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Paramagnon heat capacity and anomalous thermopower in anisotropic magnetic systems:
Understanding interlayer spin correlations in a magnetically disordered phase
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The interplay between entropy transport and charge carriers–paramagnon interaction in the Onsager linear
system has been a subject of debate due to the limited theoretical and experimental understanding of paramagnon
heat capacity. In this study, we investigate this interplay in an anisotropic layered magnetic system using cluster
mean-field theory with spin quantum correlations. By examining spin correlation functions between different
spins with various types of clustering, we derive the spin correlation function as a function of distance and
temperature for the interlayer clusters both below and above the magnetic order phase transition. Our analysis
reveals that paramagnons characterized by pronounced spin correlations among interlayer nearest-neighbor
spins exhibit a nonzero heat capacity, providing valuable insights into the dynamics of entropy transport. The
findings align with experimental observations, lending strong support to the validity of the paramagnon-drag
thermopower concept. This study sheds light on the intricate dynamics and thermodynamic properties of
paramagnons, advancing our understanding of entropy transport in complex systems.
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I. INTRODUCTION

Spin-driven thermoelectrics has emerged as a promising
avenue to enhance the performance of thermoelectric mate-
rials. Traditional approaches primarily focused on electron
and phonon transport properties, but their limitations have
sparked a growing interest in exploring spin-based materials
[1–4]. In particular, the paramagnon-electron drag (PED) ther-
mopower has emerged as a compelling phenomenon, exhibit-
ing continuous enhancement in the paramagnetic phase and
offering the potential for high-performance thermoelectric
devices [5–7].

Paramagnons, arising from thermal fluctuations in the dis-
ordered phase, can exhibit magnonlike behavior when specific
conditions are met [5,6,8–11]. Experimental evidence, in-
cluding nonzero drag thermopower and extended magnon
lifetime, supports the concept [5,6]. The effect has led to
achieving a practical zT>1 at T>800 K in MnTe [6]. Further-
more, the magnon-electron drag phenomenon is linked to the
spin-Seebeck effect in paramagnetic materials [12–14], while
thermal fluctuations enhance zT in CoSb3 superparamagnets
[15]. Ab initio calculations have explored spin correlation
functions in the paramagnetic regime, providing a real-space
perspective [16]. These findings emphasize the potential
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of paramagnon-based processes in enhancing thermoelectric
performance.

Despite the prospects of PED, the underlying origin of
the excess spin-contributed thermopower in paramagnetic
materials remains a subject of debate [5,17]. It has been
hypothesized that paramagnons, resembling magnons to itin-
erant carriers, give rise to paramagnon-drag thermopower due
to their longer lifetime and larger spatial correlation length
compared to free carrier’s characteristic length scales [6].
However, a comprehensive understanding of the nature and
thermodynamic properties of paramagnons is still lacking.
Establishing the paramagnon heat capacity as an essential
component for validating the PED thermopower concept has
been recognized [5,17,18].

The heat capacity, which quantifies the entropy change
with temperature, and the thermopower, which measures the
entropy transported by charge carriers, suggest that param-
agnons could contribute to heat capacity through momentum
transfer, leading to PED thermopower [19,20]. While ex-
perimental observations have shown nonzero magnetic heat
capacities above the phase transition temperatures for various
magnetic materials [6,7,21,22], the role of paramagnons in
contributing to paramagnetic heat capacity has often been
overlooked. Multiple factors, including changes in free energy
associated with magnetic ordering-disordering, spin fluctua-
tions, Schottky contributions, and other second-order phase
changes, can contribute to nonzero magnetic heat capacities
above the transition temperature [22–26]. However, a lack
of theoretical understanding of paramagnon heat capacity
has hindered a comprehensive assessment of their entropy
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contribution. In this study, we aim to bridge this gap by
conducting a detailed theoretical investigation to understand
and quantify the contribution of paramagnons to heat capac-
ity, which can provide insights into the presence of different
entropy carriers in the host materials [22,27–29].

