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We theoretically study the topological properties of magnons and the relevant magnon thermal Hall effect
in trimerized Lieb lattice ferromagnets in the presence of next-nearest-neighbor Dzyaloshinskii-Moriya inter-
actions. By calculating the magnon band structures and their Chern numbers with the linear spin-wave theory,
we show that the system can undergo a phase transition between a magnonic topological insulator phase and a
magnonic trivial insulator phase. The main results are presented in the form of topological phase diagrams,
where the Chern numbers or magnon thermal Hall conductivity are shown as a function of the two lattice
trimerization parameters. We find a sharp change of the thermal Hall conductivity across the critical point of
phase transformations associated with topological nontrivial edge states. The behaviors reflect that the existence
of trimerizations breaks the C4 rotational symmetry of the Lieb lattice. Finally, we show that our theoretical
predictions could be experimentally realized in high-temperature cuprate superconductors or organic magnetic
materials.

DOI: 10.1103/PhysRevB.109.054412

I. INTRODUCTION

Over the past decade, the topological band theory has em-
powered us to discover new classes of topological materials
and understand salient characteristics of topological states in
condensed matter physics [1–6]. It is also used to explore new
kinds of exotic particles, e.g., Majorana fermions [7,8], axions
[9,10], spinons [11,12], magnetic monopoles [13–15], frac-
tionally charged vortices [16], etc., which could potentially
be exploited in high-performance electronics, spintronics, and
topological quantum computation [17–20].

On the other hand, the band topology has been extensively
studied in systems consisting of bosonic collective excitations,
e.g., photons [21–23], phonons [24,25], magnetic solitons
[26,27], and magnons [28–31]. A few recent works have
reported that magnons can propagate over a long distance
without missing spin information in magnetic insulators ex-
hibiting both low energy consumption and long coherence
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length, which bears a great potential to realize next-generation
low-dissipation memory devices [32–34]. Different from elec-
trons, magnons are charge-neutral quasiparticles immune to
the Lorentz force due to the external electric field. Mean-
while, the topology of magnons cannot be investigated via
the standard Hall effect under a magnetic-field-driven Lorentz
force. But a transverse thermal current and thermal Hall con-
ductivity are induced by the magnon edge current in the
presence of a thermal gradient—the so-called magnon thermal
Hall effect (THE) [35]. The finite thermal Hall conductivity
could be attributed to an antisymmetric interaction such as the
Dzyaloshinskii-Moriya interaction (DMI) [36,37], which in-
duces nonzero Berry curvatures acting as an effective Lorentz
force [38–41]. More recently, intensive research of topo-
logical magnonics has been performed on various complex
lattices, e.g., pyrochlore [42,43], triangular [44], honeycomb
[45–47], kagome [48–51], and Lieb lattices [52–54].

The two-dimensional Lieb lattice, or the line-centered
square lattice as shown in Fig. 1(a), was first proposed by
Lieb in 1989 when discovering the ferromagnetism on such a
lattice due to the flat bands by the Hubbard model of the itin-
erant electron [55]. Subsequently, various interesting physical
properties of the Lieb lattice have been proposed, e.g., ground-
state ferromagnetism [56,57], topological states [58,59], and
superconductivity and superfluidity [60–62]. However, most
previous works focus on the theoretical models, since the
experimental realization of the Lieb lattice in condensed mat-
ter physics has not yet been achieved. Recently, the Lieb
lattice has been realized in several artificial systems, such as
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FIG. 1. (a) Schematics for the trimerized Lieb lattice ferromag-
net. The black solid lines and the red dashed lines represent the
nearest-neighboring ferromagnetic exchange interactions and next-
nearest-neighbor DMI, respectively. The unit cell is shown as a
dotted green square. a represents the lattice constant. (b) The first
Brillouin zone of the reciprocal lattice.

photonics [63,64], ultracold atoms in optical lattices [65,66],
and surface patterning techniques [67,68].

