNPs cease all motion. Physt and
EZee still oscillate in tune with the driving field, but they are
symmetric around 0, so there is no net energy transfer nor any
dissipation.

In summary, the dipole coupling increases the coercive
field as the MNPs draw nearer, resulting in a sudden change
of the moment dynamics which ends all magnetic losses. The

MNPs then collide and stop moving entirely. We note that
while some of this was elucidated by simulating multiple hys-
teresis curves, the entire story can be inferred from Fig. 5(a)
alone, which is a single simulation that also shows the relative
importance of magnetic and viscous losses, and the point of
impact. Also, as demonstrated in Fig. 4, the presented plotting
techniques scale well to many-particle systems.

VI. MODEL GENERALIZATIONS

So far in this paper, we restricted all analysis to the model
we implemented and tested numerically. However, both the
formal procedure for deriving our model and the formal
results on transfer rates for conserved quantities readily gen-
eralize to a broader setting.

A. Spherical particles

For single-domain MNPs of multiple sizes and materials,
the only difference is a subscript on αi, γ

′
i , Ii,mi, ζ

t(r)
i , and

μi to signify that these parameters vary between particles.
A coating layer can be included by using the hydrodynamic
radius for the damping coefficients in Eq. (17), and for surface
forces like Eq. (45), but core radius elsewhere as in Ref. [32].

For nanomagnets with nonuniform magnetization, the no-
tion of a single-particle moment is at best an approximation,
so a rigorous treatment would require considerable further
analysis.

Depending on the crystal symmetries of the magnetic core,
a large number of higher-order magnetocrystalline anisotropy
terms are possible, enabling any number of easy or hard
axes [62,64,65]. For uniformly magnetized objects, shape
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anisotropy only modifies the K tensor from Sec. II A 2, yield-
ing uniaxial or triaxial anisotropy [25]. These additional
anisotropies only change the functional form of Bani, not how
it enters the remaining equations.

B. Nonspherical particles

For nonspherical particles in liquid suspension, viscous
drag becomes a tensor quantity. In general, at low Reynolds
number in a stationary fluid, the viscous force and torque on
an isolated particle are of the form [74,75](

Fvisc
i

τvisc
i

)
= −Z

(
vi

ωi

)
, Z =

(
Ztt Ztr

Zrt Zrr

)
, (46)

where Z is a symmetric 6 × 6 matrix and Z t(r),t(r) are 3 ×
3 matrices. One can then straightforwardly generalize the
derivation in Appendix D (see Supplemental Material [106]).
The result is

Ė =
∑

i

(
Physt

i + Pmag
i + Pvisc

i

)
, (47)

where Physt
i , Pmag

i are still given by Eqs. (37) and (38) while,
using f th

i = (Fth
i , τ th

i ) and Vi = (vi,ωi ),

Pvisc
i = −Vi · ZVi + f th

i · Vi.

Pvisc
i is consistent with Refs. [84] and [[85], Sec. 2.2]. Simi-

larly, the transfer of linear and angular momentum generalize
to (see Supplemental Material [106])

ṗ =
∑

i

(
Fvisc

i + Fth
i

)
, (48)

J̇ =
∑

i

(
μi × Bext + τvisc

i + τ th
i + ri × [

Fvisc
i + Fth

i

])
. (49)

Note that because of the coupling between the drag on
different components of V, there are also statistical correla-
tions between components of the thermal fluctuations [107].
Therefore, instead of Eqs. (21) and (22) we have〈

f th
α (t ) f th

β (t ′)
〉 = 2kBT Zαβδ(t − t ′). (50)

Another effect of nonspherical particles is that magnetic
fields from the MNPs and the interaction energy E int

i j are close
to dipolar only at long range [108]. However, Appendixes
C and D never use the dipole approximation, so the deriva-
tions are still valid. That is, Eq. (C2) becomes an integral
equation for nonspherical magnets [108], but the transfer
equations (47)–(49) are unchanged.