Moreover, it is crucial to clarify the connection between
magnons and paramagnons in the context of this study. While
both magnons and paramagnons represent collective spin
excitations in magnetic materials, they play different roles de-
pending on the material’s magnetic phase. Magnons typically
emerge in the ordered (magnetic) phase and are collective
quantum excitations arising from the alignment of neighbor-
ing atomic spins. They contribute to various thermodynamic
properties of the material in the ordered phase. In contrast,
paramagnons manifest in the paramagnetic phase, which oc-
curs at high temperatures when thermal energy disrupts the
alignment of atomic spins, resulting in an average nonmag-
netic state. Paramagnons represent collective spin fluctuations
that persist in this disordered phase and contribute to the
heat capacity of the material. Understanding this connection
between magnons and paramagnons is essential for unraveling
the intricacies of spin-driven thermoelectricity. We focus on
paramagnons and their behavior in the paramagnetic phase,
particularly how spin correlations among interlayer nearest-
neighbor spins influence the specific heat to gain insights
into the intricate dynamics of paramagnons and enhance our
understanding of entropy transport in complex systems.

To explore the paramagnon heat capacity in disordered
spin clusters, we employ a cluster mean-field (CMF) theory,
which incorporates thermal fluctuations essential for magnon
generation [5–7]. Compared to other techniques like quantum
Monte Carlo simulations, CMF offers distinct advantages,
enabling the examination of short-range orders in different
directions and the determination of specific contributions of
paramagnon types to the specific heat and thermopower above
the critical temperature. In contrast to Monte Carlo simula-
tions, which provide an overall behavior of the specific heat,
CMF provides valuable insights into the role of paramagnons
in the thermodynamic properties of the system.

We compare the CMF theory with other established ap-
proaches commonly used in the study of magnetic materials,
such as mean-field (MF) and spin-wave (SW) theories [20,30].
While SW and MF theories primarily focus on long-range
order parameters and may not fully account for short-range
correlations, CMF theory offer a more comprehensive ap-
proach. CMF theory includes the exact shapes of spin-spin
interactions within clusters, providing a level of detail that
is typically overlooked in SW and MF methods. This in-
clusion of short-range correlations through CMF is crucial
for shedding light on the paramagnon concept, especially at
temperatures above TN. These short-range correlations are a
defining characteristic of paramagnons and play a significant
role in understanding the system’s behavior in the param-
agnetic phase. By considering different types of clusters,
the CMF theory allows us to investigate the influence of
short-range correlations on paramagnon heat capacity and
gain a comprehensive understanding of the spin dynamics
in paramagnon-electron drag phenomena. To validate our
calculations, we compare the derived paramagnon heat ca-
pacity with experimental results obtained from MnTe, a

FIG. 1. (a) A three-dimensional layered spin system with AFM
interlayer interactions J1 and J3, and intralayer FM interaction J2.
Arrows show the spin order in the AFM phase below a Néel temper-
ature. (b) MF sublattice structure of the spin Hamiltonian in every
layer, which respects the symmetry of the lattice. (c), (d) and (e) are
four-, six-, and eight-site clusters used in CMF4, CMF6, and CMF8
theory.

material system known for its relevance in studying the
magnon/paramagnon-drag effect [5,6,31].

II. METHODS

We consider a three-dimensional layered spin-1 system
described by the following Hamiltonian:

H = J1

∑
�, j

�S�, j · �S�+1, j +
∑
�,〈i, j〉

(J2 �S�,i · �S�, j + J3 �S�,i · �S�+1, j ),

(1)
where J1 > 0 is the interlayer nearest-neighbor (NN) antifer-
romagnetic (AFM) interaction, J2 < 0 is the intralayer NN
ferromagnetic (FM) interaction, and J3 > 0 is the diagonal
interlayer AFM interaction [Fig. 1(a)]. Here, the summations
on � run over different layers, and the summations on 〈i, j〉 run
over different NN sites. To compare with experimental data,
we choose MnTe with J1 = 21.5 K, J2 = −0.67 K, and J3 =
2.81 K [5,32]. The larger value of J1 enables us to categorize
the system into two types of layers with different magnetiza-
tions ( �mA and �mB), which we consider in both the MF and the
CMF calculations. Utilizing these theories, we calculate the
staggered magnetization and specific heat by CV = ∂〈H〉/∂T ,
where 〈H〉 is the internal energy and T denotes temperature
[20].

