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Magnetothermal transport in the spin-1
2 easy-axis antiferromagnetic chain
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By an exact analytical approach we study the magnetothermal transport in the spin- 1
2 easy-axis Heisenberg

model, in particular the thermal conductivity and spin Seebeck effect as a function of anisotropy, magnetic
field, and temperature. We stress a distinction between the common spin Seebeck effect with fixed boundary
conditions and the one (intrinsic) with open boundary conditions. In the open boundary spin Seebeck effect we
find exceptional features at the critical fields between the low field antiferromagnetic phase, the gapless one, and
the ferromagnetic at high fields. We further study the development of these features as a function of easy-axis
anisotropy and temperature. We point out the potential of these results to experimental studies in spin chain
compounds—candidates for spin current generation in the field of spintronics.
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I. INTRODUCTION

Over the past couple of decades the magnetic thermal
transport has been established as a very efficient mode of
thermal conduction [1], next to the well known phononic and
electronic ones. Parallel to the search for evidence of ballistic
thermal transport in quasi-one-dimensional spin chain com-
pounds described by the spin- 1

2 Heisenberg Hamiltonian [2,3],
numerous experimental studies focused on the effect of a mag-
netic field on the thermal conductivity. For instance, the spin- 1

2
copper pyrazine dinitrate [4], spin-one NENP [5], and ladder
compounds [6] were experimentally studied focusing on the
interplay between the contributions of magnetic and phononic
excitations and their mutual scattering. Besides the magnetic
thermal transport, only few recent studies were devoted to the
spin Seebeck effect in quantum spin liquid systems, namely
the generation of a spin current by a thermal gradient in
a magnetic field—for instance, experimental studies on the
Sr2CoO3 [7] compound with topological spinon excitations,
CuGeO3 with triplon excitations [8], the spin- 1

2 easy-axis
antiferromagnet Pb2V3O9 [9], and theoretical ones [10–13].

From a different perspective, the generation and control of
spin currents is a central topic in the field of spintronics [14].
In particular, the spin Seebeck effect [15] has been extensively
experimentally and theoretically studied in a great variety of
bulk magnetic compounds such as the ferrimagnetic YIG/Pt
heterostructures and antiferromagnetic materials, e.g., Cr2O3

and Fe2O3. Concerning the easy-axis antiferromagnetic mate-
rials, there is experimental and theoretical interest and debate
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on the generated spin current sign change at the spin-flop
transition.

Motivated by the abundance of Ising-like antiferromag-
netic spin chain compounds and experimental studies over
the years, e.g., on CsCoCl3, CsCoBr3, TMMC in the con-
text of soliton Villain excitations [16], phase diagram, spin
dynamics, and quantum criticality of ACo2V2O8 (A = Sr, Ba,
Pb) [17–19], we study the magnetothermal transport and in
particular the spin Seebeck coefficient in the spin- 1

2 easy-axis
antiferromagnetic Heisenberg model. This study also serves
as a bridge between spintronics studies in bulk materials
and prototype magnetic systems. We employ the thermody-
namic Bethe ansatz (TBA) approach to analytically evaluate
the relevant spin-energy current correlations within linear re-
sponse theory. We explore, in particular, the sign of the spin
current across the antiferromagnetic, gapless, and ferromag-
netic phases that characterize the Ising-like antiferromagnetic
Heisenberg chain and the singular behavior at the critical
fields.

II. MODEL AND METHOD

We study the spin- 1
2 antiferromagnetic Heisenberg model

with easy-axis anisotropy, given by the Hamiltonian

H =
L∑

l=1

J⊥
(
Sx

l Sx
l+1 + Sy

l Sy
l+1

) + �Sz
l Sz

l+1 − hSz
l , (1)

where Sx,y,z
l = 1

2σ x,y,z, σ x,y,z are Pauli spin matrices, and
J⊥ > 0 is the easy plane and � > 0 the easy-axis exchange
interactions with � > J⊥ and h the magnetic field. Hereafter,
we take J⊥ = 1 as the unit of energy.

