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φ4 lattice model with cubic symmetry in three dimensions: Renormalization
group flow and first-order phase transitions

Martin Hasenbusch
Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany

(Received 22 August 2023; revised 23 January 2024; accepted 23 January 2024; published 15 February 2024)

We study the three-component φ4 model on the simple cubic lattice in the presence of a cubic perturbation.
To this end, we perform Monte Carlo simulations in conjunction with a finite-size scaling analysis of the data.
The analysis of the renormalization group (RG) flow of a dimensionless quantity provides us with the accurate
estimate Y4 − ω2 = 0.000 81(7) for the difference of the RG eigenvalue Y4 at the O(3)-symmetric fixed point and
the correction exponent ω2 at the cubic fixed point. We determine an effective exponent νeff of the correlation
length that depends on the strength of the breaking of the O(3) symmetry. Field theory predicts that depending on
the sign of the cubic perturbation, the RG flow is attracted by the cubic fixed point, or runs to an ever increasing
amplitude, indicating a fluctuation-induced first-order phase transition. We demonstrate directly the first-order
nature of the phase transition for a sufficiently strong breaking of the O(3) symmetry. We obtain accurate results
for the latent heat, the correlation length in the disordered phase at the transition temperature, and the interface
tension for interfaces between one of the ordered phases and the disordered phase. We study how these quantities
scale with the RG flow, allowing quantitative predictions for weaker breaking of the O(3) symmetry.
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I. INTRODUCTION

We study the φ4 model with a cubic anisotropy in three
dimensions. We focus on the case of N = 3 components of
the field, which is particularly interesting, since it is the ex-
perimentally most relevant case and the cubic perturbation
is very close to marginal at the O(3)-symmetric fixed point.
The model has been studied intensively over the last five
decades, using field-theoretic methods such as the ε expan-
sion and perturbation theory in three dimensions fixed. For
a review see, for example, Sec. 11.3 of Ref. [1]. Note that
in structural transitions, in addition to N = 3, N = 4 might
be experimentally realized [2]. Recently the ε expansion has
been extended to six loop [3]. Based on this, a huge set of
operator dimensions have been computed in Ref. [4].

In the field-theoretic setting, the reduced continuum
Hamiltonian with two quartic couplings
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where φi is a real number, is studied [see, for example,
Eq. (11.10) of Ref. [1]]. Flow equations in a two-dimensional
parameter space (u, v) are discussed. For v = 0, the the-
ory is O(N ) symmetric, while for finite v, the theory has
only cubic symmetry. The qualitative features of the flow
are well understood. There are four fixed points: the Gaus-
sian (u, v) = (0, 0), the decoupled Ising (0, v∗), the O(N )
symmetric (u, v) = (u∗, 0), and the fixed point with cubic
symmetry only (u, v) = (uc, vc), where vc > 0. The Gaussian
and the decoupled Ising (DI) fixed points are unstable for all
values of N and N > 1, respectively. The O(N )-symmetric

fixed point is unstable for N � Nc in one direction, break-
ing the O(N ) symmetry. Recent field-theoretic estimates give
robustly Nc slightly smaller than 3. The result Nc < 3 is
supported by the fact that in a finite-size scaling analysis of
Monte Carlo data for the improved φ4 model on the simple
cubic lattice the authors find Y4 = 0.013(4) for N = 3 [5].
In Ref. [6], Y4 = 0.0142(6) had been obtained. The rigorous
bound Y4 > 3 − 2.990 56 for N = 3 was recently established
by using the conformal bootstrap (CB) method [7]. Note that
Y4 is the renormalization group (RG) exponent of the cubic
perturbation at the O(N )-symmetric fixed point and Y4 > 0
means that the perturbation is relevant and hence the RG fixed
point is unstable. The cubic fixed point is stable for N � NC

and for v > 0 the flow runs into the cubic fixed point. On the
contrary, for v < 0, the flow runs to ever larger violations of
the O(N ) symmetry and no fixed point is reached. Instead, a
fluctuation-induced first-order phase transition is expected.

In Ref. [8] the authors pointed out that the slow RG flow,
related with the small value of Y4, requires the knowledge
of the RG flow also at finite distances from the fixed points
in order to interpret experimental results. Slow in this con-
text means that the couplings change only by little, when
the length scale is varied over a range that can be studied
in experiments or in simulations. Just to get an idea: Take
a sample of a material of linear size 10−1 m and a lattice
constant of 10−10 m. Then the amplitude of a cubic pertur-
bation in the neighborhood of the O(3)-symmetric fixed point
only increases by a factor of (109)0.0142 = 1.34 . . . going from
the microscopic to the macroscopic scale, where we have
taken the estimate of Y4 for N = 3 obtained in Ref. [6]. In
Ref. [8] it is demonstrated that the RG flow rapidly collapses
on a line connecting the decoupled Ising, the cubic, and the
O(3)-symmetric fixed points. Also for v < 0, the RG flow
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remains slow on the continuation of this line for a relatively
large range of v. It follows that the first-order transition is
very weak for a large range of the parameters, such that in
experiments it appears as a continuous transition, albeit with
critical exponents slightly different from those of the O(3)-
symmetric fixed point. This picture has been worked out in
Ref. [8] by using the coefficients of the six-loop ε expansion
obtained in Ref. [3]. For related work on systems with com-
peting order parameters by the same authors, see [9–11]. Here
we corroborate and extend these results by using Monte Carlo
simulations and finite-size scaling (FSS) methods.

We build on Ref. [6], where we performed large-scale
Monte Carlo simulations of a lattice version of the φ4 model.
We studied the cases N = 3 and 4, focusing on the neigh-
borhood of the O(N )-symmetric and the cubic fixed points.
By using finite-size scaling, we computed accurate estimates
of critical exponents for the cubic fixed point. In the case
N = 3 these differ only by little from their O(N )-symmetric
counterparts.

In this work, we extend the study of the RG flow towards
stronger violations of the O(3) symmetry. On the one hand,
we make contact with the decoupled Ising fixed point. On
the other hand, for v < 0, for large violations of the O(3)
symmetry, we demonstrate directly the first-order nature of
the transition. In our simulations we determine characteristic
quantities such as the latent heat, the correlation length at
the transition temperature, and the interface tension between
the disordered and one of the ordered phases. We study how
these quantities scale with the RG flow. This way, quantitative
predictions can be made for all v < 0.

The outline of the paper is the following: In the next sec-
tion we define the model and the observables that we measure.
In Sec. III we discuss the basic ideas and objectives of our
study. The numerical results for the RG flow are analyzed
in Sec. IV. We determine effective critical exponents of the
correlation length for different strengths of the symmetry
breaking in Sec. V. In Sec. VI we discuss our numerical
results for the first-order transition. In Sec. VII we summarize
and conclude. In Appendix A we summarize technical aspects
of our numerical analysis and explain how we arrive at final
results. In Appendix B we summarize basic analytic results
derived from the β function.

II. THE MODEL AND OBSERVABLES

Here we study the same reduced Hamiltonian and ob-
servables as in Ref. [6]. For completeness let us recall the
definitions. We study a discretized version of the continuum
Hamiltonian (1), which is considered in field theory. We ex-
tend the reduced Hamiltonian of the φ4 model on a simple
cubic lattice [see, for example, Eq. (1) of Ref. [12]] by a term
proportional to the traceless symmetric combination of four
instances of the field [see, for example, Eq. (7) of Ref. [5]]

∑
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with cubic symmetry, breaking O(N ) invariance. Actually,
this choice goes back to Ref. [13], where perturbations at the
O(N )-symmetric fixed point were studied to leading order in

the ε expansion. We get
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where �φx is a vector with N real components. The subscript a
denotes the components of the field and { �φ } is the collection
of the fields at all sites x. We label the sites of the simple
cubic lattice by x = (x0, x1, x2), where xi ∈ {0, 1, . . . , Li − 1}.
Furthermore, 〈xy〉 denotes a pair of nearest neighbors on the
lattice. In our study, the linear lattice size L = L0 = L1 = L2 is
equal in all three directions throughout. We employ periodic
boundary conditions. The real numbers β, λ, and μ are the
parameters of the model. Note that here λ and μ take over the
role of the parameters u and v of the continuum Hamiltonian
(1). In the Hamiltonian (3) we take Eq. (2) instead of simply∑

a φ4
x,a, analogous to Eq. (1), to achieve〈

AO(N )({ �φ })
∑
a,x

Q4,aaaa( �φx )

〉
μ=0

= 0, (4)

where the estimator AO(N ) is O(N ) invariant, while for an
estimator with cubic symmetry, breaking O(N ) invariance, we
get in general a finite value.

A. Decoupled systems

In Eq. (3) the components of the field decouple for λ −
3

N+2μ = 0. Since the term
∑

x
�φ 2

x has the factor (1 − 2λ) and∑
x

∑
a φ4

x,a the factor μ = N+2
3 λ in front, a rescaling of the

field φx is needed to match with the Hamiltonian

H({φ}) = −β̃
∑
〈xy〉

φxφy +
∑

x

[
φ2

x + λ̃(φ2
x − 1)2], (5)

considered, for example, in Ref. [14], where φx is a real
number. We arrive at the equations

(1 − 2λ) = (1 − 2λ̃) c ,
N + 2

3
λ = λ̃ c2 (6)

and hence
6

N + 2
λ̃ c2 + (1 − 2λ̃) c − 1 = 0 (7)

with the solutions

c =
−(1 − 2λ̃) ±

√
(1 − 2λ̃)2 + 24

N+2 λ̃

12
N+2 λ̃

, (8)

where we take the positive solution. Plugging in λ̃∗ = 1.1(1)
[14] we arrive at c = 1.436(15) for N = 3. Note that λ̃∗
denotes the value of λ̃, where leading corrections to scaling
vanish. Hence, we get for the improved decoupled model
λ∗

DI = 1.36(15) and μ∗
DI = N+2

3 λ∗
DI = 2.27(25).

B. The observables and dimensionless quantities

Dimensionless quantities or phenomenological couplings
play a central role in finite-size scaling. Similar to the study
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of O(N )-symmetric models, we study the Binder cumulant
U4, the ratio of partition functions Za/Zp, and the second
moment correlation length over the linear lattice size ξ2nd/L.
Let us briefly recall the definitions of the observables and
dimensionless quantities that we measure.

The energy of a given field configuration is defined as

E =
∑
〈xy〉

�φx · �φy . (9)

The magnetic susceptibility χ and the second moment corre-
lation length ξ2nd are defined as

χ ≡ 1

V

〈(∑
x
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)2〉
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√
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is the Fourier transform of the correlation function at the low-
est nonzero momentum. In our simulations, we have measured
F for the three directions k = 0, 1, 2 and have averaged these
three results.

The Binder cumulant U4 is given by

U4 ≡ 〈( �m2)2〉
〈 �m2〉2

, (13)

where �m = 1
V

∑
x

�φx is the magnetization of a given field
configuration. We also consider the ratio RZ ≡ Za/Zp of the
partition function Za of a system with antiperiodic boundary
conditions in one of the three directions and the partition
function Zp of a system with periodic boundary conditions in
all directions. This quantity is computed by using the cluster
algorithm. For a discussion, see Appendix A 2 of Ref. [15].

In order to detect the effect of the cubic anisotropy we
study

UC = 〈∑a Q4,aaaa( �m)〉
〈 �m 2〉2

. (14)

In the following we shall refer to the dimensionless quantities
UC , U4, Za/Zp, and ξ2nd/L by using the symbol R. Note that
UC = O(μ), while R = R|μ=0 + O(μ2) for U4, Za/Zp, and
ξ2nd/L.