In this paper, we study the magnon band topology and
the magnon thermal Hall effect in a trimerized Lieb lattice
ferromagnet with the next-nearest-neighbor (NNN) DMI as
illustrated in Fig. 1(a). The unit cell in the green dashed
diamond is formed by three spin sublattices A, B, and C
represented by red, blue, and green circles, respectively.
We show the topological phase diagrams characterized by
the Chern numbers and magnon thermal Hall conductivity
on the trimerization parameter plane. We find a topological
phase transition between a magnonic topological insulator
(mTI) and a magnonic trivial insulator. The phase transition
is accompanied by the change of nontrivial edge states and
can be experimentally detected by the sharp change of the
thermal Hall conductivity. Finally, the candidate materials for
an experimental realization are discussed.

The rest of this paper is organized as follows. In Sec. II
we present details of our theoretical model and derive the
magnonic tight-binding Hamiltonian. Detailed numerical re-
sults are presented in Sec. III, including the topological phase
diagram, magnon band structures, magnonic edge states, ther-
mal Hall conductivity, and material consideration. Finally, we
end the paper with our conclusions in Sec. IV.

II. MODEL AND METHODS

We consider a collinear ferromagnet with localized spins
on a two-dimensional Lieb lattice as schematically shown in
Fig. 1(a), whose spin Hamiltonian is given by

H = −
∑
〈i j〉

Ji jSi · S j − K
∑

i

S2
iz

+
∑
〈i j〉

Di jεi j ẑ · (Si × S j ), (1)

where Si is the vector of spin operators at site i. The first
term describes nearest-neighboring (NN) ferromagnetic ex-
change interactions (Ji j > 0) between sites AB and AC. The
second term represents an easy-axis anisotropy (K > 0) with
the z-axis identified as the easy axis. The last term is the

out-of-plane NNN DMI between sites BC, where Di j is the
DMI strength. εi j corresponds to the magnetic flux, which
depends on the lattice geometry and follows the Moriya
rules [37] with +1/ − 1 for the clockwise/anticlockwise case.
Other high-order terms are neglected in this paper, such as
the dipole-dipole interaction [69,70]. A trimerized Lieb lat-
tice is determined by two trimerization parameters δ1 in A-B
bonds along the x direction and δ2 in A-C bonds along the y
direction, which describe the response of the couplings to the
displacements of sublattices. Here, we expand the ferromag-
netic coupling and DMI following the same methodology in
Refs. [71,72]. Specifically, Ji j and Di j are modulated around
its equilibrium value J and D with different coefficients as
indicated in Fig. 1(a),

Ji = (1 + δi )J,

J ′
i = (1 − δi )J,

D1 =
√

(1 + δ1)2 + (1 + δ2)2D,

D2 =
√

(1 − δ1)2 + (1 + δ2)2D,

D3 =
√

(1 − δ1)2 + (1 − δ2)2D,

D4 =
√

(1 + δ1)2 + (1 − δ2)2D. (2)

J1 (J2) indicates intracell NN ferromagnetic exchange inter-
action between sublattice A and sublattice B (C) inside a
unit cell, as shown in Fig. 1(a). J ′

1 (J ′
2) indicates intercell

NN ferromagnetic exchange interaction between sublattice
A and sublattice B (C) between two NN unit cells. How-
ever, the ideal Lieb lattice has been studied by setting both
δ1 and δ2 equal to zero. In this case, isotropic NN ferro-
magnetic exchange interactions and NNN DMI are given by
Ji j = J and Di j = D, respectively. Note that the simultaneous
changes of ferromagnetic interaction and DMI will preserve
the collinear ferromagnetic ground state, since the DMI is well
below the threshold value for a phase transition of magnetic
configuration.

