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The integration of topological concepts into electronic energy band theory has been a transformative devel-
opment in condensed matter physics. Since then, this paradigm has broadened its reach, extending to a variety
of physical systems, including open ones. In this study, we employ analogs of the generalized n-dimensional
Su-Schrieffer-Heeger model, a cornerstone in understanding topological insulators and higher-order topological
states, to unveil a dimensional hierarchy of topological states within thermal diffusive networks. Unlike their
electronic counterparts, the topological states in these networks are characterized by confined temperature
profiles of dimension (n − d ) with constant diffusive rates, where n represents the system’s dimension and
d is the order of the topological state. Our findings demonstrate the existence of topological corner states in
thermal diffusive systems up to n = 3, along with surface and hinge states. We also identify and discuss an
intermediate-order topological phase in the case n = 3, characterized by the presence of hinge states but the
absence of corner states. Furthermore, our work delves into the influence of chiral symmetry in these thermal
networks, particularly focusing on topological thermal states with a near-zero diffusion rate. This research lays
the foundation for advanced thermal management strategies that utilize topological states in multiple dimensions.
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I. INTRODUCTION

The field of condensed matter physics has been revolu-
tionized by integrating topological concepts into the theory
of electronic energy bands [1–5]. This transformation began
with the pioneering discovery of topological insulators, which
fundamentally altered our understanding of electronic systems
and catalyzed extensive research into topological phenomena
across diverse physical domains, including photonic [6–11],
acoustic [12–15], and mechanical metastructures [16–18], as
well as electrical circuits [19–23]. These topological parallels
across different physical platforms are not merely academic
interests; they pave the way for practical applications. By
enabling control and manipulation of classical waves and
currents in a manner similar to electronic topological mate-
rials, they hold great promise for applications like topological
quantum computing and efficient, scatter-free wave transport.

The fundamental concept in energy band topology is the
bulk-edge correspondence [24–29]. This principle predicts the
presence of robust states at the interfaces between topologi-
cally distinct domains. Recent advances have expanded this
concept into a higher-order framework, establishing a n −
(n − d ) correspondence, where n is the dimension of the topo-
logical bulk system and d is the order of the topological states,
as confirmed by both theory and experimentation. Theoretical
advances have been exemplified through several models that
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highlight filling anomalies caused by mismatches between
Wannier centers and atomic sites. Prominent among these are
the two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model
[30,31], the Benalcazar-Bernevig-Hughes model [32,33], and
the breathing kagome lattice [34]. The protection of higher-
order topological states is often linked to various symmetries
[35–38], such as point-group symmetry [39–41], inver-
sion symmetry [42], and chiral symmetry [43,44]. Beyond
traditional crystalline systems, higher-order topology has
been identified in topological defects [45–48], quasicrystals
[49,50], Floquet [51–54], moiré [55], non-Hermitian [56–58],
magnetic [59], and superconducting [60–66] systems. Higher-
order topological materials differ from conventional ones by
exhibiting nontrivial states not just at boundaries, but also
at “boundaries of boundaries” [67], like hinges and corners.
These corner and hinge states are proposed and observed in
solid materials [68–74], and also in artificial crystalline struc-
tures, such as photonic [75–80], sonic [81–87] crystals, and
electronic circuits [88,89]. The advent of these higher-order
states opens new avenues for designing robust and efficient
devices for various applications, including nanocavity-based
sensors and topological lasers [90–100].

Very recently, topological edge states have been experi-
mentally observed in one-dimensional (1D) and 2D thermal
diffusive lattices. Thermal diffusive topological lattices are
realized on the basis of analogs of the 1D and 2D SSH models
[101–104]. By tuning the heat diffusion rate between thermal
“sites”, confined temperature profiles emerge at the interface
of two topologically distinct domains characterized by the
(vectored) Zak phase [30,31]. It is important to note that, in
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contrast to the wave systems previously mentioned, a thermal
diffusive process is intrinsically an open system. Moreover,
the Hamiltonian analog that governs the temperature field in
these lattices is anti-Hermitian [105,106], leading to eigen-
spectra that are purely imaginary and correspond to the rate of
thermal diffusion.