In the MF approximation, the spin-spin interactions are
typically replaced by the average of the individual spin com-
ponents (�Si or �S j). This is represented mathematically as
�Si · �S j = �Si〈�S j〉 + �S j〈�Si〉 − 〈�Si〉〈�S j〉. In our study, we adopt a
general approach and consider different sublattices in each
layer [as shown in Fig. 1(b)]. This allows us to explore a
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wide range of possibilities and investigate the effects of vary-
ing sublattices on the system’s behavior. Therefore, the spin
Hamiltonian in the MF approximation is written as

HMF

N
= 2J1

6∑
j=0

(�S0, j · �m1, j + �S1, j · �m0, j )

+
6∑

i, j=0,i �= j

(
J2

(�S0,i · �m0, j + �S1,i · �m1, j
)

+2J3
(�S0,i · �m1, j + �S1,i · �m0, j

)
)

, (2)

where �m�, j = 〈�S�, j〉MF with � = 0, 1 the MF magnetization
vector in layer � at site j. N is the number of unit cells,
wherein each unit cell consists of two layers with seven spins
denoted by labels ranging from 0 to 6, as shown in Fig. 1(b),
and the summations on i and j run over different sublattices.
The self-consistent solution of Eq. (2) yields the MF magne-
tizations and energy of the system, which, in turn, enables the
calculation of the specific heat.

The MF method neglects spin-spin correlations, leading
to a lack of finite specific heat in disordered regions. Thus,
incorporating spin-spin correlations is crucial for capturing
finite specific heat in disordered regions. The Bethe method,
considering nearest-neighbor interactions, reveals short-range
orders and nonzero specific heat even above the transition
temperature, resembling real physical systems [33]. Further
modifications, such as the Onsager solution, improve con-
sistency with experiments [33,34]. However, applying these
methods to our three-dimensional spin system is challenging.
To account for more correlations, we employ a CMF theory,
treating clusters of multiple sites instead of the single-site
approximation [35–37]. CMF theory effectively incorporates
quantum fluctuations and spin correlations by considering
interactions within the clusters and treating spins outside the
clusters as effective fields [38–40]. Hence, the corresponding
CMF Hamiltonian can be defined as [35–37]

HCMF = ∑
c

(Hc + heff ), (3)

where Hc and heff contain the interactions within and be-
tween the clusters, respectively. Here, the summation on c
runs over different clusters. For the case of a cluster with
four sites, the Hamiltonian, labeled as CMF4, is given by
HCMF4 = ∑

c
(Hc−4 + he f f −4), with

Hc−4 = J1 (�S0.�S2 + �S1 · �S3) + J2 (�S0 · �S1 + �S2 · �S3)

+ J3 (�S0 · �S3 + �S1 · �S2),

he f f −4 = J1 (�S0 · �m2 + �S1 · �m3 + �S2 · �m0 + �S3 · �m1)

+ J2 {�S0 · (2 �m0 + 3 �m1) + �S1 · (2 �m1 + 3 �m0)

+ �S2 · (2 �m2 + 3 �m3) + �S3 · (2 �m3 + 3 �m2)}
+ J3 {�S0 · (4 �m2 + 7 �m3) + �S1 · (4 �m3 + 7 �m2)

+ �S2 · (4 �m0 + 7 �m1) + �S3 · (4 �m1 + 7 �m0)},
where four-site clusters are illustrated in Fig. 1(c). Here, �mi is
the magnetization vector at the ith sublattice. Like the MF, the
self-consistent solution of the CMF Hamiltonian provides the
CMF energy and hence the specific heat.

FIG. 2. Specific heat estimation for the S = 1 spin system us-
ing MF, SW, CMF4, CMF6, and CMF8 methods. Cluster shapes
for CMF4, CMF6, and CMF8 are shown in Fig. 1. CMF8ladder is
the CMF8 results for specific heat with ladder-type configurations
presented in the inset of Fig. 3(b). Calculated data is represented
by symbols, and solid lines serve as visual guides. In the inset, the
specific heat for temperatures above TN is highlighted.

Incorporating the FM J2 interaction, we construct cluster
configurations that consider the influence of J1 and J3 interac-
tions [Figs. 1(c)–1(e)]. The corresponding CMF Hamiltonian
is defined for each configuration. For an n-site cluster with
n = 4, 6, 8, the Hamiltonian, denoted as CMFn, is articu-
lated in Eq. (3), with Hc = Hc−n and heff = he f f −n (see the
Appendix). Thermal fluctuations are accounted for in MF, SW,
and CMF theories, resulting in a reduction of the order param-
eter until the transition temperature TN, where it eventually
vanishes. The CMF theory predicts a lower TN compared to
the MF approximation due to the inclusion of spin correlations
(see the Appendix).