In our analysis we need the observables as a function of β

in some neighborhood of the simulation point βs. To this end
we have computed the coefficients of the Taylor expansion of
the observables up to the third order.

C. Dimensionless quantities for the decoupled system
and the first-order transition

In the case of decoupled one-component systems λ −
N+2

3 μ = 0, we can express the dimensionless quantities in-
troduced above in terms of their one-component counterparts.

For example,

UC,DI = N − 1

N (N + 2)
(U4,Ising − 3) , (15)

where U4,Ising is the Binder cumulant of the one-component
system. The calculation is straightforward, only exploiting
that 〈m2

am2
b〉 = 〈m2

a〉〈m2
b〉 for a �= b for the decoupled case.

Hence, we get for the fixed-point value, which is indicated
by an asterisk,

U ∗
C,DI = [1.603 59(4) − 3]

N − 1

N (N + 2)

= −1.396 41(4)
N − 1

N (N + 2)
(16)

using the result of [16] for U ∗
4,Ising. Furthermore, (Za/Zp)DI =

[(Za/Zp)Ising]N , U4,DI = 1
N U4,Ising + N−1

N , and (ξ2nd/L)DI =
(ξ2nd/L)Ising, where the subscripts DI and Ising indicate the
decoupled and the one-component system, respectively.

For the first-order transition, in the large-L limit,
at the transition temperature, there is the disordered
high-temperature phase and the 2N-fold degenerate ordered
phase. Each phase enters with the same weight [17]. In
the high-temperature phase, the magnetization vanishes,
while for the ordered phase there is a finite magnetization
with the modulus morder. Fluctuations of the magnetization
vanish as the lattice size is increased. Hence, 〈 �m2〉 =
0+2Nm2

order
1+2N = 2N

1+2N m2
order, 〈( �m2)2〉 = 0+2Nm4

order
1+2N = 2N

1+2N m4
order,

and 〈∑a m4
a〉 = 0+2Nm4

order
1+2N = 2N

1+2N m4
order. Putting things

together we get U4 = 2N+1
2N and UC = (2N+1)(N−1)

(2N )(N+2) . The
ratio of partition functions assumes the value Za/Zp = 0
and Za/Zp = 1 in the limit L → ∞ in the low- and
the high-temperature phase, respectively. Taking into
account the degeneracy of the ordered phase, we arrive
at Za/Zp = 1/(2N + 1).

III. FINITE-SIZE SCALING STUDY
OF THE RG FLOW: THEORY

Let us outline the general strategy of our analysis and
discuss how it arises from the renormalization group theory.
Our theoretical framework is the real-space RG as it is dis-
cussed, for example, in Ref. [18]. Furthermore, we assume
that the picture that arises from the field-theoretic analysis [8]
is qualitatively correct.

The key assumption of finite-size scaling is that the RG
flow is essentially unaffected by the finiteness of the system,
until a scale close to the linear system size L is reached.
Furthermore, the dimensionless quantities considered here are
invariant under RG transformations. Let us briefly discuss
this point for the cumulants U4 and UC . Both are constructed
from the magnetization �m = 1

V

∑
x

�φx. The linear block-spin
transformation is considered as a viable RG transformation. It
is given by

�
X = 1

bd−�

∑
x∈X

�φx, (17)

where b, for example b = 2, is the linear size of a bd block.
The sites of the coarse lattice are denoted by X and are
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identified with blocks on the fine lattice. The field on the
coarse lattice is denoted by �
X . The dimension of the field
� is a priori unknown. Under the transformation (17), the
magnetization of a configuration remains exactly the same up
to the normalization 1/bd−�. The cumulants U4 and UC are
constructed such that this normalization cancels. Hence, U4

and UC are exactly invariant under the linear block-spin trans-
formation. For other types of RG transformations this might
be only approximately true. Therefore, we expect that U4

and UC are affected by corrections related with the redundant
RG eigenvalues of the linear block-spin transformation. The
leading one can be identified with the analytic background of
the magnetic susceptibility. In contrast, the ratio of partition
functions Za/Zp should not be affected by such corrections
since partition functions stay invariant under any type of RG
transformation. This is the reason why below we give prefer-
ence to Za/Zp, when Za/Zp or ξ2nd/L could be used.

Typically, we study models with a few parameters: here
β, λ, and μ. The RG flow starts with these parameters.
Real-space RG transformations generate an infinite number of
couplings Kα already in the first step. An important feature of
the RG flow is that it rapidly collapses onto low-dimensional
submanifolds. In the literature, mostly the collapse onto a
fixed point is discussed. For our purpose, this has to be
generalized. The RG flow collapses onto lower and lower-
dimensional submanifolds in a hierarchical manner. In the
neighborhood of fixed points, this hierarchy is given by the
values of irrelevant RG eigenvalues yi. In our problem, as
seen in the analysis of the six-loop ε expansion [8], we have
a rapid collapse on a line in coupling space. The RG flow on
this line is slow, corresponding to RG eigenvalues y ≈ 0 at the
fixed points. Note that it is assumed that we are on the critical
surface.

In our numerical study, we do not compute the RG flow
in terms of couplings Kα . Instead, we monitor the RG flow
by studying the behavior of dimensionless quantities Ri.
Based on the invariance of dimensionless quantities under
RG transformations we might write them as a function of the
transformed couplings at the scale of the linear lattice size L:

R(L, β, λ, μ) = R̂( �K (L, β, λ, μ)), (18)

where the hat indicates that R and R̂ are mathematically dif-
ferent functions. The argument of R̂ is defined as follows: The
RG transformations start with our lattice model at (β, λ, μ).
Then n block-spin transformations are performed, such that
L = bn. The result of these n transformations is �K (L, β, λ, μ).
For sufficiently large L, the RG flow collapses on a line, up to
small corrections. Therefore, we might write

R̂( �K (L, β = βc, λ, μ)) = R̃(ṽ(L, β = βc, λ, μ)). (19)

We explicitly indicate that we are on the critical surface by
setting β = βc and the real ṽ parametrizes the line of the slow
flow. ṽ should be an analytic function of �K and ṽ(L, β =
βc, λ, μ) = O(μ). These requirements are actually fulfilled by
the dimensionless quantity UC , which we consider as coupling
in the following. Roughly speaking, the physics at large scales
depends only on the strength of the breaking of the O(N )
symmetry, and this strength can be monitored by using UC .
Note, to avoid confusion later on, that UC has the opposite
sign as μ. Our approach is inspired by Ref. [19], where the

dimensionless quantity ξ (L)/L is considered as coupling in
an asymptotically free theory. In Ref. [19] a lattice of the size
L × ∞ is considered and ξ (L) is the exponential correlation
length. For a complementary point of view, see Ref. [20].
Similar to Ref. [19], an RG transformation by the scale factor
b is given by

U ′
C (L, β = βc, λ, μ) = UC (bL, β = βc, λ, μ) (20)

for large L. The fixed points are as follows: For O(N ) sym-
metry, at μ = 0, U ′

C = UC = 0, at the cubic fixed point U ′
C =

UC = U ∗
C , which we compute below, and at the decoupled

Ising fixed point U ′
C = UC = U ∗

C,DI [Eq. (16)]. Furthermore,
for dimensionless quantities R different from UC ,

R(L, β = βc, λ, μ) = R̃(UC (L, β = βc, λ, μ)) (21)

for large L. The large L or scaling limit is obtained by ap-
proaching the unstable fixed points, keeping UC fixed. At the
O(N )-invariant fixed point this means that we have to take the
limit L → ∞ and μ → 0 simultaneously, such that UC stays
fixed. The analysis of the six-loop ε expansion [8] suggests
that the collapse of the RG flow on a single line still occurs far
off from the fixed points. Therefore, in our numerical study
we expect to see a good approximation of the scaling limit
already for moderately large L, while μ is still quite different
from zero.

In our numerical study, we compute the RG transformation
(20) for finite b. For convenience, we view this as a finite-
difference approximation of a β function, where infinitesimal
changes of ln L are considered:

ũ(UC ) = dUC

d ln L
≈ UC (bL) − UC (L)

ln(bL) − ln L
= UC (bL) − UC (L)

ln b
.

(22)
At least for UC not too large, the RG flow is slow and well
behaved. Therefore, this should be a good approximation.

In our study we investigate the flow in the whole range
of interest. On the one hand we start at the decoupled Ising
fixed point. The value U ∗

C,DI can be expressed in terms of
U ∗

4 of the Ising universality class, which is known to high
precision [16]. The relevant RG exponent at this fixed point
can be expressed in terms of the thermal RG exponent of
the Ising universality class [21,22]. The flow runs towards
the cubic fixed point. This part of the study can be seen as
a benchmark of our approach. Then there is the crossover
from the O(N )-symmetric fixed point to the cubic fixed point.
Our main focus is on the flow away from the O(N )-symmetric
fixed point, towards increasing values of UC , with a first-order
phase transition of increasing strength.

Simulating at a given pair (λ,μ) we can follow the RG
flow by simply increasing the lattice size L. However, since
the RG flow is slow, only a small range in UC can be accessed
this way. In order to study the whole range, simulations for
many different pairs (λ,μ) have to be performed. The results
of these simulations are patched together. For moderate sizes
of |UC | this is done by fitting the numerical estimates of
u = 1

UC
ũ by using a polynomial Ansatz. Note that the zero of

ũ at UC = 0 is lifted in u. The larger UC > 0, the worse is
approximation (22) and also fitting u by using a polynomial
Ansatz requires more and more orders. Therefore, for larger
UC , the patching is done more directly by matching the linear
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lattice sizes for two pairs of (λ,μ) such that the estimates of
UC fall on top of each other:

UC (L, β = βc, λ1, μ1) = UC (c1,2L, β = βc, λ2, μ2). (23)

For μ1, μ2 < 0, we can not expect that there is a L → ∞ limit
of c1,2 since eventually we see the first-order phase transition.
However, we get estimates of c1,2 that are consistent at the
level of our numerical precision for some range in L.

Let us summarize the objectives of the study:
(i) Numerically check that the RG flow collapses on a line

by, for example, verifying Eq. (21). This done in Sec. IV B.
(ii) Numerically determine the β function, Eq. (22). Based

on this we compute the fixed-point value U ∗
C at the cubic fixed

point, the RG exponent Y4 at the O(3)-symmetric fixed point,
and the correction exponent ω2 at the cubic fixed point. Note
that the exponents are obtained from the derivative of the β

function at the fixed points with respect to UC . This is done in
Sec. IV B.

(iii) Motivated by Ref. [8] we compute in Sec. V effective
critical exponents as a function of UC . This is done by using
finite-size scaling, and as a check by using the scaling of the
correlation length in the thermodynamic limit.

(iv) Finally, in Sec. VI we demonstrate explicitly the first-
order nature of the transition for μ < 0 and |μ| sufficiently
large. In particular, we compute the correlation length ξhigh in
the high-temperature phase at the transition temperature in the
thermodynamic limit with high accuracy. Based on the scaling
Ansatz

ξhigh(β = βc, λ, μ) = ξ̂high(UC (L, β = βc, λ, μ)) L (24)

we obtain ξhigh for (λ,μ), where we can not simulate lattices
with L 
 ξhigh, which is required to get a good approximation
of the thermodynamic limit, using our limited computational
resources. Here we denote, a bit sloppy, the inverse transi-
tion temperature by βc. In the spirit of Ref. [20], by using
ξhigh(λ2, μ2) = c1,2ξhigh(λ1, μ1), we obtain iteratively results
for weaker and weaker transitions, where the factor c1,2 is
given by Eq. (23). The latter is already done in Sec. IV B using
results obtained in Sec. VI.