While 1D and 2D topological thermal lattices have been
successfully implemented in experiments, the exploration
of three-dimensional (3D) thermal lattices is less advanced,
possibly due to the challenges of constructing 3D thermal
diffusive networks experimentally [107]. However, theoretical
exploration of 3D topological thermal lattices reveals several
critical areas for further research. First, we need to confirm the
hierarchical dimensional structure of higher-order topological
states in these lattices. Second, it is important to investigate
the recently proposed intermediate-order topological phases, a
unique phenomenon of hierarchical topological insulators that
manifest only in dimensions greater than two [108]. Hierarchi-
cal topological insulators can be considered as an extension of
weak topological phase limited not only in 3D cases, where
electronic polarization is the topological invariant instead of
the Z2 polarization [109]. Finally, the complex nature of
higher-dimensional structures provides increased flexibility,
which offers a potentially greater scope for practical appli-
cation in this field.

In this work, using analogs of the generalized n-
dimensional (nD) SSH model, we study topological states,
including higher-order ones in thermal networks up to n = 3.
We verify the dimensional hierarchy of higher-order topolog-
ical states, that is, topological states of dimension (n − d )
appear consequently for d = 1, 2, . . . , n − 1. Particularly
in the 3D case, we explore an intermediate-order topolog-
ical phase characterized by the presence of surface and
hinge states but a notable absence of corner states. These
intermediate-order topological states are robust against per-
turbation along a specific direction with large amplitudes.
Additionally, on the basis of the analog of the nD SSH model,
we delve into the concept of chiral symmetry in diffusive
systems, focusing on a thermally still topological state with
a decaying rate almost zero in the 1D lattice.

The remaining parts of the paper are organized as follows:
In Sec. II, we develop the tight-binding scheme for the thermal
network based on Fourier’s law. Section III is dedicated to
exploring the analogs of the nD SSH model within thermal
networks, where we analyze their topological properties for
n = 1, 2, and 3. In Sec. IV, we examine the robustness of
topological states in these thermal networks. The significance
of chiral symmetry in relation to the zero decay rate in thermal
networks is discussed in Sec. V. Finally, the summary is given
in Sec. VI.

II. FOURIER’S LAW AND TIGHT-BINDING SCHEME
OF THERMAL NETWORK

In a normal thermal diffusion process, Fourier’s law gov-
erns the dynamics, which is written as

J = −k∇T, (1)

where J is the local heat flux density, k is the material’s
thermal conductivity, T is the temperature field, and ∇T is

FIG. 1. (a) Schematic of thermal network mimicking 1D SSH
model, where the solid and dashed lines indicate intracell and in-
tercell thermal conductance. (b) Unit cells of the 1D SSH thermal
network for topological nontrivial and trivial phases. (c) Temperature
profiles of the 1D SSH thermal network within the first band for the
nontrivial and trivial unit-cell under periodic boundary conditions.

temperature gradient. Considering the first law of thermody-
namics, or the energy conversation law, which is given by
cρ∂t T = −∇ · J, Fourier’s law can be reformulated into the
heat equation

∂t T = D∇2T, (2)

where D = k/cρ with c the specific-heat capacity and ρ the
medium density. Additionally, an external heat source Q can
be incorporated into the right-hand side of this equation. For
instance, a convection term h(Tenv − T )/cρ can be added,
where h and Tenv are the convection power and the environ-
mental temperature.

In our study, we conceptualize a thermal network where
the temperature is uniformly distributed across each “site”,
connected by thermal conductive links. This is illustrated in
Fig. 1(a), where the circles represent the sites and the lines de-
note the thermal conductive links. For such a thermal network,
∇2 in the heat equation becomes a form of finite difference,
tailored to each individual site. Furthermore, the diffusion
coefficient D varies from site to site, reflecting the topological
essence of thermal networks. Adapting the heat equation for a
thermal network, we have

∂t T =

⎛
⎜⎜⎜⎜⎜⎝

−∑
j D1 j D12 · · · D1n

D21 −∑
j D2 j · · · D2n

...
. . .