III. RESULTS

The estimated specific heat using the MF approximation,
SW theory, and CMF method is illustrated in Fig. 2. Accord-
ing to the MF approximation, the CV grows up to TN, drops
sharply at TN, and vanishes at higher temperatures. Com-
pared to the other results, the MF method overestimated the
transition temperature. Conversely, the SW method, despite
partially including quantum fluctuations, displays a devia-
tion in the specific heat trend over a significant temperature
range. Although it provides accurate estimates at low tem-
peratures, it overestimates and saturates as the temperature
increases.

At this point, it is important to clarify the transition be-
tween magnons and paramagnons in the context of specific
heat behavior. At low temperatures, the system is primar-
ily governed by long-wavelength spin excitations known as
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magnons, and the linear SW theory excels in capturing their
behavior, especially when Cv is proportional to T 3 (T 3/2)
near the antiferromagnetic (ferromagnetic) ground state [41].
However, as temperatures increase, the system transitions into
the paramagnetic phase (T > TN), characterized by disrupted
long-range magnetic order and the emergence of short-range
correlations known as paramagnons. Unlike SW theory, CMF
theory accurately accounts for these short-range correlations
within clusters, offering a more accurate representation of
thermodynamic properties in the paramagnetic regime. This
distinction underscores the importance of short-range corre-
lations and explains the failure of SW theory in estimating
specific heat across temperature ranges. Our results, detailed
in Fig. 2, consistently reveal deviations between SW and CMF
models even well below TN, highlighting the significance of
thermal fluctuation of magnetization in governing specific
heat at elevated temperatures.

Our specific heat results from the CMF(4,6,8) theory
(Fig. 2) show a similar trend to the MF method up to the
transition temperature. However, unlike the MF approxima-
tion, our CMF theory predicts a finite value for the specific
heat in the disordered paramagnetic phase. Notably, the CMF
theory provides a better estimation of specific heat in both
ordered and disordered phases. Estimating nonzero specific
heat in disordered phases from the correlations of the spins
inside clusters is a successful demonstration of paramagnon
contributions. The results can be an essential argument for the
existence of the PED thermopower.

As depicted in Fig. 2, considering larger cluster sizes to
include more correlations improves the behavior of CV in the
disordered phase, attributed to higher energy fluctuations. Due
to the anisotropic nature of our spin system, similar to the
ordered phase where two layers host two types of magnons
with the same energy dispersion, the disordered phase can
exhibit two types of paramagnons. One type corresponds to
collective excitations of spins within cuboid-shaped clusters,
as illustrated in Fig. 1(e). These paramagnons disperse across
the triangular layers and contribute to the system’s internal
energy, resulting in a nonzero specific heat above the Néel
temperature. The other type corresponds to collective exci-
tations of spins within ladder-shaped clusters, aligned with
the system’s dominant exchange interaction (J1), as shown
in the inset of Fig. 3(b). Considering the influence of these
paramagnons can lead to intriguing outcomes and provide
further insight into the system’s behavior.

The strong spin fluctuations in the system are best ex-
amined by considering vertical clusters, and including more
correlations in the system enhances the observation of the
specific heat behavior above the critical temperature (see
Fig. 2, CMF8ladder). Consequently, incrementally increasing
the cluster sizes and configurations enhances the paramag-
netic specific heat trend towards the transition temperature.

We also estimate the spin correlation functions between
NN and next-nearest-neighbor (NNN) spins along the J1 di-
rection [Fig. 3(a)], obtained by CMF8 with a ladder [Fig. 3(b),
inset] type of clustering (see the Appendix for the exact defini-
tion of this type of clustering). Here, the spin-spin correlation
is defined by

〈�Si · �S j〉c = 〈�Si · �S j〉 − 〈�Si〉〈�S j〉. (4)

FIG. 3. (a) Spin correlation functions between different spins
in the spin-1 system as a function of temperature obtained using
CMF8ladder with various types of clustering, as shown in the inset
(b). The symbols represent the calculated results, while solid lines
serve as visual guides. (b) Spin correlation functions between dif-
ferent spins in the S = 5/2 system such as MnTe, obtained using
CMF4. Due to computational limitations, the CMF(6,8) theories
are not applicable to the spin-5/2 system, and the correlation func-
tion between the spins in the NNN layers are not reported for
the CMF(6,8).