IV. FINITE-SIZE SCALING STUDY
OF THE RG FLOW: NUMERICS

As first step of our numerical study, we repeat the analysis
of Sec. VII of Ref. [6] with more data. We have added new
pairs of (λ,μ), in particular, for relatively large values of |μ|.
Furthermore, for pairs (λ,μ) already studied in Ref. [6] we
improved the statistics and added larger lattice sizes. As a
preliminary step, generalizing the idea of improved models,
we locate the line of slow flow in the (λ,μ) plane. Then we
continue with the study of the flow of UC as outlined in the
previous section. Note that in Appendix A we collect some
technical aspects of the numerical analysis and discuss how
we arrive at final results.

A. Locating the line of slow RG flow in the (λ,μ) plane

In the study of critical phenomena by using lattice models,
improved models have been demonstrated to be helpful in
obtaining accurate estimates of universal quantities. For a

discussion, see, for example, Sec. 2.3 of Ref. [1]. In the case of
the Heisenberg universality class, improved models had been
studied, for example, in Refs. [5,12,23]. The basic idea is that
a parameter of the model is tuned such that the scaling field
of the leading correction to scaling vanishes. In the case of
the three-component φ4 model, Eq. (3) with μ = 0, this is
achieved for λ∗ = 5.17(11) (see Ref. [23]). In Ref. [6], we
have applied the idea to the cubic fixed point, now eliminating
the scaling fields of the two leading corrections. For N = 3,
we get (λ,μ)∗cubic = (4.99(11), 0.28(2)). Above in Sec. II,
we have already discussed how the result [14] for the one-
component φ4 model translates to the decoupled φ4 case. In
the case of the O(3)-symmetric φ4 model, we have analyzed
our data for dimensionless quantities by using Ansätze of the
form

Ri(βc, λ, L) = R∗
i + riw(λ)L−ω + · · · , (25)

where λ∗ is obtained as zero of w(λ). In Ref. [6], Eq. (66),
we have generalized Eq. (25) to the line of slow flow that we
eventually intend to study:

Ri(βc, λ, μ, L) = R∗
i +

mmax∑
m=2

ci,mU m
C (βc, λ, μ, L)

+ riw(λ,μ)L−ω +
∑

j

ai, jL
−ε j (26)

for dimensionless quantities that behave like Ri(βc, λ, μ, L) =
Ri(βc, λ, 0, L) + O(μ2). The O(μ2) contributions are taken
into account by the term

∑mmax
m=2 ci,mU m

C (βc, λ, μ, L). In fact,
we perform a Taylor expansion of Eq. (21). Note that we
obtain dimensionless quantities Ri − ∑mmax

m=2 ci,mU m
C that, at

least approximately, remain invariant under the slow part of
the RG flow. Corrections are assumed to be of the same
form as corrections to scaling in the neighborhood of a fixed
point. Furthermore, the exponent ω is assumed to be constant,
taking the value ω = 0.759(2) of the Heisenberg universality
class [23]. This is motivated by the fact that ω1 of the cubic
universality class differs by little from ω of the Heisenberg
one. Furthermore, ω of the Ising universality class, which is
the correction exponent at the decoupled Ising fixed point,
is only slightly larger than the correction exponent of the
Heisenberg universality class. In our fits we set rU4 = 1, while
rZa/Zp and rξ2nd/L are free parameters. Terms proportional to
L−2ω and higher are not taken into account since for our
data the correction is small. The last term of Eq. (26) takes
into account subleading corrections with ε j � 2. Also, these
correction exponents are assumed to be constant. In the fits
performed here, we took two exponents ε1 = 2 − η and ε2 =
2.023, corresponding to the analytic background of the mag-
netization and the breaking of the rotational invariance by the
lattice. In the case of the analytic background, we assume that
the coefficients depend linearly on λ and quadratically on μ.
The coefficients for the breaking of the rotational invariance
are taken as a constant. Formally, in Eq. (26), the correction
term riw(λ,μ)L−ω is of the same type as those contained in∑

j ai, jL−ε j . We single out the term with the smallest correc-
tion exponent since in the following we like to focus on (λ,μ),
where w(λ,μ) ≈ 0, which defines the line of the slow flow in
the (λ,μ) plane.
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The Ansatz (26) is used for joint fits of Za/Zp, ξ2nd/L, and
U4. In a first series of fits, we took w(λ,μ) as a free parameter
for each value of (λ,μ). We performed a number of fits,
varying the range of μ that is taken into account, the maximal
power mmax of UC and, as usual, the minimal linear lattice
size Lmin taken into account. The different sets of data that we
analyzed are mainly characterized by the range of μ that is
taken. For the smallest set of data, |μ| � 1.2 is taken, while
for the largest −1.8 � μ � 2.2 is taken. The largest set con-
tains 64 different pairs of (λ,μ). For negative μ we used the
additional cut UC � 0.4. As a result, for (λ,μ) = (3.4,−1.8),
(3.0,−1.663), and (2.7,−1.552) only linear lattice sizes up to
L = 48 are used in the fit.

In the case of our largest data set, we performed fits with
mmax � 9. For mmax = 9, we get χ2/DOF = 1.070, 1.045,
and 1.002, corresponding to p = 0.049, 0.154, and 0.478 for
Lmin = 20, 24, and 28, respectively. For the definitions of
χ2/DOF and the p value see Appendix A. For smaller ranges
of μ, acceptable fits were obtained already for smaller Lmin.
For example, for Lmin = 16, |μ| � 1.2, and mmax = 6 we get
χ2/DOF = 1.052, corresponding to p = 0.103. Note that in
Ref. [6] we have used mmax = 5 at most and fitted data for
|μ| � 1.

Next we used the parametrizations

w(λ,μ) = a(λ − λ∗ − cμ2 − dμ3) [1 + e(λ − 5.0)] (27)

and

w(λ,μ) = a(λ − λ∗ − cμ2 − dμ3 − eμ4) [1 + f (λ − 5.0)]

(28)

for the correction amplitude.
Here acceptable fits were only obtained for data sets with a

range up to 1.5 � μ � −1.566. Various acceptable fits, using
Eq. (28), are consistent with the estimates λ∗ = 5.12(5), c =
−0.8(1), d = 0.06(1), and e = 0.01(4) for the line of slow
flow.

In Fig. 1 we plot the line of slow flow as characterized by
Eq. (28) with the numerical values of the parameters given
above. In addition we plot the pairs of (λ,μ) we have simu-
lated at. The pairs of (λ,μ) with a small correction amplitude
w are shown as solid circles. Here, small means that it fits
without parametrization of w, the modulus of the value of w

is at most a few times the error of w. The improved point of the
decoupled Ising system is obtained from λ̃∗ = 1.1(1) for the
one-component φ4 model on the simple cubic lattice [14] as
discussed in Sec. II. Finally, the pairs of (λ,μ), where, below
in Sec. VI, we demonstrate directly that the transition is first
order, are plotted.

Our results for the dimensionless quantities are fully con-
sistent with those obtained in Ref. [6]. The estimates of ci,m,
summarized in Table I, are more accurate now. The error bars
are taken such that the results of five different acceptable fits
are covered. We give results up to m = 4. For larger m, the
values of ci,m differ substantially between different fits.

FIG. 1. We plot the line of slow flow in the (λ,μ) plane as
parametrized by Eq. (28) using the numerical values λ∗ = 5.12,
c = −0.8, d = 0.06, and e = 0.01 as solid black line. The solid
circles give values of (λ,μ) with a small correction amplitude w.
These are used in the analysis of the RG flow below. Additional pairs
of (λ,μ) that are analyzed in this section are plotted as diamonds.
The cross gives the improved point for the decoupled Ising system.
The asterisks give points, where, below in Sec. VI, we demonstrate
directly that the transition is first order.

Selected estimates of the inverse transition temperature βc

are provided as Supplemental Material [24].

B. Flow equation for UC

Now we proceed with the analysis of the RG flow, as
outlined in Sec. III. We like to study the RG flow on the critical
surface. To this end, following Ref. [25], we take the quanti-
ties of interest at β = β f , where a dimensionless quantity Ri,
different from UC , assumes a certain value Ri, f : Ri(β f ) = Ri, f .
Quantities taken at β f are indicated by a line on top. For ex-
ample, UC at β f is denoted by UC in the following. Replacing
a numerical estimate of βc by β f has various advantages. For
example, the statistical error is typically reduced due to cross
correlations with Ri (see, for example, Ref. [26]). Following
previous work, for example, [12,14,15,23], we take the ratio
of partition functions Za/Zp to define β f . Our choice for the
fixed value is (Za/Zp) f = 0.194 77, which is the estimate of
the fixed-point value for the Heisenberg universality class
[23]. Note that for any value of Ri, f in the range of Ri, for a
second-order phase transition, β f converges to βc as the linear

TABLE I. Estimates of the coefficients ci,m [Eq. (26)] for the
three dimensionless quantities that we have analyzed. For a discus-
sion, see the text.

Ri \ m 2 3 4

Za/Zp −0.612(9) 2.13(8) −5.0(1.2)
ξ2nd/L 1.308(9) −3.38(7) 11.7(9)
U4 1.243(8) −2.73(6) 8.6(1.4)
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lattice size L increases. For Ri, f = R∗
i the convergence is the

fastest.
Motivated by the results of the previous subsection, we

consider as alternative

(Za/Zp)(β f ) −
mmax∑
j=2

cZa/Zp, jU
j

C (β f ) = 0.194 77, (29)

where cZa/Zp, j and mmax are fixed. The idea of using Eq. (29)
is that, in particular for large values of |UC |, the convergence
of β f with increasing L is improved by using a quantity that
is approximately invariant under the RG flow. In our numer-
ical analysis we use mmax = 6. The values cZa/Zp,2 = −0.61
and cZa/Zp,3 = 2.1 are taken from the fits discussed above,
while cZa/Zp,4 = −2.9, cZa/Zp,5 = −10, and cZa/Zp,6 = 20.8 are
chosen such that for large |UC | certain requirements to be
discussed below are fulfilled. We do not simply use numerical
results of cZa/Zp, j for j > 3, obtained by the fits performed
in the previous section, since for UC outside of the range of
these fits the invariance under the RG flow is rapidly lost.
Instead, the coefficients are chosen such that the decoupled
Ising fixed point and the first-order transition on the other side
are approached properly.

To this end, let us view

(Za/Zp)mod, f (UC ) =
mmax∑
j=2

cZa/Zp, jU
j

C + (Za/Zp) f (30)

as a function of UC . The coefficients cZa/Zp,4, cZa/Zp,5, and
cZa/Zp,6 in Eq. (29) are chosen such that (Za/Zp)mod, f (UC )

(i) is monotonically decreasing with increasing UC in the
range 0 < UC � 0.4;

(ii) assumes roughly the numerical value found for Za/Zp

at the transition temperature for UC ≈ 0.4;
(iii) is monotonically decreasing with decreasing UC in the

range 0 > UC � UC,DI;
(iv) assumes the decoupled Ising value of Za/Zp for UC,DI.
One should note that the numerical results discussed below

in Sec. VI show that at the inverse transition temperature
βt , with increasing linear lattice size L, the limiting values
of the dimensionless quantities are not approached mono-
tonically. For example, one finds the extrema (Za/Zp)min ≈
0.131 and UC,max ≈ 0.504, both at L/ξhigh ≈ 2, consistently
for different values of ξhigh. Plugging in N = 3 into the equa-
tions of Sec. II C, we get Za/Zp = 1

7 = 0.142 857 . . . and
UC = 0.466 666 . . . in the large-L limit. Studying the flow of
UC , we stay in the range of L, where it is monotonic.

