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We suggest an explanation based on the Blume-Capel model of why some layered compounds of the
iron-intercalated transition metal dichalcogenides TaS2(Se2) exhibit spin-glass behavior, while another group
of this family demonstrates low-temperature paramagnetism. In these materials, the doped Fe atoms either
substitute the Ta atoms with losing their magnetic moments or sit between the TaS2(Se2) layers keeping their
spin states. The Blume-Capel model allows us to introduce a chemical potential to control a balance of the
intercalated elements of both types. The Ghatak-Sherrington theory of spin-glass behavior of this model predicts
an existence of a tricritical point that means that there is a concentration threshold of Fe ions retaining their
magnetic moments, above which spin-glass ordering occurs. Below the threshold, Fe ions behave as independent
paramagnetic centers. We build temperature dependencies of magnetic susceptibility and field dependencies of
magnetization to highlight specific features of the model related with a variable content of Fe ions in the high-spin
state. A specific crystal structure of the layered transition metal dichalcogenides gives an opportunity to increase
the concentration of ions with nonzero magnetic moments by co-intercalating non-Kramers 3d ions into the van
der Waals gaps. This process may trigger spin-glass ordering in the initially paramagnetic Fe-doped TaS2(Se2)
polytype complexes.
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I. INTRODUCTION

Synthesis, optical, electrical, and magnetic properties of
three-dimensional (3D) layered transition metal dichalco-
genides have been extensively studied for several decades
[1,2]. The development of modern synthetic methods and
experimental techniques makes it possible to study and use the
monolayers of these compounds [3,4]. Recent achievements
in this field have restarted the interest in intercalation as a
powerful and effective method of doping two-dimensional
materials starkly modifying their physical properties [5].

The 3d transition metal dichalcogenides T X 2 consist
of the transition metal (T) elements which are sandwiched
between two layers of chalcogen atoms (X = S, Se, or Te).
The covalent bonding within the T X 2 layers is strong, while
the bonding between the layers is ensured by rather weak
van der Waals (vdW) interaction between the chalcogen
atoms [6]. The specific crystal structures of these materials
arise from both the local environment of the T ions within
T X 2 (trigonal-prismatic or octahedral coordination) and the
different ways of stacking the T X 2 sandwiches [7]. Insertion
of foreign species (organic and organometallic molecules,
alkali and alkali earth metals, 3d transition metals) into
the vdW gap opens the possibility to obtain intercalated
complexes, whose properties may differ significantly from
those of the parent compounds [8].

The first-row transition metal intercalates MxT X 2 (M =
V, Cr, Mn, Fe, Co, Ni) are of particular interest because, at
certain concentrations (mostly, at x � 0.20), localized mo-
ments present on the ordered superlattices of 3d intercalate
ions may show a variety of types of magnetic ordering [9,10].
However, at small concentrations of the 3d ions, many of the

three-dimensional dichalcogenides of transition metals exhibit
a spin-glass or cluster-glass behavior [11–15].

The iron-intercalated TiS2 and TiSe2 are examples of
MxT X 2 materials, in which spin-glass effects are manifested
fairly clearly [16–21]. The spin-glass behavior is attributed to
the presence of disordered interstitial Fe2+ ions coupled via an
oscillatory RKKY exchange mechanism. The increase of the
Fe concentrations gives rise to a plethora of different kinds of
long-range magnetic order [22–24].

In contrast to titanium complexes, where intercalation oc-
curs due to insertion of Fe ions into the vdW gap only, the
situation is not so unambiguous for TaS2(Se2) [25–30], in
which the Fe ions may be randomly distributed either on Ta
sites or between the TaS2(Se2) layers (Fig. 1). In particu-
lar, a spin-glass behavior was revealed in some polytypes,
namely, 2H -FexTaSe2 (although this is disputed in Ref. [26])
and 4Hb-FexTaS2; however, their counterparts, 2H -FexTaS2
and 4Hb-FexTaSe2, do not show local-moment formation
[27]. The difference may be related to (i) different orbital
states of conduction electrons, 3d in Ti atoms and 5d in Ta
atoms, which mediate RKKY interaction between the local
moments of Fe2+ ions [31]; (ii) the competition between
the crystal-field splitting of the 3d states of Fe atoms and
their intra-atomic exchange coupling [9] that governs local-
moment formation. Obviously, the appearance of a spin-glass
state depends on the local crystal-field interaction which dic-
tates whether the intercalated iron atoms lose or retain their
magnetic moments.