Dn1 Dn2 · · · −∑
j Dn j

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

T1

T2

...

Tn

⎞
⎟⎟⎟⎟⎠

,

(3)

where T = (T1, T2, . . . , Tn) is the temperature field of each
site, Di j is the thermal conductance from site i to site j, and
the summation is over all the connecting site j of site i. If a
convection term is taken into account, a constant term −h/ρc
is added to the diagonal terms of Eq. (3), and the Tenv defines
the base temperature of each site.

Assuming an exponentially decay of the temperature vec-
tor T over time as e−γ t , we can reformulate Eq. (3) as

ωT = −iDT, (4)

where ω = iγ represents the decay rate in complex form, and
D is the thermal linkage matrix. Intriguingly, Eq. (3) mirrors
the form of the eigenvalue equation in quantum mechanics,
suggesting an analogous Hamiltonian H = −iD. In the case
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of purely real D, H is anti-Hermitian, owing to the incorpo-
ration of the imaginary prefactor. This analogy opens up a
fascinating parallel between the behavior of thermal networks
and quantum systems.

Equation (4) implies that, apart from the imaginary pref-
actor, the thermal network can be analogously treated as a
tight-binding model used in solid-state materials. This ap-
proach enables us to transpose the concept of topological
phases, common in energy band theory, to thermal diffusive
networks. In subsequent sections, we demonstrate this by
emulating the generalized nD SSH model, up to n = 3, using
thermal networks and examining the topological characteris-
tics of thermal diffusion.

For the numerical simulation of these thermal networks,
we employ the finite-element method using COMSOL. The
material parameters selected for the simulations are the alu-
minum alloy 6063-T83, with heat capacity c = 978 J/(kg K ),
mass density ρ = 2700 kg/m3, and thermal conductivity k =
180 W/m K. For all sections except Sec. V, we assume an
air circulation power of 18 W/m2 K, a typical value of air
circulation [110].

III. THERMAL NETWORKS OF nD SSH MODEL

A. 1D SSH thermal network

The 1D SSH model, developed in the 1970s, is instrumen-
tal in explaining the electronic properties of polyacetylene, a
polymer made of repeating ethylene units [111]. A key feature
of the 1D SSH model is its ability to exhibit topological prop-
erties in a relatively simple system, which is characterized
by alternating hopping amplitudes: intracell hopping γ and
intercell hopping γ ′. The model includes two sites per unit
cell, and its Hamiltonian is given by

H1D =
∑

N

(γ a†
N bN + γ ′b†

N−1aN ) + H.c., (5)

where N represents the index of unit cell, and a, b are two sites
in each unit cell. Figure 1(a) provides a schematic representa-
tion of the 1D SSH model.

A topological phase transition in the 1D SSH model is
marked by condition |γ | = |γ ′|, leading to a band inversion
at k = π . This inversion can be identified by the parity of
the wave function, particularly when inversion symmetry is
present, such as exhibiting odd parity for the lowest band. This
diagnostic approach is applicable for determining the topolog-
ical nature of thermal networks. As predicted by the bulk-edge
correspondence, topological states arise at the interface be-
tween two domains of distinct topological characteristics.

Drawing from Eqs. (3) and (5), we construct an analog
thermal network of the 1D SSH model. In this network, the
alternating hopping amplitudes of the SSH model are repre-
sented by distinct elements in the matrix D. The two types
of unit cells of the 1D SSH thermal network are illustrated
in Fig. 1(b). Here, the two distinct structures that connect
sites correspond to the nonequivalent intracell hopping Dx and
intercell hopping D′

x.
The topological characteristics of this network can be iden-

tified by examining the parity of the temperature profile in a
finite chain under periodic boundary conditions. As displayed
in Fig. 1(c), for the case Dx < D′

x, the temperature profile

FIG. 2. (a) Thermal network structure made up of two chains of
1D SSH model with trivial and nontrivial unit cells. Dashed lines
indicate the positions of topological interfaces. (b) Energy band spec-
trum of the thermal network in (a). Topological edge states appear in
the band gap. (c) Temperature profiles of two topological edge states.
(d) Time evolution of bulk and edge states in (b).