We now turn to a linear spin-wave theory to obtain the
tight-binding magnon Hamiltonian in the momentum space.
Using the Holstein-Primakoff transformations [73], we ex-
press the spin operators in Eq. (1) in terms of magnon
creation operator b̂†

i and annihilation operator b̂i: S+
i =√

2S − b†bibi, S+
i = b†

i

√
2S − b†bi, and Sz

i = S − b†
i bi, where

we introduce the magnon ladder operators S±
i = Sx

i ± iSy
i .

In the low-temperature limit, the square roots can be ex-
panded in powers of 1/

√
S when considering 2S � 〈ni〉 =

〈b†
i bi〉. After a Fourier transformation, Eq. (1) becomes H =

−S
∑

k �
†
k H (k)�k, where the magnonic tight-binding Hamil-

tonian H is a 3 × 3 matrix in the basis �
†
k = (b†

A, b†
B, b†

C )
given by

H =

⎛
⎜⎝

−m0 γ1 γ2

γ ∗
1 −m0 iμ

γ ∗
2 −iμ∗ −m0

⎞
⎟⎠, (3)

where m0 = 4J + ∑4
n=1 Dn + 2K , γi = Jie−ik·αi + J ′

i e
ik·αi ,

and μ = −D1e−ik·β2 − D3eik·β2 + D2e−ik·β1 + D4eik·β1 . Here
α1 = (1/2, 0)a, α2 = (0, 1/2)a and β1 = (1/2, 1/2)a,
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β2 = (−1/2, 1/2)a are the linking vectors connecting NN
and NNN sites, respectively.

In comparison with electronic systems, the absence of the
Fermi surface in bosonic systems will lead to the ill-defined
magnonic Chern number. However, the magnonic Chern num-
ber for the nth magnonic bulk band can still be defined as the
integration of its Berry curvature �z

nk over the Brillouin zone
(BZ) [Fig. 1(b)] in a similar way,

Cn = 1

2π

∫
BZ

dk2�z
nk, (4)

and the Berry curvature of magnons �z
nk is defined as

�z
nk = −2

∑
m �=n

Im
〈ψnk|∂kx H |ψmk〉〈ψmk|∂ky H |ψnk〉

(εnk − εmk)2
, (5)

where ψnk and εnk are the eigenvectors and eigenvalues of
H (k) for the nth band, respectively. The magnon thermal Hall
conductivity is also related to the Berry curvature and can be
calculated using the following formula [74],

κxy = −k2
BT

h̄

3∑
n=1

∫
BZ

d2k

(2π )2 c2[ρB(εnk)]�z
nk, (6)

where ρB(εnk) = (eεnk/kBT − 1)−1 is the Bose-Einstein dis-
tribution. The weighting function is given by c2 = (1 +
x) ln2 1+x

x − ln2 x − 2Li2(−x), with Li2(x) being the polylog-
arithm function.

To calculate the Chern numbers and thermal Hall con-
ductivity of magnons numerically [cf. Eqs. (4) and (6)], we
calculate the Berry curvature [cf. Eq. (5)] following the al-
gorithm of Fukui et al. [75] with 1000 × 1000 points over
the BZ. In addition, for the sake of simplicity, the tight-
binding magnon Hamiltonian Eq. (3) is normalized to JS.
Meanwhile, energy, temperature, and thermal Hall conductiv-
ity are expressed in the units of JS, kBT/JS, and JS(kB/h̄),
respectively. In the following numerical calculations, unless
otherwise specified, we set K = 0.05J , whereas D, δ1, and δ2

are tunable parameters.

III. RESULTS AND DISCUSSION

The main proposal in this work is to identify different
topological phases by varying the trimerization parameters δ1

and δ2. We first show in Fig. 2(a) a topological phase diagram
on the δ1-δ2 plane, where the two phases are characterized
by sets of Chern numbers (C1,C2,C3) of the lower, middle,
and upper magnon bulk bands, as shown in Fig. 2(c). The
system turns out to be a mTI with Chern numbers (1, 0,−1)
when

√
δ2

1 + δ2
2 < δc and a trivial magnonic insulator with

zero Chern numbers otherwise. The critical value of phase
transition δc as a function of the DMI strength D is depicted
in Fig. 2(b).