In linear response theory the spin and energy currents are
related by the transport coefficients, Ci j ,(〈JQ〉

〈JS〉
)

=
(

CQQ CQS

CSQ CSS

)(−∇T
∇h

)
, (2)
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where CQQ = κQQ (CSS = σSS) is the heat (spin) conductivity
and the thermal current JQ is related to the energy JE and spin
current JS by JQ = JE − hJS . The coefficients Ci j are given
by the thermal average of time-dependent current-current cor-
relation functions and it is straightforward to see that CSQ =
βCQS (β = 1/kBT, kB = 1). The real part of Ci j (ω) can be
decomposed into a δ function at ω = 0 (the Drude weight)
and a regular part:

Re[Ci j (ω)] = 2πDi jδ(ω) + Creg
i j (ω). (3)

The spin- 1
2 Heisenberg model is integrable by the Bethe ansatz

method and transport is ballistic at finite magnetic fields [3],
with the energy current commuting with the Hamiltonian.
Thus the magnetothermal coefficients are given by the Drude
weights Di j . We should note that, in view of experiments, this
correspondence holds only if we assume the same relaxation
rates for the magnetization and energy transport, Ci j ∼ Di jτ

[10–13]. We will consider the following situations.
(i) 〈JS〉 = 0, corresponding to a “fixed boundary” system

with spin accumulation, giving the thermal conductivity κ ,

κ = DQQ − β
D2

QS

DSS
= DEE − β

D2
ES

DSS
. (4)

MTC = β
D2

QS

DSS
is the magnetothermal contribution and the

spin Seebeck coefficient,

S = ∇h

∇T
= β

(
DES

DSS
− h

)
. (5)

(ii) ∇h = 0, corresponding to an “open boundary” system
[20], also referred to as intrinsic or bulk spin Seebeck effect
[21],

S̃ = 〈JS〉
〈JQ〉 = β

DQS

DQQ
, (6)

where DQQ = DEE − 2βhDES + βh2DSS and DQS = DES −
hDSS .

We evaluate the magnetothermal Drude weights in the
framework of the TBA [22–26] approach. In the easy-axis
regime [22] the anisotropy is parametrized as � = cosh η

and in contrast to the easy-plane regime the Bethe ansatz
solution is characterized by an infinite number of string excita-
tions with “particle” (and “hole”) densities ρ j (x)[ρh

j (x)], j =
1,∞, x pseudomomenta. DSS, DES, DEE , the specific heat
C, and magnetic susceptibility are now given by the fairly
standard TBA expressions

DSS = β
∑

j

∫ +π

−π

dx r jn j (1 − n j )
(
v

Q
j Qj

)2
,

DES = β
∑

j

∫ +π

−π

dx r jn j (1 − n j )
(
vE

j E j
)(

v
Q
j Qj

)
,

DEE = β2
∑

j

∫ +π

−π

dx r jn j (1 − n j )
(
vE

j E j
)2

,

C = β2
∑

j

∫ +π

−π

dx r jn j (1 − n j )(Ej )
2,

χ = β
∑

j

∫ +π

−π

dx r jn j (1 − n j )(Qj )
2. (7)

The total densities r j = ρ j + ρh
j are obtained from

r j = (
ρ j + ρh

j

) = 1

π
a j −

∑
k

Tjk ∗ ρk, (8)

where “∗” denotes convolution symbol

a j (x) = sinh( jη)

cosh( jη) − cos(x)
,

Tjk = (1 − δ jk )a| j−k| + 2a| j−k|+2

+ · · · + 2a j+k−2 + a j+k,

f ∗g(x) = 1

2π

∫ +π

−π

f (x − y)g(y)dy,

and the occupation numbers nj = 1/(1 + eβε j ), from the ther-
mal energies ε j ,

ε j = ε
(0)
j + T

∑
k

Tjk ∗ ln(1 + e−βεk ), (9)

where ε
(0)
j = − sinh η · a j (x) + h j are the bare excitation en-

ergies. The effective velocities are given by [28]

vE
j = −v

Q
j = 1

2πr j

∂ε j

∂x
, (10)

the “dressed” charges Qj and energies Ej ,

Qj = Q(0)
j −

∑
k

Tjk ∗ (nkQk ), Q(0)
j = j,

Ej = ε
(0)
j −

∑
k

Tjk ∗ (nkEk ), (11)

and the magnetization,

〈Sz〉 = 1

2
− 1

2

∫ +π

−π

dx r jn jQj . (12)