We performed the following analysis for both choices
(Za/Zp) f = 0.194 77 and Eq. (29). We obtain consistent re-
sults for these two choices. It is assuring that the results
virtually do not depend on the choices, partly made ad hoc,
when fixing cZa/Zp, j in Eq. (29). Not to overburden the reader,
in the discussion below we only present the results obtained by
using Eq. (29). In order to keep corrections to scaling small,
we focus on data obtained for (λ,μ) close to the line of slow
flow as discussed above in Sec. IV A.

In order to check Eq. (21), we plot U 4 versus UC

for six pairs of (λ,μ) in Fig. 2. For (2.333,−1.764) and
(2.0,−1.85), we show in Sec. VI that the transition is
of first order. The data points for the different pairs of

FIG. 2. We plot U 4 versus UC obtained for six different pairs of
(λ, μ) and a number of linear lattice sizes L � 12. The largest lattice
size is L = 192, 128, 96, 128, 64, and 48 for (λ,μ) = (4.0,−1.2),
(3.7, −1.33), (3.0,−1.449), (2.7, −1.552), (2.333, −1.764), and
(2.0, −1.85), respectively. For a discussion see the text.

(λ,μ) fall nicely on a single curve, confirming that there
is a single-parameter RG flow, which is reached to a good
approximation for the linear lattice sizes L � 12 studied
here. For (2.333,−1.764) and (2.0,−1.85) we see a sec-
ond branch of the curve, which is due to the nonmonotonic
behavior discussed above. Even here the data for (λ,μ) =
(2.333,−1.764) and (2.0,−1.85) seem to fall on top of each
other.

The flow of UC is characterized by

u(UC ) = 1

UC

dUC

d ln L
, (31)

where we have introduced the factor 1
UC

, compared with a β

function in field theory, for numerical convenience. The factor
lifts the zero of the β function at UC = 0. Note that here we re-
place UC (L, β = βc, λ, μ) of Sec. III by UC (L, β = β f , λ, μ).
Let us first discuss the behavior of u in the neighborhood of the
decoupled Ising fixed point. The decoupled Ising fixed point
is unstable with an RG exponent

y = αI yt,I = 2yt,I − d = d − 2�ε,I = 0.174 75(2), (32)

where αI and yt,I are the specific heat and the thermal RG
exponent of the three-dimensional Ising universality class,
respectively [21,22]. The numerical value of the scaling di-
mension �ε = 1.412 625(10) is taken from Ref. [27]. In the
neighborhood of the decoupled Ising fixed point we have

UC (L) = UC,DI + ε0(L/L0)y + · · · . (33)

Hence,

u(UC,DI + ε0) ≈ U
−1
C,DI lim

L→L0

ε0(L/L0)y − ε0

� ln L

= U
−1
C,DI lim

L→L0

ε0y� ln L

� ln L
= U

−1
C,DIε0y, (34)
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where � ln L = ln L − ln L0 = ln(L/L0). Furthermore, we
have used (L/L0)y = exp[y ln(L/L0)] = 1 + y ln(L/L0) +
· · · .

In Ref. [6] we estimated u, Eq. (31), by fitting data for fixed
(λ,μ) by using the Ansatz

UC (λ,μ, L) = aLu (35)

or as check

UC (λ,μ, L) = aLu (1 + cL−2) (36)

for some range Lmin � L � Lmax. As argument of u we took
[UC (Lmin) + UC (Lmax)]/2. The approximations (35) and (36)
rely on the fact that UC varies only little in the range Lmin �
L � Lmax and hence u is small:

UC (L) ≈ UC (L0) + UC (L0) u ln(L/L0)

= UC (L0) [1 + u ln(L/L0)]

≈ UC (L0) exp[u ln(L/L0)] ∝ Lu, (37)

where L0 = √
LminLmax. In Eq. (36), the factor (1 + cL−2) is

included to take subleading corrections to scaling approxi-
mately into account.

For (λ,μ), where UC changes considerably over the range
of lattice sizes L that we simulate, we now take instead

u([UC (L2) + UC (L1)]/2)

= 2

UC (L2) + UC (L1)

UC (L2) − UC (L1)

ln(L2/L1)
(38)

as approximation. Here L1 and L2 are lattice sizes we simu-
lated at and L2 is the smallest that satisfies L2 > L1, meaning
the next larger to L1. Note that Eq. (38) is the finite-difference
approximation of Eq. (31).

First we check that estimates of u, Eq. (31), obtained for
different values of (λ,μ) fall on a unique curve, up to small
deviations that can be interpreted as corrections. To this end,
we first compare the estimates obtained from two different
pairs of (λ,μ) that give approximately the same values of
UC for the same lattice size L. The leading correction should
differ between these two pairs. In Fig. 3 we plot our estimates
of u for (λ,μ) = (3.4,−1.566) and (3.0,−1.449). For exam-
ple, from the fit with the Ansatz (26), taking mmax = 9, and
our largest set of data, we get for Lmin = 24 the estimates
w = −0.0038(5) and 0.0017(5), respectively. In particular,
the difference between these two estimates of w is very stable
when varying the parameters of the fit. In both cases, estimates
of u obtained from the linear lattice sizes L = 12, 16, 24,
32, 48, 64, and 96 are shown. Note that UC is monotonically
increasing with the linear lattice size L in the range plotted
here. We find that the results obtained for (L1, L2) = (12, 16),
which is leftmost in the plot, and (16,24) for the two pairs of
(λ,μ) clearly differ by more than the statistical error. How-
ever, the difference is small compared with the value of u.

Next, in Fig. 4 we plot our estimates of u computed by
using Eq. (38) obtained for five different pairs of (λ,μ), which
are approximately on the line of slow flow. For small linear
lattice sizes, we expect that subleading corrections are the
numerically dominant corrections. It is quite clear from the

FIG. 3. We plot estimates of u, Eq. (31), computed by using
Eq. (38) and the data for (λ, μ) = (3.4, −1.566) and (3.0,−1.449)
as a function of UC . The data are obtained for the pairs of lattice sizes
(L1, L2) = (12, 16), (16, 24), ..., (64,96). Since UC increases with
L in the given range, the leftmost points correspond to (L1, L2) =
(12, 16), while the rightmost ones correspond to (L1, L2) = (64, 96).
For a discussion see the text.

plot that estimates obtained from (L1, L2) = (12, 16) are too
large compared with the asymptotic value. Note that the data
points for (L1, L2) = (12, 16) are the leftmost ones for each
pair (λ,μ) which is considered. For (L1, L2) = (24, 32) the
inspection by eye does not show such a deviation, suggesting
that corrections to scaling are at most at the level of the
statistical error at this point.

In Fig. 5 we plot estimates of u obtained by using Eq. (35)
with Lmin = 24 and Eq. (38) as a function of UC . Further-
more, we give u = 0 for the decoupled Ising point at UC =
−0.186 188(5) and the behavior of u in the neighborhood
of the decoupled Ising point. For |u| � 0.1 the estimates
obtained by using Eqs. (35) and (38) are consistent. For

FIG. 4. We plot estimates of u, Eq. (31), computed by using
Eq. (38) and the data for (λ,μ) = (2.7,−1.552), (3.0,−1.449),
(3.7, −1.3), (3.8, −1.2), and (4.0,−1.2), as a function of UC . For
a discussion see the text.
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FIG. 5. We plot u, Eq. (31), obtained from a large set of (λ, μ)
as a function of UC . Results obtained by using Eq. (35) are given
as diamonds, while those obtained by using Eq. (38) are given as
squares. The filled circle gives the result for the decoupled Ising
system. The dotted line shows the behavior (34) in the neighborhood
of the decoupled Ising system. Details are discussed in the text.

u > 0.15 we see clear differences. For small |u|, the statistical
error is quite large for Eq. (38). This is partially due to the fact
that we simulated for more values of L in the same range of
lattice sizes than for larger |u|. The behavior for UC � −0.15
seems to be consistent with the predictions for the decoupled
Ising system and its neighborhood.

We analyze the numerical results by using the Ansatz

u =
n∑

i=0

aiU
i
C, (39)

where we have taken n = 3, 4, and 5 in our fits. In
Appendix B, we discuss the cases n = 1 and 2 analytically.
In our preliminary analysis, we experimented with various
approaches. For example, we combined data for |μ| � 0.6
analyzed by using Eq. (35) with data for |μ| > 0.6 analyzed
by using Eq. (38).

In our final analysis, we use for simplicity only data
with |μ| � 0.6 analyzed by using Eq. (38). Note that for
(λ,μ) = (4.7, 0.6) we have UC (L) = −0.034 532(8),...,
−0.033 963(22) for L = 12,..., 64 and for (λ,μ) =
(4.7,−0.6) we have UC (L) = 0.047 872(7),..., 0.053 152(27)

for L = 12,..., 64. In the fit, the covariances that are caused
by the fact that the numerical result for UC (L) might appear
in two differences, one with a smaller and one with a larger
lattice size, are taken into account. In order to estimate
the effects of the truncation in Eq. (39) and corrections to
scaling, we vary the maximal |UC | and |μ| and minimal
lattice size L1,min that is taken into account. Our final
results are based on four different fits. In the first one,
fit 1 in Table II, we included (λ,μ) = (2.7,−1.552),
(3.0,−1.449), (3.7,−1.33), (3.8,−1.2), (4.0,−1.2),
(4.2,−1.1), (4.3,−1.0), (4.4,−0.9), (4.5,−0.8),
(4.7,−0.7), (4.7,−0.6), (4.7,0.6), (4.7,0.7), (4.5,0.8),
(4.3,1.0), (4.0,1.2), (3.4,1.5), (2.6,1.9), (2.2,2.0), (1.9,2.1),
and (1.65,2.2). In the case of (λ,μ) = (2.7,−1.552) we
skipped the lattice sizes L > 64 since the value of UC is
too large to be be fitted with the Ansatz (39). Furthermore,
we take n = 5 in Eq. (39) and L1,min = 48. In the remaining
fits, smaller ranges of (λ,μ) are used. The values of (λ,μ)
taken into account range from (3.7,−1.33) to (1.65,2.2),
(4.0,−1.2) to (2.2,2.0), and (4.2,1.1) to (2.6,1.9) for fits
2, 3, and 4, respectively. Furthermore, the fits 2, 3, and
4 are characterized by L1,min = 32, 24, 24 and n = 5, 4,
3, Eq. (39), respectively. In the case of fit 1, UC ranges
from −0.151 18(7) to 0.405 51(4), while for fit 4, it ranges
from −0.106 242(13) to 0.139 89(7). The estimates of
the parameters ai are summarized in Table II. Based on
these estimates, we compute U

∗
C , which is the zero of u,

numerically. Furthermore, ω2 is given by minus the derivative
of ũ = UCu with respect to UC at U

∗
C . The statistical errors

of these derived quantities are obtained by error propagation
as discussed in Appendix A. It turns out that the difference
Y4 − ω2 has a much smaller statistical error than Y4 = a0
and ω2, individually. This can be attributed to a strong
statistical correlation of Y4 and ω2. The strong correlation
is not surprising since for ai�2 = 0 we get Y4 = ω2 (see
Appendix B). The final results given in Table II and their error
bars are chosen such that the results of the four fits discussed
above are covered. For a discussion of the error analysis see
Appendix A.