We show in Fig. 2(c) the evolution of the magnon band
structures with varying δ when D = 0.1, where we consider
the case that two trimerization parameters are equivalent (δ1 =
δ2 = δ). As the unit cell of the Lieb lattice consists of three
sublattices, it gives three magnon bands after diagonaliza-
tion of the Hamiltonian (3). The magnon bands are plotted
along the -X -M-X - line with high-symmetry points in the

FIG. 2. (a) Topological phase diagram of the trimerized Lieb
lattice for D = 0.1. Each topological phase is characterized by sets of
Chern numbers (C1,C2,C3). (b) The critical value of phase transition
δc as a function of the DMI strength D. (c) The magnon band
structure with different trimerization δ1 = δ2 = δ when D = 0.1.
δ = 0.191 is the critical value of phase transition.

Brillouin zone shown in Fig. 1(b). A band structure in the
ideal Lieb lattice without trimerization δ = 0 has a perfectly
flat magnon band in the middle, which isolates the lower
and upper magnon bands symmetrically [52]. The lower and
upper dispersive magnon bands are almost equally localized
on all three sublattices A, B, and C, while the flat middle
magnon band is a high-degeneracy eigenspace composed of
localized states almost fully localized on the sublattices B
and C [76,77]. Two nontrivial band gaps open between the
three dispersive magnon bands due to the existence of DMI
acting as an effective spin-orbit coupling [58]. Meanwhile, the
lower and upper magnon bands are topologically nontrivial
with Chern numbers C1 = 1 and C3 = −1, respectively, and
the middle flat band is a topologically trivial band with Chern
number C2 = 0. When the trimerization is included (δ �= 0),
the middle magnon band becomes out-of-flatness; meanwhile,
the top of the lower band and the bottom of the upper band
shift to the right (Y point) and left (X point) with increasing
δ, respectively. In addition, there are three different cases:
(a) When 0 � δ < 0.191, the Chern numbers of the bands
from bottom to top are (1, 0,−1) and the magnonic system
stays in a mTI phase. (b) At a critical value of δ = 0.191,
a topological phase transition occurs. (c) When δ > 0.191,
the lower and upper magnon bands become topologically
trivial with Chern numbers C1 = C3 = 0, while the system
reduces to a trivial magnonic insulator. As the trimerization
is increased, the dispersive topologically nontrivial bands
are pushed away from the flat band and they flatten out
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FIG. 3. (a)–(c) The dispersions of the lower magnon band for δ1 = δ2 = δ = 0, 0.1 and 0.25, respectively. (d)–(f) Corresponding Berry
curvatures of the lower magnon band. The dotted red lines denote the edges of the first Brillouin zone.

progressively, which corresponds to the decoupling of the
sublattices B and C from the neighboring sublattices A outside
the unit cell as depicted in Fig. 1(a). Furthermore, we consider
the fully trimerized limit δ = 1 with a small DMI strength
(D 	 J), where the intracell NN ferromagnetic exchange in-
teractions reach a maximum (J1 = J2 = 2J) and the intercell
interactions are turned off (J ′

1 = J ′
2 = 0). Since neighboring

unit cells almost do not “talk” to each other in this case, the
system is reduced to an array of isolated trimers on a square
lattice and the magnon bands split into three flat bands sepa-
rated by two large trivial gaps, such that the energy states are
strongly localized [78]. Thus a large trimerization degenerates
the system into a trivial magnonic insulator from a magnonic
topological insulator.