Intriguingly, spin-spin correlations along the J1 direc-
tion involving further neighbors (e.g., 〈�S0 · �S4〉c) prove to
be stronger than those with direct J2 and J3 interactions
(e.g., 〈�S0 · �S1〉c) and 〈�S0 · �S3〉c). These pronounced interlayer
correlations along J1 improve the specific heat trend in the
disordered phase, as evident in the CMF8ladder plot in Fig. 2.
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FIG. 4. The absolute value of the spin correlation function as a
function of distance r for various temperatures in the spin-1 sys-
tem on the MnTe lattice, obtained using the CMF8 approach with
ladder-type clustering. The inset depicts the correlation length (ξ )
versus temperature for the spin-1 system with eight-site clusters and
ladder-type configuration, where the symbols represent the calcu-
lated results and the solid lines represent the fitted results.

Given this high degree of correlation, selecting clusters along
the vertical or J1 direction leads to a pronounced peak,
outperforming other clusters. This observation suggests the
emergence of robust spin excitations, potentially manifesting
as paramagnons with the potential for high PED.

As previously discussed, the inclusion of spin correla-
tions through CMF theory introduces modifications to the
specific heat’s behavior. Notably, fluctuations around the
mean-field solution play a significant role in the free energy
and specific heat of the system. To illustrate, when these
fluctuations exhibit Gaussian correlations, their contribution
to the specific heat (CF) can be described by the following
expression [42]:

CF ∼
∫

d3k(k2 + ξ−2)
−2

, (5)

Here, ξ represents the correlation length. By rescaling k
with ξ−1 and performing this integral, we find that the spe-
cific heat CF is proportional to ξ . Consequently, investigating
how the correlation length varies with temperature becomes a
valuable approach for understanding specific heat behavior.

To investigate the temperature dependence of the correla-
tion length and its critical exponents, we have created plots in
Fig. 4. These plots depict the correlation function against the
distance “r” for various temperatures: 41 and 47 K for temper-
atures below N, and 69 and 77 K for temperatures above TN.
We performed fittings using the following well-established

function [33]:

〈�Si · �Si+r
〉
c = A−

e−2r/ξ

(r/ξ )2 , T < TN

= A+
e−r/ξ

(r/ξ )1/2 , T > TN. (6)

In these equations, the coefficients A± vary depending
on the temperature. The critical exponents of the correlation
length are determined through the fit of the correlation length
with temperature using the following equations [42]:

ξ = B−
1

(1 − T/TN )ν− , T < TN

= B+
1

(T/TN − 1)ν+ , T > TN .

(7)

For the CMF8ladder spin-1 system on the MnTe lattice,
the values of the critical exponents are ν±= 0.23, and
B+/B−= 0.32.

The correlation function plot reveals intriguing features in
its dependence on distance, particularly notable at around 7
and 10 Å. These distinctive increments align with directional
shifts that correspond to the dominant interaction in the sys-
tem, J1. Significantly, these enhancements in correlation occur
when measuring along the direction of J1, underscoring the
influence of this interaction on the system’s correlation be-
havior. As expected, the correlation length plot demonstrates
a divergence near the critical temperature. Furthermore, it is
worth noting that the correlation length exhibits a difference
before and after this critical point. Specifically, prior to reach-
ing the critical temperature, the correlation length is relatively
greater, indicative of the presence of long-range order. In con-
trast, after passing the critical temperature, there is a reduction
in correlation length, suggesting a transition to reduced order
or short-range order in the system.

In the context of AFM materials like MnTe, our results
are applied to examine the spin correlation functions. MnTe,
a spin-5/2 system with a magnetic lattice structure similar
to Fig. 1(a), shows the estimated spin correlation functions
between different sites in the CMF theory, as illustrated in
Fig. 3(b). The substantial AFM interactions in MnTe likely
account for the observed specific heat behavior (Fig. 5), and
they are anticipated to have a significant impact on the PED
thermopower. Notably, a recent study with neutron-scattering
measurements also highlights the presence of remnant AFM
correlations at high temperatures [16] Furthermore, it is evi-
dent that the larger correlations between the interlayer nearest
neighbors in the spin-5/2 system can extend into the disor-
dered phase [Fig. 3(b), green curve].