Traditionally, spin-glass phenomena in transition-metal
dichalcogenides are explained in terms of theories with a
fixed number of doped intercalant elements. However, this
interpretation begs the question of why those parts of Fe ions,
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FIG. 1. Types of Fe intercalation into the TaX2 (X = S, Se)
layered system: (a) insertion; (b) substitution.

which are inserted between the TaS2(Se2) layers in nonmag-
netic materials and retain their magnetic moments, do not
form their own spin-glass order, but, instead, behave as a
set of independent impurities, whose susceptibility follows a
Curie law. More generally, what is a reason behind separa-
tion into nonmagnetic and spin-glass systems in the Fe-doped
TaS2(Se2) polytype family?

In our study, we address these issues within the framework
of the Blume-Capel (BC) model, which has been actively
treated in the mean-field approximation in the 1960s [32,33].
Its generalization for spin glasses was first given by Ghatak
and Sherrington (GS) [34]. We suggest interpreting a term of
the BC-model Hamiltonian, which was attributed to crystal-
field splitting in the GS theory, to the action of a chemical
potential, which governs a balance of the intercalated Fe ions
with or without magnetic moment. This approach is close to
that of the Blume-Emery-Griffiths model proposed to describe
phase separation in liquid He3 − He4 mixtures [35].

The characteristic feature of the BC model is the occur-
rence of the first-order phase transition. In the GS theory, it is
manifest as a tricritical point, in which a line of second-order
spin-glass transitions breaks when crystal-field splitting
exceeds a threshold value and “low-temperature paramag-
netism” (singlet state) arises. In our case, it means that there is
a threshold in the content of the intercalated Fe ions retaining
their moments, above which spin-glass ordering is favored.

This might explain the experimentally observed division of
the TaS2(Se2) complexes into nonmagnetic with embedded
paramagnetic impurities and spin-glass systems.

In our analysis we introduce a random site-dependent
chemical potential with a Gaussian distribution whose mean
may be interpreted as a chemical potential regulating the
balance between those Fe ions that lose their magnetic mo-
ments and those that retain them. The width of the distribution
takes into account nonstoichiometric effects, which have an
influence on the crystal-field splitting in Fe2+ ions located
at different crystallographic positions. We demonstrate that
increase of the width diminishes the concentration threshold
of Fe ions in the high-spin state, at which spin-glass behavior
becomes possible. As well, we discuss a way to shift the
distribution center by adding the non-Kramers 3d ions (for
example, Cr3+, Mn2+, Co2+) into the vdW gaps. Their co-
intercalation may trigger a spin-glass behavior in the initially
nonmagnetic Fe-doped TaS2(Se2) compounds that would pro-
vide evidence of validity of the BC model for the family of
tantalum disulphide (diselenide) polytype complexes.

The paper is organized as follows. In Sec. II, we give key
facts about the BC spin-glass model treated in the replica-
symmetric (RS) approximation, about stability of the RS
solutions, and appropriate phase diagrams of spin-glass be-
havior. We discuss an influence of the random Weiss fields
on the spin-glass ordering in the same section. Temperature
dependence of magnetic susceptibility and field dependence
of magnetization curves are given in Sec. III. As well, consid-
eration of the co-intercalation effects is reported here. Finally,
our summary and conclusions are presented in Sec. IV.

II. THE MODEL

A. Replica-symmetric solutions

The Blume-Capel model of the randomly distributed Fe
ions in the presence of an external magnetic field is defined
by the Hamiltonian

H = −
∑
(i j)

Ji jSiS j −
∑

i

hiSi −
∑

i

�iS
2
i , (1)

where Si = 0 stands for the ions losing their magnetic mo-
ments in the low-spin state, and Si = ±1 corresponds to the
ions retaining their moments in the high-spin state. Here,
i = 1, 2, . . . , N and the first sum runs over all pairs of spins.
The on-site potential �i dictates whether the low-spin state
lies lower in energy than the high-spin state (�i < 0), or vice
versa (�i > 0).