C. Additional interactions

Aside from magnetic interactions, MNPs in liquid sus-
pension are subject to various surface-to-surface interactions,
depending on the details of surface coating and fluid medium
[109–112]. For example, when modeling MNP aggregation, a
bare minimum is a model of steric repulsion to prevent MNP
overlap, but simulations have also included ligand bonding
[33,37], as well as electrostatic [113] and van der Waals forces
[32] among others. All these can be modeled by interaction
potentials, which depend only on the relative positions and
orientations of MNP pairs. In general, interaction potentials
can be appended to the system energy (7). Then one may

repeat the procedure in Sec. II to derive the resulting conser-
vative forces and torques.

Finally, we consider the greatest simplifying assumption in
this work, namely, the neglect of hydrodynamic interactions
between MNPs. With multiple particles in liquid suspension,
the velocity distribution of the fluid depends on the position
and motion of every suspended particle. This leads to a long-
range, many-body interaction [85,114], which fundamentally
changes the mechanical equations of motion. One can make
the problem computationally tractable by the methods and
simplifications of Stokesian dynamics [115–117], which have
been applied to MNP suspensions both with [35] and without
[118,119] thermal fluctuations. Alternatively, one can use var-
ious approximations to the two-sphere problem to derive pair
interactions. We refer to Ref. [120] for a historical overview,
Ref. [121] for lubrication theory (lowest order, short-range
model), and Refs. [122–124] for a more complete analysis.
Regardless of the level of approximation, the mathematical
form of viscous drag is altered, so Eqs. (47)–(49) are not
directly applicable.

In summary, the transfer equations (47)–(49) hold for any
collection of arbitrarily shaped but uniformly magnetized
nanoparticles, when neglecting electrodynamic and hydrody-
namic interactions and assuming that the driving field Bext is
uniform across a particle.

VII. CONCLUSIONS

We derived a general model of the energy, linear, and
angular momentum for a collection of interacting magnetic
nanoparticles in an external magnetic field. Starting from
these conserved quantities, we used a formal, easily gener-
alizable procedure for deriving the equations of motion in
liquid suspension, at finite temperature. The result is a set
of Langevin equations which couple the LLG equation for
moment rotation with the mechanical translation and rotation
of the particles.

Within this model we derived expressions for the transfer
of energy and momenta between system and environment,
which we validated numerically by time-step integration. This
both demonstrates self-consistency of the model, and that we
can numerically analyze the transfer rates at finite tempera-
ture, despite the technical difficulties of integrating stochastic
processes.

We note that a number of established models and analyses
can be derived as special cases or approximations to our
results: for example, the RDA, the hysteresis curve area as
a measure of energy dissipation or the recent analyses by
Leliaert et al. [49] and Helbig et al. [45] on energy transfer.

In addition to model development and verification, track-
ing the transfer of conserved quantities gives new insight on
the physical system. Using the formulas in this paper, one
can calculate the instantaneous power at each MNP and de-
compose into different transfer channels. In particular, power
absorbed from the driving field, magnetic losses from Gilbert
damping, and viscous losses to the fluid, both translational
and rotational. Whether the losses are magnetic or viscous
determines whether heating occurs inside the particles or in
the surrounding fluid. By simulating zero-temperature hys-
teresis and aggregation in 1-, 2-, and 10-particle systems we
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demonstrate how tracking power and energy contributions
gives new ways to visualize and interpret MNP dynamics,
which are applicable to many-particle simulations.

Our results give a different perspective on known steady-
state phenomena, useful tools for analyzing MNPs as mechan-
ical actuators and hyperthermia agents, and may facilitate new
studies on the transient and driven dynamics of nanomagnets.

APPENDIX A: REWRITING THE LLG EQUATION

Equation 23 defines ṁ recursively. Taking the recursion
one step further, it may be rewritten

ṁi = −γ mi × Beff
i + αimi × [−γ mi × Beff

i + αimi × ṁi
]
.