of the lowest band has an odd parity, while for Dx > D′
x,

it has an even parity, consistent with the 1D SSH model of
Eq. (5). In our model, each site has a length of 2 cm, and
the distance between adjacent sites is also set to 2 cm. The
thermal conductance between each site is determined by the
total length and the cross-sectional area of the thermal link.

Having established the unit cell of the 1D SSH thermal
network with distinct topological labels, we now turn our
attention to examining its topological properties, including
topological edge states. To this end, we construct a ring struc-
ture, as depicted in Fig. 2(a), with dashed lines indicating the
interfaces between two topologically different domains. By
solving the eigenproblem using COMSOL for the ring structure
shown in Fig. 2(a), we determine the characteristic diffusion
rates of the thermal network.

Consistent with the behavior of the 1D SSH model, we
observe the emergence of a band gap in the characteristic
spectrum, as illustrated in Fig. 2(b). This gap arises due to
the disparity between Dx and D′

x. Notably, within the band
gap, two edge states emerge. These edge states are located
at each of the topological interfaces of the ring structure.
The temperature profiles of these two topological edge states,
shown in Fig. 2(c), reveal a localized temperature profile at
the interface sites. It is important to note that the thermal
linkage between the two distinct topological domains is ad-
justable. This adjustability allows us to tune the diffusion rate
of the edge state within the band gap, providing insight into
the dynamic behavior of topological edge states in thermal
networks.
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FIG. 3. (a) Schematic of thermal network mimicking 2D SSH
model, where the solid and dashed lines indicate intracell and inter-
cell thermal conductance. (b) Unit cells of 2D SSH thermal network
for topological nontrivial and trivial phases. (c) Temperature profiles
of 2D SSH thermal network within the first band for the nontrivial
and trivial unit-cell under periodic boundary condition.

A key characteristic that distinguishes diffusive edge states
from bulk states is their relative isolation. As a result, their de-
cay rates exhibit remarkable stability over time. As displayed
in Fig. 2(d), we see that after 5 min of time evolution, the
decay rates of two edge states remain almost constant. This
behavior contrasts with that of bulk diffusive states, which
tend to become a mixture of several states over time. The
normalized temperature is defined as ln( T −Tenv

T0−Tenv
) with T0 the

initial temperature [101,102].
Such stability in the decay rates of edge states opens up

new possibilities for controlling heat diffusion processes by
utilizing topological states. Furthermore, when combined with
chiral symmetry, we can even achieve a “still” thermal diffu-
sive state, a phenomenon that we explore in greater detail in
subsequent sections.

B. 2D SSH thermal network

The 2D Su-Schriffer-Heeger (SSH) model introduces a
novel concept in topological physics: the higher-order topo-
logical phase [31,76]. Unlike conventional topological states,
higher-order topological states are characterized by codimen-
sions greater than one. A prime example is the corner state
found in 2D systems.

Building on the 1D SSH model, the 2D SSH model in-
corporates hopping amplitudes that depend on two spatial
dimensions. These include γx, γy, γ ′

x , and γ ′
y . There are four

distinct topological phases in the 2D SSH model depending on
the ratios between γx, γ ′

x and γy, γ ′
y , which are characterized

by the vectored Zak phase (0,0), (π, 0), (0, π ), and (π, π ).
For the cases of |γx| < |γ ′

x | and |γy| < |γ ′
y |, the vector Zak

phase is (π, π ) and the corner states appear [30]. Figure 3(a)
provides a schematic representation of the 2D SSH model,
illustrating its spatially dependent hopping amplitudes along
the x and y directions. Incorporating the alternating hopping
amplitudes along the x and y directions, we construct the unit
cells for the 2D SSH thermal network, as depicted in Fig. 3(b).
In this setup, we focus on the symmetric case of Dx = Dy = D
and D′

x = D′
y = D′. To classify the topological nature of unit

cells, we analyze the temperature profiles within the lowest
band, shown in Fig. 3(c). By comparison of the amplitude
between D and D′ and the parity of the temperature profiles,
we can label the topological class for the two types of unit
cells illustrated in Fig. 3(b). It should be noted that, due to the