The couplings Ji j , acting between all pairs, the random
fields hi, and the on-site potentials �i are considered as
quenched random variables with Gaussian probability distri-
butions

P
(
Ji j

) =
√

N

2πJ2
exp

[
− N

2J2

(
Ji j − J0

N

)2
]
, (2)

P(hi ) = 1√
2πσ 2

h

exp

[
− 1

2σ 2
h

(hi − h0)2

]
, (3)

P(�i ) = 1√
2πσ 2

�

exp

[
− 1

2σ 2
�

(�i − �0)2

]
. (4)
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The shift J0 of the exchange distribution with the standard
deviation J/

√
N may be due to an emergence of a prevailing

distance between the intercalated Fe ions. The mean �0 plays
the role of a chemical potential, which governs a number
of those ions, which retain their magnetic moments in posi-
tions between the TaS2(Se2) layers. The width σ� comprises
nonstoichiometric effects, which have an influence on the
crystal-field splitting in Fe2+ ions located at different crys-
tallographic positions. The appearance of random magnetic
fields hi may be attributed to the possibility of configuring
nearest-neighbor clusters of the doped ions. Obviously, in the
absence of the external magnetic field h0, the random fields
are centered around zero with the variance σ 2

h .
The free energy of the system for a given realization of the

disorder is averaged by means of these distributions,

[F ({Ji j}, {hi}, {�i})]J,h,�

=
∫ ∏

(i j)

[dJi jP(Ji j )]
∫ ∏

i

[dhiP(hi )]

×
∫ ∏

i

[d�iP(�i )]F ({Ji j}, {hi}, {�i}), (5)

where F = −(1/β ) ln Z on the right-hand side of this equa-
tion, and Z is the partition function of the model.

Using the replica trick, the free energy per spin may be
presented as

f = − lim
N→∞

lim
n→0

1
nNβ

([Zn]J,h,� − 1). (6)

In this way, we have for the partition function of a repli-
cated system after performing the average over Ji j , hi and �i,

[Zn]J,h,� =
∑
{Sa

i }
exp

⎡
⎣βJ0

N

∑
(i j)

∑
a

Sa
i Sa

j

+β2J2

2N

∑
(i j)

(∑
a

Sa
i Sa

j

)2

+ βh0

∑
ia

Sa
i

+β�0

∑
ia

(
Sa

i

)2 + β2σ 2
h

2

∑
i

(∑
a

Sa
i

)2

+β2σ 2
�

2

∑
i

(∑
a

(
Sa

i

)2

)2
⎤
⎦, (7)

where a is a replica index (a = 1, . . . , n).
Using the Hubbard-Stratonovich transformations to lin-

earize the quadratic terms in (7), we obtain (see Supplemental
Material [36])

[Zn]J,h,� =
∫ (∏

a

dma

) ∫ ⎛
⎝∏

(ab)

dqab

⎞
⎠ ∫ (∏

a

dμa

)

× exp [L({ma}, {qab}, {μa})]. (8)

Here, the effective Lagrangian is given by

L({ma}, {qab}, {μa})

= −NβJ0

2

∑
a

m2
a − Nβ2J2

2

∑
(ab)

q2
ab − Nβ2J2

4

∑
a

μ2
a

+ N ln

[ ∑
{Sa}

exp [Heff({Sa})]

]
, (9)

where a set of auxiliary variables ma, qab, and μa is intro-
duced. The indices a, b are replica labels and

∑
(ab) denotes a

sum over distinct pairs of replicas.
In the effective Hamiltonian of replica interactions

Heff({Sa}) =
∑

a

F a
S Sa +

∑
(ab)

F ab
Q SaSb

+
∑

a

F a
N (Sa)2 +

∑
(ab)

F ab
Q2 (SaSb)2 (10)

the coupling constants and fields are defined as

F a
S = β(J0ma + h0), (11)

F ab
Q = β2

(
J2qab + σ 2

h

)
, (12)

F ab
Q2 = β2

(
σ 2

� − J2

2N

)
, (13)

F a
N = β

(
�0 − J0

2N
+ βJ2

2
μa + βσ 2

h

2
− βJ2

4N
+ βσ 2

�

2

)
.

(14)

Using the saddle point method for L, it is straightforward
to verify that

ma = 〈Sa〉, qab = 〈SaSb〉, μa = 〈(Sa)2〉. (15)

To get analytical expressions in the n → 0 limit for these
thermal averages with respect to the effective Hamiltonian
Heff, the replica-symmetric (RS) ansatz is used,

ma = m, qab = q(1 − δab), μa = μ. (16)

Then, the single-site normalized weight

PS = exp [Heff({Sa})]

Tr{exp [Heff({Sa})]} (17)

may be derived to give equations for the relevant order
parameters, namely, magnetization m, spin glass q, and con-
centration μ of ions retaining their magnetic moments (see
Supplemental Material [36])

m =
∫

z

∫
w

2 sinh [βHS (z)]

exp [−βH�(ω)] + 2 cosh [βHS (z)]
, (18)

q =
∫

z

∫
w

4 sinh2 [βHS (z)]