In magnetic materials, the magnetic specific heat can arise
from spin-based entropy carriers such as magnons, spin fluctu-
ations, and Schottky contributions, in addition to nonmagnetic
specific heat contributions from phonons, electrons, and dila-
tion [5,6,22,28,43]. In MnTe, the dominant contribution to the
magnetic specific heat stems mainly from magnons, exhibit-
ing a distinct behavior with a sharp peak at TN ≈ 307 K and
a gradual decrement up to ∼600 K, contrary to the typical
sharp drop observed in many magnetic materials (Fig. 5)
[5,6,22,28]. In Fig. 5, we observe the temperature dependence
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FIG. 5. Experimental evidence of the existence of paramagnons
in MnTe: magnon/paramagnon lifetime (τm) with the error bar from
inelastic neutron scattering, magnetic specific heat (Cm) extracted
from experimental specific heat, and drag thermopower (αd ) cal-
culated by subtracting the electronic contribution from the total
thermopower (α).

of the drag thermopower, which reveals intriguing insights.
Notably, there is a sharp increase in drag thermopower
near the critical temperature. Even after crossing the critical
temperature threshold, the drag thermopower maintains el-
evated levels. This behavior strongly suggests the influence
of magnons in this temperature range. Additionally, the sus-
tained high values of drag thermopower above the critical
temperature provide compelling evidence for the presence of
paramagnons. Furthermore, considering the magnon lifetime
in the paramagnetic domain as depicted in Fig. 5 adds to the
solid experimental support for the PED theory.

Considering the similarities between the spin-1 and spin-
5/2 systems, we expect the specific heat trend in the spin-5/2
system to be analogous to that observed in the spin-1 sys-
tem (Fig. 2), which corroborates with the experimental data
of MnTe. This suggests the potential significance of para-
magnons in contributing to the thermoelectric properties in
the disordered phase and supports the existence of the PED
thermopower.

With computational limitations in simulating large clusters
for the spin-5/2 system, we acknowledge that the specific heat
estimation for MnTe is yet to be fully explored. However,
based on the trend observed in the specific heat behavior
of the spin-1 system (Fig. 2), it is reasonable to anticipate
similar trends in the specific heat for the spin-5/2 system,
providing valuable insights into the thermodynamic proper-
ties and the role of paramagnons in enhancing thermoelectric
performance.

IV. DISCUSSION AND SUMMARY

The magnitude of the correlation function between spins
decreases as the distance between them increases. Notably,
near the critical temperature (e.g., ∼70 K for the spin-1

system of Fig. 2), the correlation function is larger compared
to temperatures further away from the critical temperature.
The fluctuating absolute value of the correlation function is
attributed to changes in the exchange interaction type within
the cluster as the distance increases. As expected, the correla-
tion length rises, forming a cusp near the critical temperature.
In the case of a FM system, this cusp leads to a diver-
gence. However, for an AFM interaction, the peak magnitude
remains finite. These observations indicate that the most sig-
nificant correlations and spin fluctuations occur at the critical
temperature.

The temperature dependence of the specific heat is a valu-
able characteristic that aids in the analysis of experimental
data. This behavior can also be derived for a two-spin system
at high temperatures by employing a high-temperature expan-
sion method, which reveals a T −2 dependency in the specific
heat. This power-law behavior is not limited to specific spin
values but holds true for various spin systems. Comparing the
specific heat data of spin-5/2 and spin-1 systems demonstrates
that the ratio C5/2/C1 is approximately 20,1 suggesting that
this ratio remains consistent at high temperatures. Thus, the
specific heat of the spin-1 system can serve as an estimate
for that of the spin-5/2 system in the paramagnetic domain,
providing valuable insights for the analysis of experimental
data.

In this context, investigating whether paramagnons ex-
hibit quasiparticle behavior with a power-law specific heat
as a function of temperature is intriguing. As quantized spin-
wave packets arising from thermal fluctuations, paramagnons
are expected to contribute significantly to the specific heat
due to their association with spin correlations. The persistence
of paramagnons at high temperatures suggests quasi-particle-
like behavior, leading to the discussed power-law trend in
specific heat. Understanding the nature of paramagnons and
their connection to the observed power-law behavior requires
further theoretical analyses, offering insights into the system’s
dynamics and the role of short-range order in determining
thermodynamic properties.