As a final check, we repeated the analysis, replacing
(λ,μ) = (3.7,−1.33), (3.8,−1.2), (4.0,−1.2), (4.2,−1.1),
and (4.3,−1.0) by (λ,μ) = (3.0,−1.663), (3.4,−1.8),
(3.7,−1.5), (4.0,−1.2), and (4.5,−1.0). For these val-
ues of (λ,μ) the amplitude |w| of corrections is larger
than for the replaced ones. The results do not change
significantly.

TABLE II. Fitting numerical estimates of u, Eq. (38), by using the Ansatz (39). The fits, which are labeled by 1, 2, 3, and 4, are discussed
in the text. In addition to the estimates given in the table, we obtain a5 = −18.1(2.5) and 42.7(9.3) for the fits 1 and 2, respectively. We get
χ 2/DOF = 0.965, 0.970, 0.934, and 0.968 corresponding to p = 0.524, 0.538, 0.623, and 0.542 for fits 1, 2, 3, and 4, respectively. In the case
of the fits 1, 2, 3, and 4 we give statistical errors, while for the final results systematic errors are taken into account, as discussed in Appendix A.

Fit a0 a1 a2 a3 a4 U
∗
C ω2 Y4 − ω2

1 0.01441(66) 0.8136(72) 2.004(55) −8.7(4) 12.9(1.9) −0.0186(8) 0.01360(59) 0.00081(6)
2 0.01348(38) 0.8296(34) 2.398(69) −10.5(3) −1.4(2.6) −0.0172(4) 0.01267(31) 0.00081(3)
3 0.01448(21) 0.8367(25) 2.193(41) −10.5(2) 10.0(1.9) −0.0183(3) 0.01362(20) 0.00086(2)
4 0.01401(18) 0.8358(28) 2.357(23) −10.4(3) −0.0177(2) 0.01315(16) 0.00086(2)

Final 0.0141(10) 0.823(17) 2.21(26) −9.6(1.3) −0.0181(14) 0.0133(9) 0.00081(7)
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TABLE III. Results for the scale factor c for the matching be-
tween (λ,μ) = (2.333, −1.764) and (2.7, −1.552). L is the linear
lattice size for (λ, μ) = (2.333, −1.764) and c1,2 gives the ratio
with the matching lattice for (λ, μ) = (2.7, −1.552) as defined by
Eq. (40). For a discussion see the text.

L c1,2

12 3.4351(35)
16 3.4478(18)
24 3.4558(23)
32 3.4523(44)

C. Matching

For two pairs of parameters (λ1, μ1) and (λ2, μ2) we de-
termine a scale factor c1,2 by requiring that

UC,1(L) = UC,2(c1,2L), (40)

where the second subscript indicates the pair of parame-
ters. This is solved numerically for each linear lattice size
that we simulated for parameter pair one. In a first step,
for μ < 0, we determine two lattice sizes L1 and L2 for
the second parameter pair such that L2 is the smallest
linear lattice size simulated such that UC,1(L) � UC,2(L2)
and L1 the largest such that UC,1(L) � UC,2(L1). If such a
pair of lattice sizes exists, we interpolate UC,2 linearly in
the logarithm of the linear lattice of the second parameter
pair. As an example, in Table III, we give the results of
the matching for (λ1, μ1) = (2.333,−1.764) and (λ2, μ2) =
(2.7,−1.552). Note that for (λ,μ) = (2.333,−1.764) we
find in Sec. VI that ξhigh = 24.70(2) at the transition
temperature. Furthermore, for (λ,μ) = (2.333,−1.764) we
reach linear lattice sizes, where UC (L) becomes nonmono-
tonic. We get UC = 0.390 42(10), 0.419 10(4), 0.457 81(5),
0.483 59(5), 0.511 61(6), 0.506 55(12) for L = 12, 16, 24, 32,
48, and 64. The linear lattice sizes given in Table III are still
in the range, where UC (L) monotonically increases with the
linear lattice size L.

We find that c1,2 changes only little with increasing L.
It seems plausible that for L = 32 systematic errors are at
most of the same size as the statistical error given in Ta-
ble III. To check whether c1,2 indeed gives the ratio of the
correlation length ξhigh at (λ1, μ1) and (λ2, μ2), we performed
the matching for (λ1, μ1) = (2.0,−1.85) and (λ2, μ2) =
(2.333,−1.764). Here we get c1,2 = 2.0165(30), 2.0168(14),
and 2.0139(15) for L = 12, 16, and 20, respectively. This can
be compared with the ratio 24.70(2)/12.135(6) = 2.0354(19)
of the correlation length in the high-temperature phase com-
puted in Sec. VI. The correction to the expected scaling is
small.

We continued this matching for pairs (λ1, μ1) and (λ2, μ2)
that are approximately on the line of slow flow. In Table IV
we report our final results for the matching factor c1,2. The
error bar includes a rough estimate of the systematic error,
obtained from the variation of c1,2 with increasing L. Based
on our simulations, we can not proceed to μ > −1 since
we have no pairs of (λ,μ) at hand that have overlapping
ranges of UC . In the third column, we give an estimate of the
correlation length in the high-temperature phase at the tran-

TABLE IV. Results for the scale factor c1,2 for a sequence of pairs
of (λ, μ). The pairs (λ,μ) are given in the first column. We match
subsequent pairs of (λ, μ). The estimates of c1,2 given in the second
column refer to (λ1, μ1) given one row above, and (λ2, μ2) given
in the same row. The estimate of ξhigh given in the third column is
obtained by multiplying up the values for c1,2, starting from ξhigh =
24.70(2) for the correlation length in the high-temperature phase at
the transition temperature at (λ, μ) = (2.333, −1.764). The errors
for the correlation length are added up. For a discussion see the text.

(λ, μ) c1,2 ξhigh

(2.333, −1.764) 24.70(2)
(2.7, −1.552) 3.455(7) 85.34(24)
(3.0, −1.449) 2.463(10) 210.2(1.4)
(3.7, −1.33) 5.31(2) 1116.0(12.0)
(3.8, −1.2) 2.99(2) 3337.0(58.0)
(4.0, −1.2) 1.33(1) 4438.0(110.0)
(4.2, −1.1) 3.35(4) 14870.0(550.0)
(4.3, −1.0) 3.6(1) 53500.0(3500.0)

sition temperature. We start from the direct estimate obtained
for (λ,μ) = (2.333,−1.764) in Sec. VI. Then we multiply up
the values for c1,2. The error bar is simply computed by adding
up the error due to the previous estimate of ξhigh and the one
due to the uncertainty of the current value of c1,2. This is done
since we do not know how the errors are correlated.

Going to μ > −1 we evaluate the RG flow by using
Eq. (31). Here we abstain for simplicity from propagating the
errors of the coefficients. Instead, we run the integration with
the results for the coefficients ai, Eq. (39), of four different fits.
The spread of the results serves as rough estimate of the error.
Let us first check the consistency with the results given in Ta-
ble IV. Let us consider (λ1, μ1) = (3.8,−1.2) and (λ2, μ2) =
(4.2,−1.1) as example, where UC = 0.179 833(39) and
0.139 891(65) for L = 64, respectively. Running Eq. (31) with
the coefficients obtained from four different fits, we arrive
at the estimate of the scale factor c1,2 = 4.70(12), which
can be compared with c1,2 = 1.33(1) × 3.35(4) = 4.46(9)
taken from Table IV. Next we computed the scale factor c1,2

between (λ1, μ1) = (3.8,−1.2) and (λ2, μ2) = (4.5,−0.8),
(4.7,−0.6), and (5.0,−0.3) by using Eq. (39) as exam-
ples. We get c1,2 = 562.(26.0), 152 000.0(17 000.0), and
3.9(1.0) × 1013, respectively. Hence, the correlation length
in the high-temperature phase at the transition temperature
should be ξhigh = 1 960 000.0(90 000.0), 5.5(6) × 108, and
1.3(3) × 1017, respectively. Note that the estimates of the
error are only rough ones. Still the order of magnitude of ξhigh

should be correct. It is apparent that the range of parameters,
where the first-order transition is very weak, is large.

V. EFFECTIVE EXPONENT OF
THE CORRELATION LENGTH

In Ref. [8] the authors suggest that for a weak first-order
transition, for a large range of reduced temperatures, the
behavior of the correlation length is similar to that at a second-
order phase transition, where however the exponent ν of the
O(3)-invariant Heisenberg universality class is replaced by an
effective one that depends weakly on the reduced temperature.
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FIG. 6. We plot �yt , Eq. (42), obtained for a large set of (λ, μ)
as a function of UC . Details are discussed in the text.

Here we analyze the finite-size scaling behavior of the slope
of dimensionless quantities and the behavior of the infinite-
volume correlation length in the high-temperature phase.

A. Finite-size scaling

We analyze the slopes Si of dimensionless quantities R̃i =
Ri − ∑m

j=2 ci, jU
j

C at β f , where Si = ∂R̃i/∂β. The idea is that
R̃i stays approximately constant with increasing L at the tran-
sition temperature, and that this hopefully also improves the
behavior of the slope Si. We redo the analysis of Sec. VII D of
Ref. [6] with new data added. Note that in Ref. [6] we have
used by mistake the wrong sign for the improvement term∑m

j=2 ci, jU
j
C . Here we compare final results obtained by using

different choices of ci, j .
Since we are interested in the difference compared with the

Heisenberg universality class, we analyze ratios

rS,i[(λ,μ), (λ0, 0), L] = Sλ,μ,i(L)

Sλ0,μ=0,i(L)
, (41)

where i indicates which dimensionless quantity is taken and
λ0 = 5.2 or 5.0. Note that λ∗ = 5.12(5) for μ = 0 (see
Sec. IV A). We expect that subleading corrections approxi-
mately cancel. Therefore, we analyze the ratio with the simple
Ansatz

rS,i[(λ,μ), (λ0, 0), L] = aL�yt . (42)

We performed fits for a number of values of (λ,μ) using a
minimal lattice size Lmin = 16 or 24 that is taken into ac-
count. In Fig. 6 we plot �yt obtained by using Lmin = 24 and
λ0 = 5.2 as a function of UC . The values of ci, j are taken from
Table I and m = 4. Here β f is obtained from fixing Za/Zp −∑m

j=2 ci, jU
j

C = 0.194 77 using the values of ci, j given in Ta-

ble I. As argument of �yt we take [UC (Lmax) + UC (Lmin)]/2,
where Lmax and Lmin are the largest and the smallest lattice
sizes taken into account in the fit.

We have analyzed the estimates of �yt by using the An-
sätze

�yt = bU
2
C + cU

3
C (43)

and

�yt = bU
2
C + cU

3
C + dU

4
C (44)

for the three different dimensionless quantities with different
choices for

∑m
j=2 ci, jU

j
C .

For ci, j = 0, already the estimate of b depends on the
dimensionless quantity that is considered. For example, from
a fit with Lmin = 16 and λ0 = 5.2 we get b = 3.94(3), 4.21(3),
and 3.55(5) for Za/Zp, ξ2nd/L, and U4, respectively. In all three
cases we used the Ansatz (43) and data for −0.06 � UC �
0.06. We added successively higher orders of UC to define
R̃i. We could not identify a clean convergence pattern for the
coefficients of Eqs. (43) and (44).