{exp [−βH�(ω)] + 2 cosh [βHS (z)]}2 , (19)

μ =
∫

z

∫
w

2 cosh [βHS (z)]

exp [−βH�(ω)] + 2 cosh [βHS (z)]
. (20)
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FIG. 2. Phase diagram as a function of temperature and the
parameter �0. The boundary of instability is shown by the solid
lines in the replicon sector, and by the broken lines in the
anomalous/longitudinal sector. The cases of the ratio σ�/J are taken
as (1) 0.0; (2) 0.1; (3) 0.2; (4) 0.3; (5) 0.4; and (6) 0.5.

Here, the shorthand notation is used for integration over the
dummy variables z and w∫ ∞

−∞
Dz

∫ ∞

−∞
Dw =

∫
z

∫
w

,

where

Dz ≡ dz√
2π

exp

(
− z2

2

)

and a similar expression for ω denotes the measures of inte-
gration.

For convenience, the effective fields are introduced here:

HS (z) = h0 + J0m + zJ

√
q + σ 2

h

J2
, (21)

H�(ω) = �0 + βJ2

2
(μ − q) + ωσ�. (22)

The equations of the Sherrington-Kirkpatrick (SK) model
[37] for m and q are recovered when sending �0 → +∞
and exp[−βH�(ω)] → 0. In this limit, all intercalated ions
are in the high-spin state, and μ is identically 1. In the limit
σ� = 0, the system (18)–(20) coincides with that of the spin-
glass Blume-Emery-Griffiths model (see Eqs. (19)–(21) in
Ref. [38]).

B. Stability analysis of RS solutions

Spontaneous fluctuations around replica-symmetric solu-
tions may destroy them. According to the Almeida-Thouless
criterion (AT), the RS solution remains stable against fluc-
tuations of the order parameters until all eigenvalues of the
Hessian matrix associated with the quadratic Lagrangian of
the fluctuations are positive [39]. A detailed calculation of
these eigenvalues by means of the replica Fourier transform
(RFT) [40,41] and their classification are relegated to the
Supplemental Material. The analysis shows the fluctuation
space is divided into three sectors, which are identified as the
replicon (R), the anomalous (A), and the longitudinal (L).

The instability in the R sector occurs along the AT line
given by the condition

t2 = 4
∫

z

∫
w

{exp [−βH�(ω)] cosh [βHS (z)] + 2}2

{exp [−βH�(ω)] + 2 cosh [βHS (z)]}4 , (23)

where t = T/J .
The A and the L sectors yield the same second stability

line,[
t − J0

J
(μ − q)

]
[2t2 − μ + Kμμ] = J0

J
(Kmμ − m)2, (24)

with

Kμμ =
∫

z

∫
w

4 cosh2 [βHS (z)]

{exp [−βH�(ω)] + 2 cosh [βHS (z)]}2 ,

Kmμ =
∫

z

∫
w

4 sinh [βHS (z)] cosh [βHS (z)]

{exp [−βH�(ω)] + 2 cosh [βHS (z)]}2 .

When J0 = 0, the second stability condition (24) is reduced to

2t2 = μ − Kμμ. (25)

Both stability conditions (23) and (24) may be used to
determine the effect of the chemical potential �0 and the
possibility of singlet ground state paramagnetism, as has been
suggested by Ghatak and Sherrington (GS) [34].

In the case of the uniform �0, i.e., when σ� = 0, the sta-
bility boundary of the paramagnetic phase against fluctuations
in the R sector (23) can be recast in the equivalent form [42]

α = −1

2
+ t ln

[
t

2(1 − t )

]
, t � 1

3
. (26)

Here, α = �0/J .
The line of stability against fluctuations in the A and the L

sectors can be derived from (25) and takes the form

α = − 1

4t
(1 −

√
1 − 8t2) + 2t ln

[
1 − √

1 − 8t2

4t

]
(27)

with t � 1/3. The intersection of the two curves (26) and
(27) gives the GS tricritical point tc = 1/3 and αc = −1/2 −
(2/3) ln 2 ≈ −0.962. Below αc, i.e., at �0 < αcJ , only the
singlet paramagnetic phase is possible.