FIG. 4. (a) Thermal network structure made up of the 2D SSH
models with trivial and nontrivial unit cells, where the dashed lines
indicate the positions of topological interfaces. (b) Energy band
spectrum of the thermal network in (a). Topological edge and cor-
ner states appear in the band gap. (c) Temperature profiles of the
topological edge states. (d) Time evolution of bulk, edge, and corner
states in (b).

symmetric thermal conductance structures, we can focus on
the parity for the x axis only.

To show the higher-order topological properties within the
2D SSH thermal network, we construct a finite 2D sample
composed of two topologically different domains, as illus-
trated in Fig. 4(a). In this figure, the dashed square encloses a
section of the 2D thermal network formed from the nontrivial
unit cells of the 2D SSH model. In contrast, the area outside
the square comprises the trivial unit cells. To minimize the in-
fluence of finite-size effects, we implement periodic boundary
conditions along both the x and y axes.

The characteristic decay rates of the 2D SSH model are
shown in Fig. 4(b). As with the 1D SSH thermal network, a
band gap is evident in the decay rate spectrum. It is noted
that, because of the continuous nature of the thermal equation,
the decay rate spectrum can go beyond the first band gap,
and here we consider the first band gap only. At the topo-
logical interfaces marked by the dashed square in Fig. 4(a),
topological states emerge within this band gap. Unlike the 1D
scenario, the 2D SSH model not only features edge states but
also higher-order topological corner states. The appearance of
corner states in the 2D SSH model is due to the nontrivial
product of the Zak phase along the x and y directions [31]. In
the nontrivial unit cell of the 2D SSH thermal network, the
symmetry of the point group C4 ensures this condition.

The temperature profiles of the edge and corner states are
depicted in Fig. 4(c). For the corner state, the temperature is
localized around the four corners of the topological interfaces.
In contrast, the edge-state temperature distribution is along
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the edges of these interfaces. The positive and negative values
in the temperature distribution are referenced to the ambient
temperature, set at 294.15 K in our analysis.

The temporal relaxation behaviors of the corner, edge, and
bulk states within the 2D SSH thermal network are illustrated
in Fig. 4(d). To analyze these behaviors, we selected specific
monitoring sites: for the corner state, the monitoring site is
located at the corner of the topological interface; for the edge
state, it is at the middle of the interface’s edge; and for the
bulk state, the site is at the center of the sample. In line with
expectations, the decay rates for both corner and edge states
exhibit a constant trend over time, owing to their isolation
from bulk states.

C. 3D SSH thermal network

The 3D SSH model can be considered as a stack of two
copies of the 2D SSH models coupled by γz and γ ′

z . De-
pending on the magnitude relationship between γi and γ ′

i for
i = x, y, z, the 3D SSH model exhibits rich topological phases
[108]. For example, the highest-order topological phase of the
vectored Zak phase (π, π, π ) for |γi| < |γ ′

i | with i = x, y, z,
the intermediate-order topological phase of the vectored Zak

phase (π, π, 0) for |γi| < |γ ′
i | with i = x, y, and the first-

order topological phase of the vectored Zak phase (π, 0, 0)
for |γx| < |γ ′

x |. It is noted that only the highest-order topo-
logical states, such as corner states, require chiral symmetry,
and lower-order topological states, such as hinge and surface
states, require only a subchiral symmetry [108].