We recall that m has constant magnitude m2 = 1. Differentiat-
ing yields m · ṁ = 0, i.e., ṁ is perpendicular to m. It follows
that m × [m × ṁ] = −m2ṁ = −ṁ. Thus, we can isolate ṁ,
which yields Eq. (25).

APPENDIX B: MECHANICAL EQUATIONS OF MOTION

For translation, simply add the damping and thermal force
from Sec. II D to the right-hand side of Eq. (11) to get (27).
For rotation it follows from (14) that

L̇i = L̇i

∣∣
α=0 + Ṡi

∣∣
α=0 − Ṡi.

Writing out the viscous and damping torque, then using the
angular momentum definitions [Eq. (4)]

Iω̇i = Iω̇i

∣∣∣∣
ζ r=α=0

+ μ

γ

(
ṁi − ṁi

∣∣∣∣
α=0

)
− ζ rωi + τ th

i .

Inserting the equations without damping, Eqs. (9) and (10),
yields Eq. (26).

APPENDIX C: CONSERVATION LAWS
IN MAGNETOSTATICS

In the framework of electrodynamics, linear and angular
momentum conservation can be shown formally for any fi-
nite distribution of charges and currents [80]. Here, we use
a simpler version of the same argument for a finite current
distribution in magnetostatics. Note that the current distri-
bution may change in time, as long as forces, torques, and
electromagnetic fields are calculated as if the instantaneous
current distribution was steady.

Maxwells laws take the form

∇·B = 0, ∇ × B = μ0Je, E = 0,

where Je is electrical current density. From the Lorentz force
law, the force density is

f = Je × B = 1

μ0
(∇×B) × B = 1

μ0

[
(B · ∇)B − 1

2
∇B2

]
.

In component form, with ∂α = ∂
∂rα

, this may be written

fα =
∑

β

∂βTβα, Tβα = 1

μ0

[
BβBα − 1

2
δβαB2

]
. (C1)

The tensor T is Maxwells stress tensor in the absence of E
fields. The momentum density in the EM fields is ε0E × B =

0, hence, the rate of change of momentum is given by d
dt pα =∫

fα dr. Integrating Eq. (C1) over all space and using Gauss
theorem thus proves conservation of linear momentum.

Similarly, the components of the torque density are

τα = (r × f )α =
∑

β

∂βMβα, Mβα =
∑
γ δ

εγ δαxγ Tβδ,

where εαβγ is the Levi-Civita symbol. The change in angular
momentum is given by d

dt Jα = ∫
ταdr, which also gives zero

by Gauss theorem.
In conclusion, in magnetostatics, linear and angular mo-

mentum are conserved without any field momentum. Since
a magnetization distribution is equivalent to a collection of
bound currents [60], the proof also applies to MNPs and other
permanent magnets. In particular, for a collection of dipole
magnets at zero temperature in vacuum it follows that

d

dt
Jvacuum

T =0 =
∑

i

(
ri × Fdip

i + μi × Bdip
i

)
= 0. (C2)

This can also be shown by inserting Eqs. (1) amd (13) for
Bdip, Fdip, however, the present argument can be used to de-
rive analogous identities for arbitrarily shaped magnets with
higher-order multipole interactions.

APPENDIX D: TIME DERIVATIVE OF SYSTEM ENERGY

The system energy E is a function of the independent
variables mi, ui,ωi, ri, vi, t , so the time derivative is

d

dt
E =

∑
i

[
∂E

∂mi
· ṁi + ∂E

∂ui
· u̇i + ∂E

∂ωi
· ω̇i

+ ∂E

∂ri
· vi + ∂E

∂vi
· v̇i

]
+ ∂E

∂t
. (D1)

Here we assume the Stratonovich interpretation, which means
the ordinary rules of calculus apply despite the stochastic
terms [101,102]. In Sec. V B, we verify numerically that the
Stratonovich interpretation is correct in the overdamped case.