Nonzero widths σ� shift the tricritical point to the region of
lower �0 values (Fig. 2), where the boundaries of instability
of the RS solutions against replicon fluctuations coincide with
the line of second-order phase transition points as given by
Eqs. (10) and (11). Remarkably, the instability lines of the
replicon and anomalous/longitudinal sectors cease to inter-
sect at σ�/J � 0.33. This is in line with the suggestion that the
SK ansatz is incapable of locating first-order transition points
in spin glasses [42], and their analysis may be done in the full
replica symmetry breaking scheme [38,43].

For practical purposes, the dependence of interest is the
spin freezing temperature Tf on the average concentration μ

of Fe ions retaining their magnetic moments (Fig. 3). It can be
obtained from the line separating spin-glass and paramagnetic
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FIG. 3. The zero-field critical frontier Tf /J separating the spin-
glass and the singlet paramagnetic phases at J0 = 0 as a function
of the average concentration μ of intercalated ions retaining their
magnetic moments. The cases of σ�/J are taken: (1) 0.0; (2) 0.3; (3)
0.5. The black dots mark tricritical points.

phases by the softening to zero of the spin-glass parameter q,
which results in a pair of the coupled equations

(
Tf

J

)2

=
∫

w

4

{exp[−β f H�(ω)] + 2}2
, (28)

μ =
∫

w

2

{exp[−β f H�(ω)] + 2} (29)

with H�(ω) = �0 + 1
2β f J2μ + ωσ� and β f = 1/Tf . Here,

�0 is treated as a parameter. It can be seen from Fig. 3
that the singlet paramagnetic phase turns out to be stable at
small concentrations and Tf scales linearly with μ if the latter
exceeds a threshold corresponding to the tricritical point. An
increase of σ� just shifts the threshold in the direction of small
μ values. The dependence Tf (μ) demonstrates clearly that the
appearance of spin-glass behavior depends crucially on the
content of Fe ions in the high-spin state.

FIG. 4. Plots of the order parameters (the spin glass q, the magnetization μ, and the concentration of magnetically active ions μ) in the
absence of random Gaussian fields (σh = 0): (a)–(c) �0/J = 10.0; (d)–(f) �0/J = −0.3; (g)–(i) �0/J = −0.9. Everywhere, σ� = 0.5 is
taken.
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FIG. 5. The zero-field (h0 = 0) phase diagrams in the absence
of random Gaussian fields (σh = 0): (a) �0/J = 10.0, σ� = 0.5;
(b) �0/J = −0.3, σ� = 0.5. The colors of phases: violet (SG), blue
(PM), and green (FM).

C. (J0/J, T/J)-phase diagrams

A possible appearance of spin-glass ordering at higher
concentrations necessitates considering in detail the case of
nonzero J0 when a prevailing distance between the Fe ions
arises. Direct calculation of the order parameters, given by
Eqs. (18)–(20), provides evidence that no magnetization m
occurs for small J0 values (Fig. 4). This means that the stabil-
ity relation (26), which determines a position of the tricritical
point on the phase diagram, holds. Consequently, we may ex-
amine magnetic properties for those �0, which remain higher
than that of the tricritical point.

The (J0/J , T/J)-phase diagrams in the absence of any
random fields (h0 = 0, σh = 0) are plotted in Fig. 5. It
may be noted that these phase diagrams are similar to
that of the SK model. The results indicate the presence of
three phases, namely, the spin-glass SG (m = 0, q 	= 0), the

FIG. 6. The phase diagram with the stability line. The PM phase
is stable, the SG is entirely unstable, while the FM is only stable
over the AT line (dashed). The cases �0/J = 10.0 (blue lines) and
�0/J = −0.3 (red lines) are taken. Another parameters are h0 = 0,
σh = 0, and σ� = 0.

ferromagnetic FM (m 	= 0, q 	= 0), and the paramagnetic PM
(m = 0, q = 0). The boundary between the SG and PM phases
is given by Eqs. (28) and (29). The FM and PM phases are
separated by the line Tc = μJ0, where μ may be found from
(29) as well. At last, the FM → SG transition is determined by
the line Tm = (μ − q)J0. The order parameters are calculated
from Eqs. (19) and (20) with HS (z) = zJ

√
q. Decreasing of

�0 is accompanied by gradual suppression of the magneti-
cally ordered phases.

Numerical evaluation of the stability line (23) on the (J0/J ,
T/J)-phase diagram is shown in Fig. 6. As expected, the FM
state is unstable at very low temperatures, even at J0 > J ,
unlike the PM phase, which is always stable. Note that in the
limit �0 → +∞ the results of the SK model are recovered.
However, when �0 decreases and becomes negative, the in-
stability region tends to be smaller.