Distinguishing itself from the 2D version, the 3D SSH
model has two notable characteristics: (1) The 3D SSH model
reveals a layered structure of topological states, where corner
states coexist with surface and hinge states. This hierarchy
illustrates the complexity of the model and the intricate na-
ture of its topological features. (2) Unlike the highest-order
topological states (corner states), the 3D SSH model also
hosts an intermediate-order topological phase. In this phase,
the surface and hinge states are present, but the corner states
are absent. A significant aspect of these intermediate-order
topological states is that they are protected by band topology
only within a specific part of the Brillouin zone. This selective
protection makes them especially robust against perturbations
along certain directions.

The schematic of the 3D SSH model is depicted in
Fig. 5(a). Assuming periodic boundary condition, in terms of
Bloch-wave solution, the tight-binding matrix D(k) of the 3D
SSH thermal network can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∑
i(Di + D′

i ) Dx + D′
xeikx 0 Dx + D′

yeiky Dz + D′
ze

−ikz 0 0 0

Dx + D′
xe−ikx

∑
i(Di + D′

i ) Dy + D′
yeiky 0 0 Dz + D′

ze
−ikz 0 0

0 Dy + D′
ye−iky

∑
i(Di + D′

i ) Dx + D′
xe−ikx 0 0 Dz + D′

ze
−ikz 0

Dy + Dye−iky 0 −Dx + Dxeikx
∑

i(Di + D′
i ) 0 0 0 Dz + D′

ze
−ikz

Dz + Dzeikz 0 0 0
∑

i(Di + D′
i ) Dx + D′

xeikx 0 Dy + D′
yeiky

0 Dz + D′
ze

−ikz 0 0 Dx + D′
xe−ikx

∑
i(Di + D′

i ) Dy + Dye−iky 0

0 0 D1 + D2eikz 0 0 D1 + D2eiky
∑

i(Di + Di ) Dx + D′
xeikx

0 0 0 Dz + D′
ze

ikz Dy + D′
ye−iky 0 Dx + D′

xe−ikx − ∑
i(Di + Di )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where Di is the intracell thermal conductivity, and D′
i is the

intercell thermal conductivity with i = x, y, z. There are 23

sites in a unit cell of the 3D thermal SSH network.
The 3D SSH model has rich topological phases due to

the additional second and third dimensions. For example, the
highest-order topological phase accompanied by corner states
requires D′

i > Di for all i = x, y, z, and the intermediate-order
topological phase accompanied by hinge and surface states
requires D′

i > Di in either two directions as mentioned above.
We discuss the highest- and intermediate-order topological
phases in thermal networks as follows.

1. Thermal highest-order topological phase

In our exploration of the 3D SSH thermal network, we
first focus on realizing the highest-order topological phase,
characterized by the presence of corner states in a 3D system.
To enter this phase, unit cells must exhibit greater intercell
thermal conductivity compared to intracell conductance in all

spatial directions. Figure 5(b) depicts the unit-cell structure
designed for the highest-order topological phase.

Following the approach used in the 1D and 2D scenarios,
the topological classification of the two types of unit cells

FIG. 5. (a) Schematic of thermal network mimicking 3D SSH
model, where the solid and dashed lines indicate intracell and inter-
cell thermal conductance. (b) Unit cells of 3D SSH thermal network
for topological nontrivial and trivial phases. (c) Temperature profiles
of 3D SSH thermal network within the first band for the nontrivial
and trivial unit-cell under periodic boundary condition.
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FIG. 6. (a) Thermal network structure made up of the 3D SSH
models with trivial and nontrivial unit cells, where the dashed lines
indicate the positions of topological interfaces. (b) Energy band
spectrum of the thermal network in (a), where topological surface,
hinge, and corner states appear in the band gap. (c) Temperature
profiles of the topological corner, edge, and surface states. (d) Time
evolution of bulk, surface, hinge, and corner states in (b).

can be determined by examining the parity of the temperature
profile within the lowest band, as shown in Fig. 5(c). Given
that the thermal conductance is symmetric across all three
directions in our setup, we anticipate the emergence of the
highest-order topological phase in this thermal network.