By considering correlations among spins within clusters
that possess a sufficient spin-spin correlation length, we can
attribute the paramagnon specific heat to these collective
excitations. Notably, when there is a significant disparity
in the magnetic interactions between nearest neighbors, the
spin-spin correlation becomes more pronounced along the
direction of the dominant magnetic interaction above the tran-
sition temperature. These enhanced correlations give rise to
a nonzero paramagnon specific heat, which in turn supports
the observation of the PED thermopower in the disordered
phase.

In conclusion, the application of CMF theories has signif-
icantly advanced our understanding of correlation functions,
correlation lengths, and magnetic properties in various sys-
tems. Through our investigation of the contributions of
different paramagnon types, which represent collective exci-
tations within distinct clusters, to the specific heat, we have

1For a two-spin system, the high-temperature specific heat can
be approximately fit by the functional form C = 1.25S3.3, where S
represents the spin value.

054418-6



PARAMAGNON HEAT CAPACITY AND ANOMALOUS … PHYSICAL REVIEW B 109, 054418 (2024)

gained profound insights into the thermodynamic behavior
of anisotropic magnetic systems. Notably, our findings em-
phasize the pivotal role of interlayer spin correlations in
shaping the heat capacity above critical temperatures, illumi-
nating the intricate interplay between cluster size, spin-spin
correlation length, and magnetic interactions. These insights
underscore the significance of short-range correlations in elu-
cidating the thermodynamic properties of magnetic materials.
The application of CMF theories has proven indispensable in
comprehending these complex relationships, offering a com-

prehensive perspective on the underlying physics that govern
anisotropic magnetic systems.
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APPENDIX

1. Hamiltonian formulation within CMF theory

In this section, we present the CMF Hamiltonian, employing the CMF theory with clusters containing six and eight sites.
Specifically, for the case of a cluster with six sites, the Hamiltonian, denoted as CMF6, is articulated in Eq. (3), where

Hc = Hc−6 = J1 (�S0 · �S3 + �S1 · �S4 + �S2 · �S5) + J2 {�S0 · �S1 + �S0 · �S2 + �S1 · �S2 + �S3 · �S4 + �S3 · �S5 + �S4 · �S5}

+ J3 {�S0 · �S4 + �S0 · �S5 + �S1 · �S3 + �S1 · �S5 + �S2 · �S3 + �S2 · �S4} (A1)

heff = heff−6 = J1 {�S0 · �m3 + �S1 · �m4 + �S2 · �m5 + �S3 · �m0 + �S4 · �m1 + �S5 · �m2}

+ 2J2 {�S0 · ( �m1 + �m2) + �S1 · ( �m0 + �m2) + �S2 · ( �m0 + �m1)}

+ 2J2 {�S3 · ( �m4 + �m5) + �S4 · ( �m3 + �m5) + �S5 · ( �m3 + �m4)}

+ 5J3 {�S0 · ( �m4 + �m5) + �S1 · ( �m3 + �m5) + �S2 · ( �m3 + �m4)}

+ 5J3 {�S3 · ( �m1 + �m2) + �S4 · ( �m0 + �m2) + �S5 · ( �m0 + �m1)}, (A2)

where six-site clusters are illustrated in Fig. 1(d). Here, �mi is the magnetization vector at the ith sublattice. For eight-site clusters
[see Fig. 1(e)], the different terms of the CMF8 Hamiltonian are given by

Hc−8 = J1 (�S0 · �S4 + �S1 · �S5 + �S2 · �S6 + �S3 · �S7) + J2 {�S0 · �S1 + �S0 · �S3 + �S1 · �S2 + �S1 · �S3 + �S2 · �S3}

+ J2 {�S4 · �S5 + �S4 · �S7 + �S5 · �S6 + �S5 · �S7 + �S6 · �S7} + J3

{ �S0 · �S5 + �S0 · �S7 + �S1 · �S4 + �S1 · �S6

+�S2 · �S5 + �S2 · �S7 + �S3 · �S4 + �S3 · �S6

}
(A3)

heff−8 = J1

{ �S0 · �m4 + �S1 · �m5 + �S2 · �m6 + �S3 · �m7

+�S4 · �m0 + �S5 · �m1 + �S6 · �m2 + �S7 · �m3

}
+ J2

{ �S0 · ( �m1 + 2 �m2 + �m3) + �S1 · ( �m0 + �m2 + �m3)