Remarkably, the temperature behavior of the concentra-
tion μ is drastically modified as �0 decreases, whereas the
corresponding evolution of the order parameters q and m
demonstrates no qualitative changes [see Fig. 4, panels 4(a),
4(d), 4(g) and Fig. 4, panels 4(b), 4(e), 4(h), respectively]. At
large positive �0 values, μ, being close to 1, varies faintly
regardless of the phase [Fig. 4(c)]. Further decrease of �0

gives rise to the noticeable difference between the concentra-
tion of magnetic ions in the SG phase and that of the FM phase
[Fig. 4(f)]. When �0 approaches a value of the tricritical point
of the first-order transition to the singlet phase, μ increases
in the SG phase with increasing temperature due to thermal
activation of the states S = ±1 [Fig. 4(h)]. In contrast, μ

varies with T to a much lesser extent in the FM phase.

D. Effect of random fields

The SK model in the presence of a Gaussian-distributed
random magnetic field of mean h0 and width σh has been
discussed in Ref. [44]. Our analysis is restricted to the case
where h0 = 0, but σh is finite. It shows that whenever �0

values prevent the transition to the singlet paramagnetic phase
the (J0/J, T/J )-phase diagrams are analogous to that of the
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FIG. 7. Zero-field phase diagrams in the presence of random Gaussian fields (σh = 0.1): (a) �0/J = 10.0, σ� = 0.0; (b) �0/J = 10.0,
σ� = 0.5; (c) �0/J = −0.3, σ� = 0.5. The I/FM phase is shown by violet/green color. (d)–(f) Plots of the order parameters at �0/J = −0.3,
σ� = 0.5.

SK model (Fig. 7). Evidently the account of the random fields
leads to the disappearance of a clear-cut border between the
SG and PM phases as resulted from Eq. (19),

q =
∫

z
tanh2

[
βzJ

√
q + σ 2

h /J2

]
. (30)

Following the classification adopted in Ref. [44] one may
identify the independent (I) phase (m = 0, q 	= 0) and the
ferromagnetic phase (m 	= 0, q 	= 0). The frontier between

them is determined by the line

Tm = J0

∫
z

sech2

[
βzJ

√
q + σ 2

h /J2

]
. (31)

Detailed information on variation of phase diagrams and
concomitant behavior of the order parameters with increase
of �0 is presented in the Supplemental Material [36]. Here,
it should be emphasized, even though the order parameters
behave similarly to the situation where there are no random
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FIG. 8. Magnetic susceptibility without external field for J0 =
0.0 and different values of �0/J shown by figures in the inset. Here,
σ� = 0.0 and σh = 0.0.

Weiss fields, the latter tend to support higher concentration of
intercalated ions retaining their magnetic moments.

III. MAGNETIC CHARACTERISTICS

A. Magnetic susceptibility

Next, we address the magnetic susceptibility. First, we note
that all three order parameters m, q, and μ depend on the mag-
netic field h0, and three related independent susceptibilities
should be therefore defined,

χm = ∂m

∂h0
, χq = ∂q

∂h0
, χμ = ∂μ

∂h0
. (32)

The relationship between these quantities is established
through the coupled set of linear equations⎛

⎜⎝
1 − βJ0(μ − q) β2J2I1 − βJI2λ −β2J2I1

−βJ0I3 1 − βJI4λ + β2J2I5 −β2J2I5

−βJ0(m − I7) β2J2I8 − βJI6λ 1 − β2J2I8

⎞
⎟⎠

×
⎛
⎝χm

χq

χμ

⎞
⎠ =

⎛
⎜⎝

β(μ − q)

βI3

2βI1

⎞
⎟⎠ (33)

in which the coefficients contain the integrals Ik (k =
1, . . . , 8) listed in the Appendix, and λ = 1/

√
q + σ 2

h /J2.
Zero-field susceptibilities for different values of �0 are

plotted in Fig. 8, when distribution of the exchange couplings
is centered around zero. The spin freezing temperature is
marked by a cusp in the susceptibility, which adopts the Curie
form above Tf . The cusp temperature is shifted closer to zero
with a decrease of �0.