To better understand the underlying physics of the two
topological magnonic phases, it is instructive to investigate
three representative cases: δ = 0, 0.1, and 0.25. Since the
lower band is always more populated for magnons than the
upper band at low temperatures, we will focus on the lower
band in the following discussion. In Figs. 3(a)–3(c), we plot
the lower magnon bands for δ = 0, 0.1, and 0.25, respec-
tively. However, the upper band can be obtained directly by
a centrosymmetric reflection about the M point on the middle
magnon band as shown in Fig. 2(c). We plot the distribution of
Berry curvature �z

nk associated with the lower magnon band
for δ = 0, 0.1, and 0.25 in Figs. 3(d)–3(f), respectively. The
Berry curvature exhibits higher densities around where the
eigenvalue reaches the peaks. We find a universal translation
of magnon band [Figs. 3(b) and 3(c)] and Berry curvature
[Figs. 3(e) and 3(f)] due to the trimerization. Meanwhile, it

is remarkable that the introduction of trimerization breaks the
C4 rotational symmetry of the Lieb lattice. It should be noted
that the Berry curvatures are positive in the carmine region
(the very bottom of the legend) in Fig. 3(f), which gives a zero
Chern number after integrating in the first Brillouin zone.

According to the nonzero Chern numbers, the universal
bulk-edge correspondence guarantees that a topological non-
trivial band is always accompanied by chiral edge states. To
better visualize the magnonic edge states, we solved the eigen-
value problem of a quasi-one-dimensional Lieb ribbon with
open boundary conditions. In Fig. 4, we present the evolution
of the edge-state spectrum. In an ideal Lieb lattice [Fig. 4(a)],
the middle bulk band is flat and the edge-state spectrum con-
nects the upper and lower bulk bands. The pair of edge states
have uniform slopes vg = ∂ε/∂k (i.e., group velocity) in both
band gaps; in other words, they propagate in the same direc-
tions: the edge state marked by red lines moves from the top
left to the bottom right (vg < 0) and the edge state marked by
blue lines moves from the bottom left to the top right (vg > 0).
Meanwhile, the edge states indicate that the edge magnon
currents at upper and lower boundaries of the nanoribbon have
different motion velocities. The distinct velocities arising due
to the propagation directions are determined by the directions
of DMI vectors which, in turn, determine the signs of the
Berry curvatures. Simultaneously, the magnons must transport
energies from the hot side to the cold side adhering to the sec-
ond law of thermodynamics. In conclusion, our observation
confirms that the magnon currents tend to flow predominantly
along one of the boundaries, dynamically changing with the
direction of the temperature gradient. This behavior vividly
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FIG. 4. Magnon band structure with coupled magnonic edge
states in a quasi-one-dimensional Lieb ribbon with different trimer-
ization δ1 = δ2 = δ: (a) δ = 0. (b) δ = 0.1. (c) δ = 0.25. The black
lines represent the magnon bulk bands. The blue/red lines are the
edge states for the upper/lower edges.

reflects the chirality of the magnon edge states [31]. At a
small trimerization case (δ = 0.1) in Fig. 4(b), only the bulk
bands distort but do not affect the existence of the edge states.
Conversely, at a large trimerization case (δ = 0.25) in
Fig. 4(c), the edge states are all gapped and trivial, as the
Chern numbers of three bulk bands are zero.

Having demonstrated two distinct topological phases for
different trimerization parameters, we next turn to discuss the
topological properties of magnon THE. In Fig. 5(a), we plot
the magnon thermal Hall conductivity κxy (in units of JSkB/h̄)
at temperature 0.5 (in units of kBT/JS) on the δ1-δ2 plane,
which shows the same phase boundaries as Fig. 2(a). Overall,
κxy decreases with an increasing