We consider a single term and suppress the i subscript
to avoid notational clutter. Let ṁ0, ω̇0, ṗ0 = mv̇0 denote the
derivatives in absence of damping [Eqs. (9)–(11)]. The deriva-
tives with damping are given in Eqs. (23), (26), and (27) and
u̇ = ω × u applies in both cases. For reference we recall the
general vector identity

a · (b × c) = b · (c × a) = c · (a × b).

The only explicit time dependence is in the external field,
so

∂E

∂t
= −μm · Ḃext. (D2)

By definition ∂rE = −ṗ0, hence,

∂E

∂r
· v = −ṗ0 · v = −(mv̇ + ζ tv − Fth ) · v

= −p · v̇ − ζ tv2 + Fth · v.

Using Eq. (7), ∂vE = p, thus,

∂E

∂r
· v + ∂E

∂v
· v̇ = −ζ tv2 + Fth · v. (D3)
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Equation (D3) is the final result for the translational degrees
of freedom.

For mechanical rotation we find, using Eqs. (8) and (28)
and L0 = Iω0, that

∂E

∂u
· u̇ = ∂E

∂u
· (ω × u) = −ω ·

(
∂E

∂u
× u

)
= −Iω · ω̇0

while

∂E

∂ω
· ω̇ = Iω · ω̇.

Inserting Eqs. (10) and (26) yields

∂E

∂u
· u̇ + ∂E

∂ω
· ω̇ = Iω · (ω̇ − ω̇0)

= μ

γ
ω · (ṁ − ṁ0) − ζ rω2 + ω · τ th.

(D4)

For magnetic rotation, we find analogously that

∂E

∂m
· ṁ = ∂E

∂m
· (� × m) = −� · Ṡ0 = μ

γ
� · ṁ0,

where � is defined in Eq. (29) and Ṡ0 = ∂mE × m0. We note
that � · ṁ = � · (� × m) = 0, so

∂E

∂m
· ṁ = μ

γ
� · (ṁ0 − ṁ). (D5)

Now, adding Eqs. (D4) and (D5) we get

∂E

∂u
· u̇+∂E

∂ω
· ω̇ + ∂E

∂m
· ṁ

= μ

γ
(� − ω) · (ṁ0 − ṁ) − ζ rω2 + ω · τ th. (D6)

It follows from Eqs. (9), (23), and (24) that

ṁ0 − ṁ = γ m × Bth − αm × (� × m − γ BBar).

Inserting the definition of the Barnett field, Eq. (16), this can
be written

ṁ0 − ṁ = γ m × [Bth − α(� − ω) × m].

Hence,
μ

γ
(� − ω) · (ṁ0 − ṁ)

= μ[(� − ω) × m] · Bth − αμγ −1([� − ω] × m)2.

(D7)

Inserting Eq. (D7) in (D6) then adding Eqs. (D2) and (D3)
gives the energy transfer expressed in Eqs. (36)–(40).

We emphasize that no approximations were used, so within
the model of Sec. II E the derived energy transfer is exact
under the Stratonovich interpretation. The result is unchanged
in the overdamped limit, i.e., when setting m = I = 0, and we
never explicitly used the form of the dipole interactions, so the
proof applies to any magnetostatic interactions.

We note that the same derivation applies to a single, iso-
lated MNP, which indicates that the energy transfer described
by the ith term of Eq. (36) occurs locally at and around the
ith MNP. This is consistent with the nature of the damping
mechanisms.

If we instead consider a single MNP embedded in an
interacting system, then it is ambiguous how much of the
shared dipole energy to assign it. For the sake of argument
let interaction energies be distributed equally between each
particle pair, so that E int

i = − 1
2μi · Bdip

i . Then the derivation is
identical, except that the ∂t E term gives an extra power of the
form Pint

i = − 1
2μi · Ḃdip

i , which is analogous to Physt
i . After all,

the individual MNP cannot tell if a B-field contribution comes
from outside the system like Bext or from the other MNPs.
Pint

i fully accounts for the energy exchange between particles
due to magnetic interactions, which is further evidence that
viscous and Gilbert damping occur locally and only describe
energy exchange with the environment.