Turning to the limit �0 → ∞, when I1,2 = 0 and μ = 1,
the result of the SK model is recovered from (33)

χm = β(1 − q)

1 − βJ0(1 − q)
. (34)

Behavior of magnetic susceptibility in finite magnetic
fields may be used for experimental verification of the BC

FIG. 9. Evolution of the Almeida-Thouless lines as �0/J varies.
The instability region (under the line) is reduced as �0/J decreases:
�0/J = 10.0 (black), �0/J = 0.0 (magenta), �0/J = −0.3 (blue),
�0/J = −0.6 (red), �0/J = −0.9 (brown).

model. Increasing of the field h0 facilitates stability of the RS
solution as evident from Fig. 9, where the AT lines are plotted
at different �0/J values for the case in which J0 is zero. It
is seen that a decrease of the chemical potential �0 leads to
enlargement of the region of stability of the RS solution.

Figure 10 summarizes the behavior of the susceptibility at
finite magnetic fields and in the presence of the random Weiss
fields. Once the external field h0 is applied, the cusp in the
zero-field susceptibility is rounded off and the χ curves go
upward with further increase of h0 during a cooling process.
Simultaneously, the increase of the field leads to the appear-
ance of a broad peak at temperatures above Tf , which tends to
be more pronounced at finite J0 [Fig. 10, panels 10(b), 10(d),
10(f)]. This effect is related to increase of a fraction μ of
the intercalated ions retaining their magnetic moments under
the action of the field. The secondary broad peak shifts to
lower temperatures when the chemical potential �0 decreases,
since its position is controlled by the precipitous fall of Curie-
law susceptibility above the freezing temperature, which is
reduced with decreasing of μ (see Fig. 3).

B. Magnetization

Finally, we mention how the chemical potential �0 alters
the magnetization process (Fig. 11). For large positive values
of �0, when our model is closely analogous to the standard
SK model, the magnetization curves, which are far from
saturation, have practically temperature-independent slope
[Fig. 11(a)]. However, smaller values of �0 lead to steep-
ening of magnetization curves when temperature increases
[Fig. 11(b)]. Similar to the temperature dependence of mag-
netic susceptibility in finite magnetic fields, the reason for
this is related to faster destroying of spin-glass order upon
heating, which may suppress competing growth of magne-
tization due to thermal activation of high-spin states of the
Fe-doped ions.

C. How to vary �0 in the related compounds

The appearance of spin-glass behavior in the BC model
with the Hamiltonian (1) is controlled by the parameters �i.
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FIG. 10. Evolution of temperature dependence of the susceptibility with an external magnetic field h0/J marked by colors in the inset of
the plot (f): (a), (b) �0/J = 10.0; (c), (d) �0/J = −0.3; (e), (f) �0/J = −0.9. Here, σ� = 0.5 and σh = 0.1.

In the previous theoretical studies of the BC spin-glass model,
the uniform parameter � = �i was attributed either to crystal
field energy [34] or to anisotropy energy in the S − 1 Ising
model [42]. In our case of the normally distributed �i with
the mean �0, the latter determines whether the fraction μ

of Fe ions inserted into the vdW gaps is sufficient or not
to maintain spin-glass ordering (see Fig. 3). Therefore, we
may suggest that in the systems where spin-glass effects

are manifested (2H -FexTaSe2, 4Hb-FexTaS2), μ exceeds a
threshold value, while it is lower than the critical value in
the materials (2H-FexTaS2, 4Hb-FexTaSe2) exhibiting singlet
ground state paramagnetism with embedded magnetic impu-
rities. Note, although an increase of the Gaussian distribution
width σ� diminishes the threshold of μ, it is highly unlikely
that this intrinsic parameter may be modified in a controllable
manner.
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FIG. 11. Magnetization curves for �0/J = 10.0 (a) and �0/J = −0.3 (b). The inset: The plot colors are marked by figures of temperature
T/J . The parameters J0/J = 0, σ� = 0.5, and σh = 0.1 are taken in all cases.

At present, it is widely recognized that co-intercalation
provides a powerful and feasible tool for tuning magnetic
properties of transition metal dichalcogenides [45–48]. In
view of the alternative, we propose a way to verify validity
of the BC model for describing spin-glass effects in the Fe-
doped TaS2(Se2) compounds by means of co-intercalation of
non-Kramers 3d ions into the vdW gaps. In ions with an even
number of electrons in the 3d shell, singlet ground-state levels
may result under low crystalline symmetry; however, this is
not the case for the non-Kramers ions with odd number of
electrons in the respective shell. As a result, their co-doping
increases a total proportion of intercalated ions retaining their
magnetic moments.