In the T → 0 limit, there are three different phases [27,28]:
(i) for h < hc = √

�2 − 1 · Dn(π ) it is gapped antiferromag-
netic, (ii) for hc < h < h f = 1 + � it is a gapless spin liquid,
and (iii) for h > h f it is gapped ferromagnetic [Dn(x) =
1
2

∑+∞
j=−∞

ei jx

cosh( jx) is the elliptic Jacobi function].
As ε1 < 0, ε j > 0 for j > 1 in the low field antiferromag-

netic phase, we find that Eqs. (9) and (11) solved numerically
by iteration with a finite cutoff in the number of strings show
poor or no convergence. The same applies when the thermal
energies ε j are numerically evaluated by the formulation of
Ref. [22] and furthermore the evaluated quantities do not
accurately satisfy “dressing” relations, as for instance Eqs. (8)
and (11) should imply

∫
dx r jn jQ

(0)
j = ∫

dx a jn jQj .
To resolve the convergence and “dressing” issues, we

transform and solve by iteration Eqs. (9) by rewriting
the term ln(1 + e−βε1 ) = −βε1 + ln(1 + eβε1 ) [29]. Fourier
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FIG. 1. Evolution of the spin Seebeck coefficient with anisotropy
� as a function of magnetic field at temperature T = 0.1.

transforming the equation for j = 1 ( ˆ. . . denotes Fourier trans-
form),

ε̂1 = ε̂
(0)
1

1 + T̂11
+ T · T̂11

1 + T̂11
· ˆln(1 + eβε1 )

+T ·
∑
k>1

T̂1k

1 + T̂11
· ˆln(1 + e−βεk ),

back transforming,

ε̃1 = ε̃
(0)
1 + T · T̃11 ∗ ln(1 + eβε1 )

+T ·
∑
k>1

T̃1k ∗ ln(1 + e−βεk ),

and repeating the substitution for j > 1, we obtain zero effec-
tive thermal energies ε̃

(0)
j , densities r̃ (0)

j , and charges Q̃(0)
j ,

ε̃
(0)
1 = − sinh(η) · Dn(x) + h

2
, ε̃

(0)
j>1 = ( j − 1)h,

r̃ (0)
1 = Dn(x), r̃ (0)

j>1 = 0,

Q̃(0)
1 = 1

2
, Q̃(0)

j>1 = j − 1. (13)

Note that the obtained effective energies are identical to those
obtained in the low temperature antiferromagnetic regime
[27,28].

III. RESULTS

In Fig. 1 we show the spin Seebeck coefficient S at low
temperature in the easy axis and for comparison for � = 0.5
in the easy-plane regime. We find that S, in the gapless phase
hc < h < h f , decreases with decreasing anisotropy, diverges
as h → 0, and changes sign between the antiferromagnetic
and ferromagnetic phases. In contrast to the easy-plane regime
where the spin Drude weight DSS is finite and S → 0 as h →
0, the vanishing of DSS, DES at h = 0 for � > 1 implies an
ill-defined S. The results we find are consistent with the spin
Seebeck coefficient evaluated at the isotropic limit [11]. Of
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FIG. 2. Evolution of thermal conductivity with anisotropy � as
a function of magnetic field at temperature T = 0.1.

course, we expect physically the vanishing spin Drude weight
DSS at h = 0 to be replaced by a normal transport behavior,
also at low temperatures, although this is still debated in
studies focused in the high temperature limit [30].

In Fig. 2, the thermal conductivity κ is finite as h → 0,
although strongly suppressed in the gapped antiferromagnetic
and ferromagnetic phase for large anisotropy �. In particular
κ tends to a finite value as h → 0 as the energy current
commutes with the Hamiltonian and the thermal transport is
purely ballistic over the whole phase diagram.