For the choice of ci, j used for the data given in Fig. 6, we
find that the results for b are more or less the same for the
three different dimensionless quantities. We quote

b = 3.8(2) (45)

as our final result. For c, the results depend clearly on the
dimensionless quantity that is considered. Certainly, deeper
theoretical insight is needed to decide whether a unique effec-
tive exponent νeff can be obtained from finite-size scaling.

Note that at the cubic fixed point, for finite m and any
choice of ci, j , one should get in the limit L → ∞ a unique
value for �yt , not depending on the choice of the dimension-
less quantity. Indeed, analyzing various choices

∑m
j=2 ci, jU

j
C ,

we get similar numerical estimates for �yt at the cubic fixed
point for Za/Zp, ξ2nd/L, and U4. In particular, we confirm the
numerical results of Sec. VII D of Ref. [6]. In particular, plug-
ging in the numerical estimate of U

∗
C obtained in Sec. IV B

above we get

yt,cubic − yt,O(3) = 3.8(2) × [−0.0181(14)]2 = 0.001 24(12),
(46)

where we have ignored O(U
∗ 3
C ) contributions and have added

up the errors due to b, Eq. (45), and U
∗
C .

B. Correlation length in the high-temperature phase

Here we have simulated the model for the two se-
lected values (λ,μ) = (4.5,−0.8) and (3.8,−1.2) in the
high-temperature phase, where the correlation length can be
determined very accurately by using the improved estimator
of the correlation function that comes with the single-cluster
algorithm [28]. For comparison we study λ = 5.0 and 5.2 at
μ = 0.

As estimate of the correlation length we take the effective
correlation length

ξeff(t ) = − ln[G(t + 1)/G(t )], (47)

where G(t ) = 〈�S(0) · �S(t )〉 and

�S(x0) =
∑
x1,x2

�φx0,x1,x2 . (48)

Computing G(t ), we summed over all translations and all
three directions on the lattice.

In the numerical analysis we improved Eq. (47) by taking
into account periodic boundary conditions

G(τ ) = c{ exp(−τ/ξeff ) + exp[−(L − τ )/ξeff]}. (49)
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Equation (49), for τ = t and t + 1, is solved for ξeff nu-
merically. It turns out that ξeff(t ) is rapidly converging with
increasing distance t . As our final estimate we take ξeff(t )
at t = 2ξeff(t ), self-consistently. We take a linear lattice size
L ≈ 20ξeff. We checked that for this lattice size finite-size
effects are clearly negligible.

We performed simulations for a range of β such that ξ ≈ 2
for the smallest value of β and ξ ≈ 10 for the largest. We sim-
ulated at 26, 29, 34, and 36 different values of β for (λ,μ) =
(3.8,−1.2), (4.5,−0.8), (5.0,0), and (5.2,0), respectively. We
performed at least 105 update cycles for each simulation. The
update cycle consists of local Metropolis updates and single-
cluster updates. We performed roughly as many single-cluster
updates, such that, on average, the volume of the lattice is
covered.

Assuming that the models are improved, we fitted our data
with the simple Ansatz

ξ = at−νeff (1 + bt ), (50)

where we have included leading analytic corrections. Our
definition of the reduced temperature is t = βt − β. In a way,
along with the range of β that is taken into account in the
fit, this defines an effective value of the correlation length
exponent ν. We took the estimate of βt from the finite-size
scaling analysis discussed above. The parameters of the fit are
a, b, and νeff.

Fitting all our data for (λ,μ) = (5.2, 0) we get χ2/DOF =
1.237 corresponding to p = 0.164 and νeff = 0.710 45(8),
which is slightly too small compared with ν = 0.711 64(10)
[23] or ν = 0.711 69(30) [7]. Discarding small values of β,
the fit improves and the value of ν increases. For example,
taking β = 0.65 with ξ = 3.258 46(24) as minimal value, we
get χ2/DOF = 1.005 corresponding to p = 0.455 and νeff =
0.710 93(22). The small deviation of νeff from the estimates
of Refs. [7,23] can be attributed to corrections not taken into
account in the Ansatz (50). Analyzing the data for (λ,μ) =
(5.0, 0) we get χ2/DOF = 0.999 corresponding to p = 0.467
and νeff = 0.710 24(8). Also in this case, χ2/DOF decreases,
when discarding small values of β and the value of νeff slightly
increases. For example, for the minimal value β = 0.65 with
ξ = 3.274 36(28) we get χ2/DOF = 0.680, p = 0.870, and
νeff = 0.710 95(24).

In summary, using the simple Ansatz (50) taking data for
ξ ≈ 3.3 up to ξ ≈ 10 we obtain an estimate of ν that deviates
from the most accurate values for the Heisenberg universality
class, given in the literature, in the fourth digit.

Now let us turn to the data for μ < 0. For (λ,μ) =
(4.5,−0.8) we get χ2/DOF = 1.550, p = 0.0365 taking into
account all data. We get νeff = 0.702 35(9). The quality of
the fit does not improve discarding data. We note that our
numerical estimates of ξ are very accurate and less accurate
data might result in an acceptable fit. The estimate of νeff is
clearly smaller than those obtained for μ = 0. The deviation
is about 1%.

Finally, we analyzed our data for (λ,μ) = (3.8,−1.2).
Fitting all data we get χ2/DOF = 5.054, p = 0.000, and
νeff = 0.683 82(8). Here, discarding data, keeping β = 0.64,
ξ = 3.612 72(27) as smallest value of β we get χ2/DOF =
1.309, p = 0.199, and νeff = 0.681 76(27), which is clearly
smaller than the O(3)-invariant value. Fitting all data up to

β = 0.648, ξ = 4.503 59(34), we get χ2/DOF = 0.692, p =
0.733, and νeff = 0.685 19(28). We notice that the value of νeff

decreases, decreasing the reduced temperature t .
In order to compare the result obtained here with that

obtained from finite-size scaling, we take UC as defined in
Sec. IV B for L = 8 at (λ,μ) = (4.5,−0.8) and (3.8,−1.2),
where L = 8 is chosen to have a rough match with the
correlation lengths up to ξ ≈ 10 that are considered here.
We estimate UC ≈ 0.0678 and 0.1177, respectively. Hence,
we get yt,eff ≈ 1.4052 + 3.8U

2
C ≈ 1.4227 and 1.4578, cor-

responding to νeff ≈ 0.7029 and 0.6859, respectively. These
numbers are in reasonable agreement with the results obtained
from the correlation length in the high-temperature phase.

VI. FIRST-ORDER PHASE TRANSITION

Here we discuss our simulations for values of (λ,μ), where
the first-order transition is sufficiently strong such that it can
be detected directly in the analysis of the data generated in the
simulation. We performed extensive preliminary simulations
to get an idea of the range of (λ,μ), where this is the case.
A first indication of a first-order transition is the appearance
of metastabilities in standard simulations. Furthermore, it is
useful to study the histograms of various observables. At
first-order transitions, double-peak structures appear. These
double peaks become sharper and clearer separated as the
linear lattice size increases. The separation of the peaks is
accompanied by a rapid increase of the autocorrelation time
with increasing lattice size, when using standard algorithms.

Below, we briefly discuss our implementation of the multi-
canonical method [29,30] that at least mitigates the problem of
the increasing autocorrelation time. For more detailed discus-
sions and alternatives to the multicanonical method see, for
example, Refs. [31–35]. Then we discuss our numerical re-
sults for the transition temperatures, the interface tension, the
latent heat, and the correlation length in the high-temperature
phase at the transition. The theoretical basis for the finite-size
scaling analysis of first-order phase transitions is provided by
Refs. [17,36].

A. Multicanonical method

In order to perform simulations for lattices with L 
 ξhigh

at the transition temperature, we employed the multicanon-
ical method [29,30]. In standard simulations, using a local
algorithm, configurations can be changed only in small steps.
Hence, going from the disordered to an ordered phase and
vice versa, the Markov chain has to pass configurations, where
both phases are present, separated by interfaces. These config-
urations are highly suppressed and their weight is decreasing
exponentially with the area of the interfaces. Therefore, in the
simulation these configurations are rarely visited and hence
tunneling times between the phases become larger and larger
as the lattice size increases.

The basic idea of the multicanonical method is to simulate
a modified distribution such that configurations that contain
two phases have an enhanced probability compared with the
Boltzmann distribution. Configurations { �φ} are generated with
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a probability distribution

P({ �φ}) = 1∑
{ �φ} exp(−H[{ �φ}])W (X [{ �φ}])

× exp(−H[{ �φ}])W (X [{ �φ}]), (51)

where W (X [{ �φ}]) is a real positive number and X [{ �φ}] is an
estimator of an observable. In our simulations we took the
energy, Eq. (9), for this purpose. Using the multicanonical
method the problem of the increasing tunneling time can
be drastically reduced but not completely eliminated. For a
discussion see, for example, Ref. [37].

The expectation value of an estimator A[{ �φ}] with respect
to the Boltzmann distribution is given by

〈A〉 ≈
∑

i W −1(X [{ �φ}i])A[{ �φ}i]∑
i W −1(X [{ �φ}i])

, (52)

where we sum over the configurations that are generated after
equilibration.

The function W (X ) should be constructed such that the
histogram becomes essentially flat between the maxima of the
Boltzmann distribution. We construct W (X ) as a piecewise
constant function:

W (X ) =
⎧⎨
⎩

1 for X < X0,

wi for X0 + i� � X < (i + 1)�,

1 for X1 < X,

(53)

where i ∈ {0, 1, . . . , M − 1} and � = (X1 − X0)/M. X0 and
X1 roughly give the position of the peaks in the histogram. In
our simulations 10 � M � 600. The weights wi are computed
from the histogram. They can be iteratively improved by using
more and more accurate data for the histogram. For lattice
sizes that are not too large, one gets a few tunnelings between
the phases by simulating with the Boltzmann distribution and
one can use these simulations as starting point for the iterative
determination of W (X ).

In case one has a reasonable Ansatz for the histogram of X
as a function of the linear lattice size L, one might increment
L in small steps. A first guess for W (X ) might be obtained
by extrapolating the results obtained for the lattice sizes sim-
ulated before.

Here we did not succeed with such a strategy. Instead, we
proceed without using the knowledge obtained from the simu-
lation of smaller lattice sizes: we started with two simulations
taking W (X ) = 1 for all X . These simulations are started with
configurations that are in the domain of the disordered and the
ordered phase, respectively. For the disordered phase we take

φx,i = rand − 0.5 (54)

for all sites x and components i, where rand is a uniformly
distributed random number in the interval [0,1). In the case of
the ordered phase we take

φx,0 = 
0 + rand − 0.5 (55)

and

φx,i = rand − 0.5 (56)

for i > 0, where 
0 is a rough approximation of the expecta-
tion value of the field in the ordered phase.

For sufficiently large lattice sizes L, the probability that
the simulation switches the phase during the simulation is
virtually vanishing. We compute the histograms of X for these
two simulations. We chose X0 as the position of the maximum
of the histogram of the disordered simulation and X1 as the
position of the maximum of the histogram of the ordered
simulation. Typically, we get reasonable statistics only up to
X0 + ε0 and down to X1 − ε1. In the middle, there is a gap
without any configuration generated. We compute W (X ) up
to X0 + ε0 and and down to X1 − ε1 straightforwardly from
the histogram. The gap between X0 + ε0 and X1 − ε1 is filled
by linear interpolation. We also experimented with guessing
somewhat larger values of W (X ) in the gap to speed up the
convergence. We iterated this step until the gap has closed.
Then we proceeded as above.