Indeed, let μN be the initial number of such Fe ions, where
N is a total number of the doped iron elements including those
whose moments are lost. Addition of the n non-Kramers ions
changes the balance to

μeff = μN + n

N + n
= μ + (1 − μ)

n

n + N
. (35)

Since μeff > μ, it may exceed a threshold value necessary to
support spin-glass ordering in the system. Therefore, the co-
doped non-Kramers ions may trigger a spin-glass regime in
the materials with the initial singlet paramagnetic phase.

Obviously, properties of the doping-induced SG phase can-
not be unambiguously attributed to the co-intercalated ions
only. This concentration mismatch will be a hallmark of the
Blume-Capel model relevance.

IV. CONCLUSIONS

Our study is aimed to explain why Fe intercalation into
the layered TaS2(Se2) polytypes brings spin-glass behavior
in one group of these complexes, while another group tends
to be nonmagnetic. We propose an explanation of the prob-
lem based on the spin-glass Blume-Capel model. Besides the
usual exchange coupling, the model includes normally dis-
tributed random one-site potentials, which govern magnetic
states of the intercalated Fe ions. A mean of the distribution

�0 regulates the balance between those Fe ions that lose their
magnetic moments and those that retain them.

The Ghatak-Sherrington theory predicts the existence of a
tricritical point, in which the line of the second-order phase
transition to the SG state breaks, when plotted versus �0,
and the system undergoes a sharp transition to the singlet
paramagnetic state. When a number of the intercalated Fe
ions in the high-spin state exceeds a threshold value, which
is determined by the tricritical point, spin-glass ordering may
occur. This fact provides a plausible explanation for division
into nonmagnetic and spin-glass systems observed in the fam-
ily of the Fe-doped TaS2(Se2) crystals.

Properties of the spin-glass behavior described by the BC
model differ little from that of predicted by the Sherrington-
Kirkpatrick model with fixed number of magnetic ions.
Nonetheless, we note characteristic features in the temper-
ature dependence of paramagnetic susceptibility and in the
field dependence of magnetization, which could confirm the
relevance of the BC model for the materials of interest. The
appearance of these specific features is due to the fact that
a certain portion of Fe ions in the low-spin state may regain
their magnetic moments on heating or under the influence of
an external magnetic field.

The unique crystal structure of the layered vdW transi-
tion metal dichalcogenides makes it possible to increase a
content of ions with magnetic moments through insertion of
non-Kramers 3d ions into the vdW gap. These co-intercalant
elements may trigger the spin-glass phase in the initially
nonmagnetic Fe-doped TaS2(Se2) complexes. A distinguish-
ing feature of the doped-induced SG ordering is that the
corresponding concentration of magnetic ions will comprise
not only the co-intercalant elements, but also Fe ions in the
high-spin state. This concentration mismatch to the content of
the doped non-Kramers 3d ions can be used for independent
verification of the BC spin-glass model.
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APPENDIX: INTEGRALS FOR MAGNETIC
SUSCEPTIBILITY

Here is a list of integrals involved in calculation of the
magnetic susceptibility χm:

I1 =
∫

z

∫
w

sinh[βHS (z)] exp[−βH�(ω)]

{exp[−βH�(ω)] + 2 cosh[βHS (z)]}2
,

I2 =
∫

z

∫
w

z{exp[−βH�(ω)] cosh[βHS (z)] + 2}
{exp[−βH�(ω)] + 2 cosh[βHS (z)]}2

,

I3 =
∫

z

∫
w

{exp[−βH�(ω)] cosh[βHS (z)] + 2}
{exp[−βH�(ω)] + 2 cosh[βHS (z)]}3

×8 sinh[βHS (z)],

I4 =
∫

z

∫
w

{exp[−βH�(ω)] cosh[βHS (z)] + 2}
{exp[−βH�(ω)] + 2 cosh[βHS (z)]}3

×4z sinh[βHS (z)],

I5 =
∫

z

∫
w

4 sinh2[βHS (z)] exp[−βH�(ω)]

{exp[−βH�(ω)] + 2 cosh[βHS (z)]}3
,

I6 =
∫

z

∫
w

z sinh[βHS (z)] exp[−βH�(ω)]

{exp[−βH�(ω)] + 2 cosh[βHS (z)]}2
,

I7 =
∫

z

∫
w

4 sinh[βHS (z)] cosh[βHS (z)]

{exp[−βH�(ω)] + 2 cosh[βHS (z)]}2
,

I8 =
∫

z

∫
w

cosh[βHS (z)] exp[−βH�(ω)]

{exp[−βH�(ω)] + 2 cosh[βHS (z)]}2
. (A1)
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