+�S2 · (2 �m0 + �m1 + �m3) + �S3 · ( �m0 + �m1 + �m2)

}

+ J2

{ �S4 · ( �m5 + 2 �m6 + �m7) + �S5 · ( �m4 + �m6 + �m7)

+�S6 · (2 �m4 + �m5 + �m7) + �S7 · ( �m4 + �m5 + �m6)

}
+ J3

{ �S0 · (3 �m5 + 4 �m6 + 3 �m7) + 3�S1 · ( �m4 + �m6 + �m7)

+�S2 · (4 �m4 + 3 �m5 + 3 �m7) + 3�S3 · ( �m4 + �m5 + �m6)

}

+ J3

{ �S4 · (3 �m1 + 4 �m2 + 3 �m3) + 3�S5 · ( �m0 + �m2 + �m3)

+�S6 · (4 �m0 + 3 �m1 + 3 �m3) + 3�S7 · ( �m0 + �m1 + �m2)

}
. (A4)

2. The definition of a type of clustering approach

Considering that the AFM nearest-neighbor interaction, J1, is a prominent factor in our spin model, employing clusters
oriented along this direction is likely to yield more accurate results. By partitioning the MnTe lattice into clusters of eight sites
along the J1 direction [as depicted in Fig. 3(b), inset], the Hamiltonians Hc and heff can be expressed as follows:

Hc−8 ladder = J1
{�S0 · �S2 + �S1 · �S3 + �S2 · �S4 + �S3 · �S5 + �S4 · �S6 + �S5 · �S7

} + J2
(�S0 · �S1 + �S2 · �S3 + �S4 · �S5 + �S6 · �S7

)
+ J3

{�S0 · �S3 + �S1 · �S2 + �S2 · �S5 + �S3 · �S4 + �S4 · �S7 + �S5 · �S6
}
, (A5)
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heff−8ladder

= J1
(�S0 · �m6 + �S1 · �m7 + �S6 · �m0 + �S7 · �m1

)

+ J2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�S0 · (2 �m0 + 3 �m1) + �S1 · (2 �m1 + 3 �m0)
+�S2 · (2 �m2 + 3 �m3) + �S3 · (2 �m3 + 3 �m2)
+�S4 · (2 �m4 + 3 �m5) + �S5 · (2 �m5 + 3 �m4)
+�S6 · (2 �m6 + 3 �m7) + �S7 · (2 �m7 + 3 �m6)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ J3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�S0 · (2 �m2 + 3 �m3 + 2 �m6 + 4 �m7)

+�S1 · (2 �m3 + 3 �m2 + 2 �m7 + 4 �m6)

+�S2 · (2 �m0 + 3 �m1 + 2 �m4 + 3 �m5)

+�S3 · (2 �m1 + 3 �m0 + 2 �m5 + 3 �m4)

+�S4 · (2 �m2 + 3 �m3 + 2 �m6 + 3 �m7)

+�S5 · (2 �m3 + 3 �m2 + 2 �m7 + 3 �m6)

+�S6 · (2 �m4 + 3 �m5 + 2 �m0 + 4 �m1)

+�S7 · (2 �m5 + 3 �m4 + 2 �m1 + 4 �m0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A6)

3. Staggered magnetization

In the MnTe system, the preeminent interlayer AFM in-
teraction results in the establishment of a robust staggered
magnetization in the ground state, as depicted in Fig. 6 at
zero temperature. As the temperature increases, this staggered
magnetization gradually diminishes until it completely disap-
pears at the Néel temperature. At this critical point, a phase
transition unfolds, marking the shift from the Néel phase to a
paramagnetic phase.

Both the MF and CMF theories capture this behavior in
their predictions. However, it is important to note that the tran-
sition temperature projected by the CMF approach is lower
than that obtained through the MF method. This discrepancy

FIG. 6. MF and CMF4 staggered magnetization for the MnTe
system.

in transition temperature arises from the incorporation of fluc-
tuations in the CMF method, which are not fully considered
in the MF method. These fluctuations introduced by the CMF
theory play a role in more accurate estimation of the transition
temperature.
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