APPENDIX E: NUMERICAL IMPLEMENTATION

For simulations in the overdamped limit, we use the time-
stepping procedure:

Overdamped limit:
(i) Update Fth, τ th, Bth;
(ii) Compute vn

i ,ω
n
i ,�

n
i [Eqs. (29), (43), (44)];

(iii) (mn
i , un

i , rn
i ) −→ (mn+1/2

i , un+1/2
i , rn+1/2

i );
(iv) Compute vn+1/2

i ,ω
n+1/2
i ,�

n+1/2
i ;

(v) Compute Ė n+1/2 [Eq. (36)];
(vi) En+1 = En + �t Ė n+1/2;
(vii) (mn+1/2

i , un+1/2
i , rn+1/2

i ) −→ (mn+1
i , un+1

i , rn+1
i );

(viii) Repeat from top.
Here n is the time-step index, i.e., tn = n�t so, for ex-

ample, En = E (t = n�t ). We use the Euler method for
translations and the Euler-Rodriguez formula for rotations
[99], i.e.,

mn+1/2
i = Rot(mn

i ,�t�n
i /2),

un+1/2
i = Rot(un

i ,�tωn
i /2),

rn+1/2
i = rn

i + 1
2�tvn

i ,

where

Rot(u, θ) = u cos θ + (θ̂ × u) sin θ + (θ̂ · u)(1 − cos θ )θ̂.

For the stochastic vectors, each component is drawn inde-
pendently from a Gaussian distribution with zero mean and
variances given in Eqs. (20)–(22). Since the algorithm uses
discrete time δ(t − t ′) −→ 1

�t δnn′ , so for example F th
x , F th

y , and
F th

z all have a variance of 2kBT ζ t/�t . The meaning of δnn′ is
that Fth, τ th, Bth should be redrawn at random every time step.

Note that when computing v,ω,� we compute all deter-
ministic contributions to F, τ, and Beff both at tn and tn+1/2,
but the stochastic contributions are only changed at tn. Since
power is evaluated at tn+1/2, this amounts to a midpoint in-
tegration of energy, also known as a Stratonovich integral. If
Ė was instead evaluated at the same point in time where we
update Fth, τ th, Bth it would be an Itô integral, which entails
artificial thermal drift in the energy, even at vanishingly small
time step.
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We also tested a combination of the Euler-Rodriguez for-
mula and Heuns’ method:

m̃n+1/2
i = Rot

(
mn

i ,�t�n
i /2

)
,

�n
i = 1

2

(
�n

i + �
[
m̃n+1/2

i , un
i , rn

i

])
,

mn+1/2
i = Rot

(
mn

i ,�t�n
i /2

)
.

That is, instead of using the angular velocity at tn, we use
the predicted moment m̃n+1/2

i to estimate the average angular
velocity �n

i between tn and tn+1/2.
For calculations with inertia, we use the following proce-

dure:
With inertia:
(i) Update Fth, τ th, Bth;

(ii) (mn
i , un

i , rn
i ) −→ (mn+1/2

i , un+1
i , rn+1

i );
(iii) Compute v̇n+1

i , ω̇n
i ,�

n+1/2
i [Eqs. (26),(27),(29)];

(iv) (vn
i ,ω

n
i ) −→ (vn+1

i ,ωn+1
i );

(v) Compute J̇n+1/2 [Eq. (34)];
(vi) mn+1/2

i −→ mn+1
i ;

(vii) Repeat from top.
We use the Euler method for updating v,ω, r and the Euler-

Rodriguez formula for rotating m, u.
Our momentum integration is an end-point integration in

terms of the mechanical variables and midpoint in terms of
magnetic moment. This works because we only observed
thermal drift in the magnetic angular momentum S, not in the
mechanical L. We have not found a method for eliminating
thermal drift in the energy integration, when both temperature
and inertia are included.
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