Upon determining the topological properties of the unit
cells, we proceed to assemble a finite 3D sample comprising
two topologically distinct domains. Figure 6(a) illustrates this
finite 3D thermal network, with the dashed cubic indicat-
ing the topological interface. The characteristic decay rate
spectrum of this finite 3D sample, including the topological
interface, is shown in Fig. 6(b). As expected, the spectrum
reveals the presence of surface, hinge, and corner states within
the bulk band gap. Figure 6(c) displays the temperature pro-
files of these topological surfaces, hinges, and corners. To
more effectively depict the surface-state temperature profiles,
we provide plots at two specific coordinates in the third di-
mension. These plots highlight how the temperature profile
is localized within a surface and diminishes along the third
dimension. Furthermore, Fig. 6(d) shows the time evolution
of the bulk, surface, hinge, and corner states within the 3D
SSH thermal network. In particular, the decay rates of these
topological states exhibit a more prolonged linear trend com-
pared to the 1D and 2D cases.

2. Thermal intermediate-order topological phase

In the 3D SSH thermal network, apart from the highest-
order topological phase, there exists also an intermediate-
order topological phase. To realize this phase, condition

FIG. 7. (a) Nontrivial and trivial unit cells for the 3D SSH
thermal network in the intermediate-order topological phase.
(b) Schematic of the perturbations on the thermal conductivity for
the 3D SSH thermal network in the intermediate-order topological
phase. The dark (blue) colors represent the linkage with a perturbed
conductance. (c) Energy spectra for the 3D SSH thermal network
with and without perturbations. The red dots are the energy spectrum
in the perturbed sample. (d) Temperature profiles of the topological
edge state in the perturbed structure.

D′
i > Di must be met in two of the three spatial directions.

As displayed in Fig. 7(a), we choose the nontrivial directions
as x and y. By constructing a topological interface using
the unit cells from Fig. 7(a) and resolving the corresponding
eigenproblem, we can determine the characteristic decay rate
spectrum of the 3D SSH thermal network, as depicted in
Fig. 7(b). Notably, in this intermediate-order phase, the corner
states are absent.

An intriguing aspect of intermediate-order topological
states is their robustness against perturbations in specific di-
rections. In our case, this robustness is against perturbations
along the z direction. Figure 7(c) presents the temperature
profile of the edge states in a sample with random pertur-
bations of up to 500% in thermal conductivity along the z
directions. This amplitude of perturbation is comparable to
the gap size. As expected, the edge states in Fig. 7(c) are well
localized. It is noted that the perturbation along the z direction
can vary in type and amplitude, potentially exceeding even
the size of the band gap. This resilience is attributed to the
fact that intermediate-order topological states are protected by
the band topology within a portion of the Brillouin zone, a
characteristic distinct from that of Chern insulators.

IV. ROBUSTNESS OF TOPOLOGICAL STATES
IN THERMAL NETWORKS

Beyond the specific direction robustness of intermediate-
order topological states, the topological states in the nD SSH
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FIG. 8. (a) Schematic of random perturbations on the thermal
conductive link in the 3D SSH thermal network in the highest-
order topological phase. The darker color indicates the linkage with
perturbations. (b) Energy spectra of the 3D SSH thermal network
for disordered and nondisordered samples. [(c)–(e)] Temperature
profiles of the topological corner, hinge, and surface states in the
perturbed sample of (a).

thermal network are generally protected by the magnitude of
the energy gap. In our study, we introduce random perturba-
tions with amplitudes of 200% to thermal links within the 3D
SSH thermal network. This is illustrated in Fig. 8(a). Sub-
sequently, we solve the eigenproblem to analyze the effects
of these perturbations, with the resulting characteristic decay
rate spectrum shown in Fig. 8(b). As observed in Fig. 8(b),
despite the perturbations, the topological states remain intact.
Figures 8(c)–8(e) show the temperature profiles of the topo-
logical corner, hinge, and surface states within the perturbed
sample. Consistent with our expectations, these profiles are
well localized around the topological interface, indicating the
resilience of the topological states against small-scale disrup-
tions to the thermal network.