We performed the simulations using a hybrid of local
Metropolis, local over-relaxation, and wall-cluster [25] up-
dates. The weight W is integrated in the accept or reject step
of the local algorithms in the straightforward way. In the case
of the wall-cluster algorithm, the cluster is constructed fol-
lowing the same rules as for the plain Boltzmann distribution.
The update of the wall cluster is viewed as a proposal of a
Metropolis step, where the accept or reject step takes into
account the change of W caused by the wall-cluster update:

Pacc = min[1,W (X [{ �φ}′])/W (X [{ �φ}])], (57)

where { �φ}′ is the configuration that results from the wall-
cluster update of { �φ}.

B. Simulations at the first-order transition

Based on our preliminary studies we focused on
simulations for the five pairs of parameters: (λ,μ) =
(1.24,−2.3), (1.675,−1.95), (2.0,−1.85), (3,−2.5), and
(2.333,−1.764). These values were selected such that the cor-
relation length in the high-temperature phase at the transition
temperature is about ξhigh ≈ 2, 6, 12, 12, and 24, respectively.
The smaller ξhigh, the stronger is the first-order transition.

First, for all pairs of parameters, we performed simulations
with the program used in Ref. [6], generating configura-
tions following the Boltzmann distribution. It can be used
as long as the tunneling times between the phases are not
too large. We performed such simulations using the linear
lattice size L = 8 for (λ,μ) = (1.24,−2.3), L = 12, 16, and
24 for (λ,μ) = (1.675,−1.95), L = 12, 16, 20, 24, 32, 40,
and 48 for (λ,μ) = (2,−1.85), L = 12, 16, 20, 24, and 32
for (3,−2.5), and L = 12, 16, 20, 24, 32, 40, 48, and 64
for (λ,μ) = (2.333,−1.764). We extracted a preliminary es-
timate of the transition temperature by requiring that Za/Zp =
1
7 . Larger lattice sizes were simulated by using the multi-
canonical method as discussed above. We started the detailed
study of the transition for (λ,μ) = (1.24,−2.3), where we
simulated the linear lattice sizes L = 8, 12, 16, 24, 28, 32,
and 40.

In our program no parallelization is implemented. We em-
ployed trivial parallelization at a moderate level: In the case
of L = 40 we performed five independent simulations with
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TABLE V. Estimates of the transition temperature βt and the
interface free energy FI , up to a constant, for a range of linear lattice
sizes L at (λ,μ) = (1.24, −2.3). For a discussion see the text.

L βt 2FI + C

8 0.329460(25) 9.12(7)
12 0.329409(9) 16.30(4)
16 0.329405(6) 28.01(5)
24 0.3294116(20) 65.07(6)
28 0.3294096(19) 89.01(8)
32 0.3294099(9) 115.76(6)
40 0.3294108(5) 178.90(10)

ordered and five independent simulations with disordered start
configurations in parallel. In a series of preliminary runs, as
discussed above, we determine the weight function W (X ) for
the multicanonical simulation.

The results given below are based on simulations us-
ing our final estimate of the weight function. Even when
using the multicanonical simulation, autocorrelation times in-
crease rapidly with increasing lattice size. In particular, in
the case of larger lattice sizes one has to find a reasonable
compromise, when discarding configurations for equilibra-
tion. We took tdis ≈ 10τene, where τene is the integrated
autocorrelation time of the energy. We inspected the history of
our simulations by plotting the expectation values of the en-
ergy or the magnetic susceptibility versus the iteration number
of the Markov chain. We find that with this choice of tdis, a few
tunnelings from disorder to order and vice versa are discarded.
Errors are computed by jackknife binning with Nbin = 20. The
simulations were performed using a value of β slightly smaller
than the preliminary estimate of βt available when starting the
simulation, giving more weight to the disordered phase.

For L = 40, we performed for each measurement 30
sweeps with a local update algorithm and 18 wall-cluster
updates. With our final version of W (X ), we performed 5.5 ×
107 measurements after equilibration. These simulations took
about 120 days on a single core of an AMD EPYCTM 7351P
CPU. The integrated autocorrelation time of the energy is
about τene ≈ 80 000 in units of measurements.

First we computed the inverse βt of the transition temper-
ature. To this end, we determined the location Emin of the
minimum of the histogram of the energy density, reweighted
to the Boltzmann distribution for a preliminary estimate of
βt . Then the estimate of βt is computed by requiring that the
total weight of configurations with E � Emin is 2N = 6 times
as large as that for E < Emin. Since the probability density
in the neighborhood of Emin is very small, the estimate of βt

is not very sensitive to the exact choice of Emin. Preliminary
analysis shows that replacing the energy by, for example, the
square of the magnetization leads to virtually identical results.
Our estimates of βt are summarized in Table V. One expects
that βt is converging exponentially fast with increasing lat-
tice size [17,36]. In fact, all estimates obtained for L � 12
are consistent among each other. As final result we take
βt = 0.3 294 108(5), obtained for our largest linear lattice size
L = 40. For L = 8, simulating the Boltzmann distribution and

FIG. 7. We give the histograms of the energy density at (λ, μ) =
(1.24, −2.3) for the linear lattice sizes L = 12, 16, 24, 28, 32, and
40. The data are reweighted to the Boltzmann distribution for β =
0.3 294 108, which is our estimate of the inverse of the transition
temperature.

requiring that Za/Zp = 1
7 we get βt = 0.329 405(9), which is

compatible with our final result.
In Fig. 7 we plot the histograms for the energy density

for the Boltzmann distribution at (λ,μ) = (1.24,−2.3), β =
0.3 294 108, and the lattice sizes we have simulated. His-
tograms at the first-order transition can be understood starting
from an effective description of the configuration space. There
are regions on the lattice that can be assigned to one of the
phases. At the transition, all phases have the same free-energy
density. These regions are separated by interfaces, which are
characterized by their interface tension σ . The weight of these
sets of configurations is given by the free energy of the inter-
faces.

An observable, for example, the energy density, takes a
certain value for each of the phases. There is a characteristic
variance of the observable for each of the phases. The peaks in
the histogram are associated with configurations, where only
one phase is present. To understand the histogram between
the peaks we have to consider configurations, where two
phases, the disordered phase and one of the ordered phases,
are present. One has to consider configurations, which are
predominantly associated with one of the phases, and there is
a droplet of the other phase. Furthermore, on a L3 lattice with
periodic boundary conditions, for large L, the minimum in the
histogram is related with configurations, where the phases are
separated by two flat interfaces with the area L2. The reduced
free energy of a single interface is

FI = σL2 + c, (58)

where the constant c takes into account fluctuations of the
interface. Since FI does not depend on the distance between
the interfaces, the histogram becomes flat at the minimum.
Taking into account the translational invariance we get, up to
a constant prefactor,

z2I (L) = exp[2 ln L − 2FI (L)] (59)
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TABLE VI. Final estimates for the first-order phase transition. In the first column we give the value of the parameters (λ,μ), in the second
column we give the inverse βt of the transition temperature, in the third the interface tension for interfaces between the disordered and one of
the ordered phases. In the fourth column we give the latent heat Q and, finally, in the fifth column the correlation length in the high-temperature
phase. For a discussion see the text.

(λ, μ) βt σ Q ξhigh

(2.333, −1.764) 0.60891779(23) 0.00046(5) 0.04218(15) 24.70(2)
(3, −2.5) 0.58194181(50) 0.1182(1) 12.33(2)
(2, −1.85) 0.57905753(56) 0.0019(1) 0.11681(7) 12.135(6)
(1.675, −1.95) 0.5306093(64) 0.0074(4) 0.3054(5) 6.003(2)
(1.24, −2.3) 0.3294108(5) 0.055(1) 1.2012(10) 1.9833(10)

as weight for the collection of configurations, where two
phases are separated by two flat interfaces. We determine
z2I up to a constant prefactor by the value of the histogram
at its minimum. Our numerical results for 2FI (L) + C =
− ln[z2I (L)] + 2 ln L are summarized in Table V.

In order to determine the interface tension, we take two
lattice sizes L1 and L2:

σ = FI (L2) − FI (L1)

L2
2 − L2

1

. (60)

We arrive at σ = 0.0449(5), 0.0523(3), 0.0579(1), 0.0566(1),
and 0.0548(1) for (L1, L2) = (8, 12), (12, 16), (16, 24),
(24, 32), and (32, 40). The histograms plotted in Fig. 7 show
only a clean plateau value between the peaks for L = 40 and
to a reasonable approximation for L = 32. Therefore, we take
our estimate obtained for (L1, L2) = (32, 40) as final result.

We performed simulations by using the multicanonical
method for weaker first-order phase transitions in a simi-
lar fashion as for (λ,μ) = (1.24,−2.3). The largest lattice
sizes that we have reached are Lmax = 64, 96, 64, and 128
for (λ,μ) = (1.675,−1.95), (2.0,−1.85), (3.0,−2.5), and
(2.333,−1.764), respectively. Our final results for βt and σ

are given in Table VI. Here our largest L/ξhigh are smaller
than for (λ,μ) = (1.24,−2.3). Therefore, systematic errors
computing σ by using Eq. (60) are present. We corrected for
that by taking into account the dependence of the estimate of
σ seen for (λ,μ) = (1.24,−2.3) as a function of L/ξhigh.

1. Correlation length

In order to compute the correlation length in the disordered
phase at the transition temperature, we simulated the model
by using the same program as above in Sec. V. The simu-
lations are started with φx,i = rand − 0.5 for all sites x and
components i. The linear lattice size L is chosen such that
the tunneling time to an ordered phase is very large compared
with the length of the simulation. To this end, we use L ≈
20ξhigh, self-consistently. The correlation length is determined
as discussed above in Sec. V. Our final results are summarized
in Table VI. The errors quoted take the uncertainty of the
inverse transition temperature βt into account.

Computing the correlation length for the ordered phases
turns out to be considerably more difficult. Here, the con-
nected part of the correlation function has to be computed. The
improved estimator proposed for models with Z2 symmetry
[38] can not be applied. Furthermore, the effective correlation
length converges more slowly than in the disordered phase.

Therefore, we computed the correlation length for the ordered
phases only for (λ,μ) = (1.24,−2.3). We get the rough esti-
mate ξlow = 1.6(1).

2. Latent heat

We define the latent heat as

Q = 1

L3
(〈H〉disorder − 〈H〉order ) (61)

taken at the transition temperature βt . For the disordered
phase, the measurements are taken from a subset of the sim-
ulations done for the correlation length discussed above. For
the ordered phases, we performed simulations with the same
lattice sizes as for the ordered phase. The simulations are
started with a configuration generated by using Eqs. (55) and
(56). Our results are given in Table VI.

3. Scaling of the interface tension and the latent heat

As the first-order phase transition becomes weaker, the
interface tension and the latent heat decrease. The combi-
nation σξ 2

high should have a finite limit as the O(3)-invariant
fixed point is approached. In fact, we find σξ 2

high = 0.216(4),
0.267(15), 0.280(15), and 0.28(3) for (λ,μ) = (1.24,−2.3),
(1.675,−1.95), (2.0,−1.85), and (2.333,−1.764), respec-
tively. As our estimate for the scaling limit, we quote σξ 2

high =
0.28(3).