√
δ2

1 + δ2
2 . Even though the

magnon bands have zero Chern numbers and the edge states
become topologically trivial as a trivial magnonic insulator,
κxy does not vanish due to the bosonic statistics [c2 function
in Eq. (6)] that nonuniformly weights the Berry curvature.
Furthermore, we plot κxy as a function of δ at four different
temperatures in Fig. 5(b). It shows that κxy undergoes a sharp

decrease across the critical point of phase transformations,
which is more striking at higher temperatures due to the en-
hancement of magnon density. This abrupt change of κxy is
attributed to the vanishing of nontrivial edge states when the
system enters a trivial magnonic insulator phase from a mTI
phase, as the edge states provide the predominant contribution
to the thermal Hall conductivity. In addition, this saltation of
the thermal Hall conductivity can also be used to identify the
topological phase transition. We also find that this tendency,
the decrease of κxy with increasing δ, is independent of the
temperature. Finally, plots of the thermal Hall conductivity κxy

against the temperature for various trimerization parameters
δ are depicted in Fig. 5(c). As the temperature increases,
κxy shows a monotonically rising behavior with increasing
temperatures. Due to the low magnon current density near
absolute zero temperature, the thermal Hall conductivity is
expected to be close to zero [74].

Thus far, we have shown a tunable topological magnon
excitation in trimerized Lieb lattice ferromagnets. However,
the results presented above do not include the magnon-
magnon interactions, as we truncate the bosonic Hamiltonian
to quadratic order within the linear spin-wave theory as
mentioned in Sec. II. Although noninteracting magnons are
considered here, it is straightforward to include the magnon-
magnon interactions based on our formulation to consider
other richer physics [79], since the magnon Hamiltonian can
be obtained within the Schwinger-boson representation of
spin operators by using self-consistent mean-field theory [80].
Meanwhile the thermal Hall conductivities obtained from both
types of representations are approximately identical, whereas
our results should be valid provided that the temperature is
lower than the Curie temperature.

Before concluding, we shall briefly discuss the candidate
materials for experimental realizations of our theoretical pre-
dictions. In recent years, theoretical studies on the Hubbard
models of strongly correlated quantum magnetism in the
Lieb lattice have been performed [81–84], which propose
that the most prominent materials are weakly coupled CuO2

planes in well-known high-temperature cuprate superconduc-
tors such as YBa2Cu3O7, La2xSrxCuO4, or Bi2Sr2CaCu2O8

[85–88]. On the other hand, ferromagnetism in organic

FIG. 5. (a) Thermal Hall conductivity κxy as a function of δ1 and δ2 at temperature 0.5 for D = 0.1. (b) κxy as a function of δ at different
temperatures. The critical point is shown as a vertical dashed line. (c) Thermal Hall conductivity as a function of temperature for different δ.
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materials has been a stirring research field for both fun-
damental interests and practical applications [89,90]. Based
on density functional theory calculation and tight-binding
modeling, it has been reported that the Lieb lattice ferro-
magnet could be experimentally realized in the framework
of covalent-organic compounds [91,92]. Recently, the real-
ization of two-dimensional magnets in designed structures
based on superatomic lattices of zirconium dichloride disks
have been demonstrated by using first-principles calculations,
including ferromagnetic coloring triangles, antiferromagnetic
honeycombs, and ferromagnetic kagome lattices [93]. Mean-
while the NNN DMI may exist on the interface of a layered
heterostructure composed of these candidate materials and
heavy metals [94]. In addition, since the interactions are sus-
ceptible to the distances between atoms, the trimerization on
the Lieb lattice could be realized from the lattice distortions
induced by applying external mechanical strain or pressure
[95–97]. However, more detailed first-principles calculations
and experiments are highly desired to investigate the mTI in
the future.

IV. CONCLUSION

In conclusion, we have investigated the magnon band
topology and thermal Hall effect in the two-dimensional
Lieb lattice ferromagnets with DMI. We have theoretically

demonstrated that the topological phase of the system can be
tuned by two lattice trimerization parameters, while the C4

rotational symmetry of the Lieb lattice is broken. We also
show that the system can undergo a phase transition between
a magnonic topological insulator and a magnonic trivial insu-
lator with the change of nontrivial edge states. Furthermore, a
sharp change of the thermal Hall conductivity across the phase
boundaries was found, which provides a solid signature for
experimental detection of the phase transition. In this regard,
we hope that our studies could open exciting perspectives for
experimentalists and be applied in future magnonic devices.
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