In Fig. 3 we show the ratio S̃ of the induced spin
current to the thermal current. First, note that S̃ goes to
zero as h → 0 and there is a change of sign between the
antiferromagnetic-gapless phase and the ferromagnetic one.
However, pronounced features are developing at the critical
fields hc, h f . It is remarkable that a similar behavior was found
in a molecular dynamics and linear response study of the
classical easy-axis Heisenberg model [20].
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FIG. 3. Evolution of the ratio spin current to thermal current S̃
with anisotropy � as a function of magnetic field at temperature
T = 0.1.
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FIG. 4. Evolution of the ratio spin current to thermal current S̃
with temperature as a function of magnetic field at anisotropy � = 3.

To further study the behavior at the phase transitions, in
Fig. 4 we show S̃ lowering the temperature at a rather large
anisotropy � = 3 along with the critical fields hc, h f . In the
antiferromagnetic phase, the spin current vanishes for h → 0
in contrast to S. At the transition between the gapless and the
ferromagnetic phase there is a particularly pronounced peak
at the critical field h f . This peak, as shown in Fig. 5, is related
to the singular behavior of the specific heat and magnetic sus-
ceptibility at h f [31]. It can be understood as the effect of the
van Hove singularity in the density of states in the low density
magnon system approaching the saturation field. The peaks
at the critical fields hc, h f can be approximately described as
Lorentzians of width proportional to the temperature.

In Fig. 5, we show the increase of magnetization as a func-
tion of magnetic field, from zero to saturation. Note that there
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FIG. 5. Specific heat C and magnetic susceptibility χ as a func-
tion of magnetic field at temperature T = 0.02.
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FIG. 6. Spin Seebeck coefficient as a function of magnetic field
at different temperatures.

is no exceptional singular behavior of the thermodynamic
quantities at hc, although there is one in S̃ as shown in Fig. 4.
We should note that the singularities in S̃ are related to the
numerator DQS in Eq. (6), which follows a very similar pattern
as a function of magnetic field (not shown).

Figure 6 shows the spin Seebeck coefficient S at different
temperatures. It indicates a vanishing S in the gapless phase
as the temperature tends to zero, in accord with the induced
spin current shown in Fig. 4 and with calculation [13] in
the gapless easy-plane (� < 1) regime. In contrast, in the
antiferromagnetic and ferromagnetic gapped phases S is finite
and scales with β.

Finally, in Fig. 7, we show the temperature dependence of
the thermal conductivity κ as a function of magnetic field and
separately the contribution from the thermal current DQQ and
the magnetothermal contribution MTC (an extensive discus-
sion of the thermal Drude weight as a function of anisotropy
and temperature was presented in [32]). Here, in contrast
to the spin Seebeck coefficient, κ is strongly suppressed as
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FIG. 7. Thermal conductivity and magnetothermal correction as
a function of magnetic field at T = 0.05 and T = 0.2 for � = 3.
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expected in the antiferromagnetic and ferromagnetic gapped
phases. We also find that the magnetothermal contribution
is mostly relevant in the region of the critical fields at low
temperatures.

IV. CONCLUSIONS

The main result of this work is that the open boundary
(intrinsic, bulk) spin Seebeck effect S̃ in the spin- 1

2 easy-axis
Heisenberg model shows exceptional features at the critical
points of the phase diagram in contrast to the usual fixed
boundary S coefficient. In other words, the local spin current
induced by a local thermal profile has a very different mag-
netic field dependence from the accumulated magnetization
in a fixed boundary system.

Furthermore, the spin- 1
2 model, although a quantum spin

liquid, shares the main features with the classical easy-axis
Heisenberg model: in particular, the singular behavior at

the critical magnetic fields and the sign change of the spin
Seebeck coefficient between the antiferromagnetic and fer-
romagnetic phase. But it also differs in the diverging spin
Seebeck coefficient as h → 0 that we might attribute to the
integrability of the model.

Quantum spin liquids are recently becoming candidates for
spin current generation in the field of spintronics. S̃ could be
studied in experiments aimed at determining phase diagrams
and detecting critical points, for instance, in compounds as the
spin- 1

2 easy-axis Heisenberg chains ACo2V2O8 (A = Sr, Ba,
Pb) [17–19]. The experimental challenge is to study the “open
boundary” spin Seebeck effect, e.g., by local magnetothermal
imaging [33].

Last but not least, further analytical study of this in-
tegrable model should clarify the singular behavior of the
induced spin current in the vicinity of the critical fields at low
temperatures.
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