In the case of the latent heat we expect from dimensional
analysis that

Qξ
d−yt

high = Qξ
�ε

high, (62)

where yt is the thermal RG exponent of the Heisenberg univer-
sality class, approaches a finite limit as the Heisenberg fixed
point is approached.

Taking yt = 1.4052(2) [23], we get Qξ
�ε

high = 3.580(4),
5.324(9), 6.256(6), 6.494(18), and 7.017(27) for (λ,μ) =
(1.24,−2.3), (1.675,−1.95), (2.0,−1.85), (3.0,−2.5) and
(2.333,−1.764), respectively. Here the convergence is not
as convincing as for the interface tension. We abstain from
quoting a result for the limit ξhigh → ∞.

VII. SUMMARY AND CONCLUSION

We have studied the three-component φ4 model on the
simple cubic lattice with a cubic perturbation. Field theory
predicts that the RG flow rapidly collapses onto a single
line in coupling space. On this line the RG flow remains
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slow in an extended range and not just in the vicinity of the
fixed points. See, for example, Ref. [8]. Here we corroborate
this picture by using Monte Carlo simulations in connection
with a finite-size scaling analysis. To this end, compared
with Ref. [6], we have extended the study towards stronger
breaking of the O(3) invariance. In a preliminary step, we
identify the line of slow flow in the parameters (λ,μ) of the
reduced Hamiltonian (3). Here we obtain a more accurate
characterization than in Ref. [6]. Next we study the slow
RG flow in the scaling limit. This limit is reached faster for
(λ,μ) on the line of slow flow than for generic choices. In
particular at the fixed points, corrections proportional to L−ω

with ω ≈ 0.8 should be essentially eliminated. Remaining
corrections are proportional to L−ε j with ε j � 2. Note that the
slow RG flow is not studied in terms of the parameters of the
reduced Hamiltonian but by using the dimensionless quantity
UC [Eq. (14)] at criticality that quantifies the violation of the
O(3) symmetry. Numerically we determine the coefficients of
the β function [Eqs. (22), (31), and (39)] for UC . The analysis
of the β function provides us with an accurate estimate of the
difference Y4 − ω2 = 0.000 81(7), where Y4 is the RG expo-
nent of the cubic perturbation at the O(3)-symmetric fixed
point and ω2 the correction exponent at the cubic fixed point.
Note that for ai�2 = 0 [Eq. (39)], Y4 = ω2. For example, in
Refs. [8,39] this approximation of the β function is consid-
ered. Here, analyzing the β function we get Y4 = 0.0141(10).
In Ref. [6], repeating the FSS analysis at the O(3)-symmetric
fixed of Ref. [5] with higher statistics, we arrived at Y4 =
0.0143(9), which is fully consistent. These two approaches
are technically very different, giving us further confidence in
the reliability of the estimates.

In Sec. V, motivated by Ref. [8], we determine an effective
exponent νeff of the correlation length. First we perform a FSS
analysis, which provides estimates of νeff as a function of UC .
Then we analyze the behavior of the correlation length in the
high-temperature phase for two values of (λ,μ) with μ < 0.
The results obtained by these two different approaches are in
reasonable agreement.

In the final part of the study we focus on the first-order
phase transition. For a strong breaking of the O(3) invariance
we clearly confirm the first-order nature of the transition.
Histograms of various observables show a clear double-peak
structure. The separation of the two peaks becomes stronger
with increasing lattice size. We obtain accurate estimates of
the latent heat, the correlation length in the disordered phase
at the transition, and the interface tension of interfaces
between the disordered and one of the ordered phases.
We analyze how these quantities scale with the RG flow.
This allows us to predict the strength of the transition
for parameter values, where the transition is weak and
can therefore not be identified as first-order directly in the
simulations.

The RG flow numerically studied here is universal. Still,
applied directly to experiments, only qualitative and semi-
quantitative conclusion can be drawn. However, simulating
more realistic models of experimental systems, one could de-
termine the same dimensionless quantities as discussed here.
In particular, computing UC would connect quantitatively with
the results obtained here.
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APPENDIX A: QUALITY OF FITS
AND ESTIMATING ERRORS

We perform a standard analysis of our data by using least-
square fits as discussed, for example, in Ref. [40]. Let us
assume we have N uncorrelated data points yi = y(xi ) with a
statistical error σi with a Gaussian distribution. These are fit-
ted by using the Ansatz, or model in the language of statistics,
f (x; p1, . . . , pM ), where p j are the parameters of the Ansatz.
One defines

χ2 =
∑

i

[yi − f (xi; p1, . . . , pM )]2

σ 2
i

. (A1)

In the case of correlations, given by the covariance matrix C,
this generalizes to

χ2 =
∑

i j

[yi − f (xi, p1, . . . , pM )](C−1)i j

× [y j − f (x j, p1, . . . , pM )]. (A2)

For given yi and σi or C, the parameters p j are obtained
by minimizing χ2. To this end, we employ the function
curve_fit() contained in the SCIPY library [41]. The function
curve_fit() acts as a wrapper to functions contained in the
MINPACK library [42]. In selected cases, we checked the out-
come of the fit by varying the initial values of the parameters.
Furthermore, we performed fits both by using the Levenberg-
Marquardt algorithm and the trust region reflective algorithm.
In Sec. IV B, we compute numerically U

∗
C , ω2, and Y4 − ω2,

based on the results for the parameters a0, a1,..., an of the
fit, Eq. (39). In order to obtain the statistical error of these
quantities, we compute the partial derivatives of these quanti-
ties with respect to the statistically independent data yi, which
are UC for different (λ,μ) and L in the present case. To this
end, we repeat the fit N times, where N is the number of
data points. For each of these fits, one of the yi is shifted by
a small amount: ỹi = yi + ε if i = j and ỹi = yi else. Then
∂q/∂y j ≈ (q̃ j − q)/ε. Here q is the estimate of one of the
derived quantities obtained for the original data, while q̃ j is
the result obtained for y j shifted. Then the statistical error σq

is given by

σ 2
q =

N∑
j=1

[
∂q

∂y j

]2

σ 2
j . (A3)

To check the correctness of the implementation, we also com-
puted the statistical error of the parameters a0, a1,..., an this
way, giving results consistent with those provided by the func-
tion curve_fit(). Alternatively, one could compute the partial
derivatives of q with respect to the parameters a0, a1,..., an

and then use the covariance matrix provided by curve_fit() to
compute the statistical error of q.

In order to assess χ2 we compute

p(nDOF, χ
2) = 1

�(nDOF/2)

∫ ∞

χ2/2
t nDOF/2−1 exp(−t )dt, (A4)
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where � is the Euler gamma function and nDOF = N − M
the number of degrees of freedom. In the Numerical Recipes,
Sect. 15 [43] or Ref. [40], this quantity is denoted as goodness
of the fit. The meaning of this quantity is derived for linear
Ansätze (see, for example, Appendix C of Ref. [40]). For
small values of the errors, this should also apply to nonlinear
Ansätze. In the broader context of statistics, the goodness of
the fit is the p value for the null hypothesis that the Ansatz
is correct, without any correction. Assuming that the null
hypothesis is correct, the p value gives the probability that
the data drawn give the value of χ2 we obtain or larger. For
small p values one rejects the null hypothesis. Typically, in
the literature, a fit with p � 0.05 or 0.1 is considered to be not
excluded. In the text we frequently write sloppily that the fit
is acceptable.

As usual, we perform fits by using a number of different
Ansätze, with a varying degree of approximation compared
with the exact form, which is typically only known in cer-
tain limits. In a first step, these fits are evaluated based on
their χ2/DOF and the goodness of the fit obtained from this.
Frequently in the literature a best fit is selected among those
that have an acceptable χ2/DOF and p value. The parameter
values obtained from this best fit are presented as the final
results, including the statistical error estimates obtained by the
fit. Implicitly it is assumed that systematic errors, caused by
the imperfection of the Ansatz, are at most of the same size
as the statistical errors. However, experience shows that this,
depending on the type of the approximation, is often not the
case and the systematic errors are way larger. One can easily
convince oneself of this fact by generating numbers with a
known function, put some Gaussian noise on it, and then fit
these numbers by an Ansatz that is an approximation of the
function we started with.

In order to get a better grasp on systematic errors, our
final results are based on a number nfit of fits using different
Ansätze, with a varying degree of approximation compared
with the exact form. Let us assume that we get aα with
the statistical error σα for the parameter a of the fits α = 1,
2,...,nfit. Then we quote (amax + amin)/2 as our final result,
with the error (amax − amin)/2, where amax = maxα [aα + σα]
and amin = minα [aα − σα]. In the text we write that the final
result covers the estimates obtained by the fits α = 1, 2,...,nfit,
which are taken into account. Obviously, the final error that is
quoted is larger or equal than the statistical error of each of
the fits. The reliability of the error estimate depends mainly
on the choice of the fits that are taken into account. If they all
suffer from the major source of systematic error in the same
way, this error is not reflected in our error estimate.

Finally, let us note that we generated the plots by using the
MATPLOTLIB library [44].

APPENDIX B: ANALYTIC RESULTS
FOR THE β FUNCTION

We discuss the β function truncated at third order:

ũ(x) = a0x + a1x2 + a2x3, (B1)

where for the ease of the notation the coupling is denoted by x.
The indices of ai are adjusted to the powers in u(x) = ũ(x)/x.
The RG fixed points are given by the zeros of ũ(x). The first
zero x = 0 we find trivially. Factoring out this zero, we get

u(x) = a0 + a1x + a2x2. (B2)

Let us first discuss the additional simplification a2 = 0: the
zero of u(x) is given by x = −a0/a1. The RG exponents are
given by the derivatives of the β function at the zeros:

ũ′(x) = a0 + 2a1x + 3a2x2. (B3)

The RG exponent at x = 0 is Y4 = a0, irrespectively from the
order of the truncation. For ai = 0 for i � 2, we get for the
zero x = −a0/a1 the RG exponent

ũ′(−a0/a1) = −ω2 = a0 + 2a1(−a0/a1) = −a0. (B4)

Hence, for the truncation ai = 0 for i � 2 we have Y4 = ω2.
The solutions of Eq. (B2) for a2 �= 0 are

x1/2 =
−a1 ±

√
a2

1 − 4a0a2

2a2
. (B5)

In order to get the solution close to x = −a0/a1 for small a2,
we have to select the + from ±. Expanding the square root for
small a2, we get

x1 =
a1

( − 1 +
√

1 − 4a0a2/a2
1

)
2a2

= −a0/a1 − a2a2
0/a3

1 − · · · . (B6)

The derivative of ũ(x) at this zero is

ũ′(x1) = a0 + 2a1
( − a0/a1 − a2a2

0/a3
1 − · · · )

+ 3a2(a0/a1 + · · · )2

= −a0 − 2a2a2
0/a2

1 + 3a2(a0/a1)2 + · · ·
= −a0 + a2(a0/a1)2 + · · · . (B7)

Hence,

Y0 − ω2 = a2(a0/a1)2 + · · · . (B8)

For the fits 1, 2, 3, and 4 of Sec. IV B, Table II, we
get a2(a0/a1)2 = 0.000 63(4), 0.000 63(2), 0.000 66(1), and
0.000 66(1), respectively. Hence, numerically a2(a0/a1)2 con-
tributes more than 3

4 of the value to Y0 − ω2.
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