V. ROLE OF CHIRAL SYMMETRY
IN THERMAL NETWORKS

Equation (3) allows us to conceptualize the thermal
network through the lens of a tight-binding model. This
perspective is particularly useful in discussing the discrete
symmetries that safeguard the topological states within these
networks. In this paper, we specifically examine the 1D SSH

FIG. 9. (a) Energy spectrum of 1D SSH thermal network with
negative air circulation power. Inset is the temperature profile of
the zero decay rate state, where an arrow indicates the observation
site for (b), (c), and (d). (b) Comparison of the time evolution of
the thermal still state with those of edge state under positive and
negative air circulation power. (c) Temperature changing range of
the observation point after 6 min of temporal relaxation for different
base temperatures of the edge state. (d) Up panel: time relaxation
of the temperature at observation point of the edge state normalized
by initial temperature for Tbase = −30 K and 0, respectively. Down
panel: time relaxation of normalized temperature at the observation
point of the edge states for Tbase = −30 K and 0, respectively.

thermal network, leaving a broader exploration of symmetries
for future work.

A critical symmetry in the context of the 1D SSH model is
chiral symmetry, characterized by the relation C−1HC = −H.
This symmetry ensures the anchoring of the zero-dimensional
(0D) topological state at zero energy. In the thermal network,
this translates to a “still” state, defined by a zero decay rate
[104]. The presence of chiral symmetry thus not only influ-
ences the energy characteristics but also significantly impacts
the dynamical behavior of the system, particularly in main-
taining the stability of certain states.

To achieve a thermal still state, it is necessary to balance
the diagonal term in Eq. (3). One approach to achieve this
balance involves utilizing air circulation. Assuming a periodic
thermal network, the equilibrium condition can be expressed
as h = −∑

j Di j , which results in a negative value for h.
For theoretical exploration, we set h = −17 W/m2 K in

our simulation. As demonstrated in Figs. 9(a) and 9(b), this
setting allows for the realization of a thermal still state with
a zero decay rate. The inset of Fig. 9(a) illustrates the tem-
perature profile of this state. It is noted that a negative value
of the power of air circulation is unrealistic. To practically
realize such a thermal still state, we introduce a base tem-
perature Tbase at all sites of the edge state. For example, for
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the hotter sites of the edge state, we apply a negative Tbase to
counterbalance their characteristic decay rate. By selecting the
appropriate Tbase, we can achieve a decay rate that is almost
zero. Figure 9(c) shows the range of temperature changes
for the edge state when combined with a uniform state with
temperature Tbase for the evolution of time in 6 min. It is
observed that at Tbase = −30 K, the edge state exhibits min-
imal temperature variation, suggesting an almost still state. In
Fig. 9(d), we present the evolution of the edge state over time
at Tbase = −30 K. As seen in Fig. 9(d), compared to the case
with Tbase = 0, the temperature monitored for Tbase = −30 K
remains almost constant. In particular, their initial tempera-
tures are around 280 K lower than Tenv = 294.15 K.

VI. SUMMARY

By analogs of nD SSH model using thermal networks,
we demonstrate the hierarchical topological states in thermal
diffusive networks up to n = 3. Especially in the 3D SSH

thermal network, we find an intermediate-order topological
phase where the hinge and surface states exist but the corner
states are absent. Furthermore, we show that intermediate-
order topological states are robust against perturbations along
a specific direction, which reflects their fractional topological
nature. Additionally, our study delves into the role of chiral
symmetry within these thermal diffusive networks. By intro-
ducing a base temperature to the thermal edge state in the 1D
SSH model, we have managed to create a “still” topologi-
cal diffusive state. This state is remarkable for its near-zero
decay rates, demonstrating the potential for precise thermal
management. In general, our research lays the foundations
for advanced thermal management strategies that leverage the
unique properties of topological states in multiple dimensions.
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