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Hidden quasilocal charges and Gibbs ensemble in a Lindblad system
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We consider spin-1/2 chains with external driving that breaks the continuous symmetries of the Hamiltonian.
We introduce a family of models described by the Lindblad equation with local jump operators. The models have
hidden strong symmetries in the form of quasilocal charges, leading to multiple nonequilibrium steady states. We
compute them exactly in the form of matrix-product operators and argue that they are the analogues of quantum
many-body scars in the Lindbladian setting. We observe that the dynamics leads to the emergence of a Gibbs
ensemble constructed from the hidden charges.
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I. INTRODUCTION

If a small physical system makes contact with a much
larger system (the bath), which is itself in thermal equilib-
rium, then the interaction with the bath will typically induce
thermalization of the small system: in the long-time limit, all
details of its initial state will be washed away and its emerging
steady state will be determined by the thermodynamical state
functions of the bath [1]. This is a general phenomenon in both
the classical and in the quantum world, and it is essential for
the formulation of statistical physics and thermodynamics.

A similar phenomenon also happens in situations with
external driving [2,3]. Typically, there is a unique steady
state whose properties depend only on the parameters of the
driving, and all properties of the initial states are eventually
lost during time evolution. Quantum many-body systems with
driving (or simply in contact with their environment) can
often be described by the Lindblad equation [4], and generic
Lindblad systems have a unique nonequilibrium steady state
(NESS) [5].

Models with a nonunique NESS are exceptional: they con-
serve additional information about the initial state [6]. They
are analogous to isolated systems with ergodicity breaking,
which have been well studied in the last two decades. Today,
various mechanisms leading to ergodicity breaking are known
[7–9] and all of them are associated with exotic symmetries of
the system.

We focus on the following question: What are possible
ways to have multiple NESS in a many-body Lindblad sys-
tem? Similar to ergodicity breaking, nonuniqueness of the
NESS is associated with the presence of extra conservation
laws. In Lindblad systems, conserved quantities can be con-
structed if the model has so-called strong symmetries [10–13].

In this work, we uncover a different mechanism leading
to unexpected degenerate NESS in a Lindblad system. We
introduce a model with a local Hamiltonian and local jump
operators in the bulk, which break the standard U(1) symme-
try of the Hamiltonian. Nevertheless, we find hidden strong

symmetries in the form of quasilocal charges: extensive op-
erators with a quasilocal operator density. Previously, such
operators were treated in the context of the generalized Gibbs
ensemble [14,15], but our work uncovers quasilocal charges
in a Lindblad system with local driving in the bulk.

We also find explicit and exact formulas for the degenerate
NESS in our model: we present them as matrix-product oper-
ators (MPOs) with fixed bond dimension. We argue that they
are analogous to the quantum many-body scars known from
Hermitian systems [9,16]. We also consider time evolution
from selected initial states and rigorously compute the steady-
state values of selected observables, thereby proving that the
system retains memory of the initial state. Furthermore, we
show that in the infinite volume limit, the emerging steady
states can also be described by a Gibbs ensemble constructed
from the hidden quasilocal charge.

II. LINDBLAD SYSTEMS

We consider the dynamics of a quantum spin-1/2 chain in
contact with its environment. If the environment is Markovian,
the time evolution of the density matrix ρ of the system can
be described by the Lindblad equation, which reads

ρ̇ = i[ρ, H] +
∑

a

ua

[
�aρ�†

a − 1

2
{�†

a�a, ρ}
]
, (1)

and, equivalently, in the superoperator formalism ρ̇ = Lρ,
where L is the so-called Lindblad superoperator [17,18].

Here, H is the Hamiltonian of the system and �a are the
jump operators, which describe processes mediated by the
environment. The parameters ua ∈ R+ are coupling constants
and the index a labels the various jump operators.

We are interested in models where the jump operators are
localized in real space and the system is translationally invari-
ant. Furthermore, we consider periodic boundary conditions
and one family of jump operators in the bulk. In such a case,
ua ≡ U with a uniform coupling U and �a ≡ �( j) is a fixed
short-range operator localized around the site j.
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A. Symmetries and NESS

In a Lindblad system, the nonequilibrium steady states
(NESS) are the density matrices ρ which emerge in the long-
time limit, and they satisfy Lρ = 0. In a generic Lindblad
system without symmetries, there is a unique NESS, but
counterexamples are also known [5,12]. In such exceptional
cases, the system preserves memory of the initial state because
different initial density matrices evolve to different NESS
in the long-time limit. One of the possible ways to have
nonunique NESS is to have conservation laws in the model
because different initial mean values of the conserved quantity
necessarily lead to multiple NESS.

Conservation laws are typically associated with sym-
metries. In Hermitian quantum mechanics, symmetries are
represented by linear operators which commute with the
Hamiltonian, and every symmetry automatically leads to a
conservation law for an observable quantity. The situation is
very different in the non-Hermitian setting of the Lindblad
equation [11]. In these systems, a symmetry operation might
or might not lead to a conserved quantity, and not all con-
served quantities originate in symmetries.

However, there is a direct connection in the case of a
“strong symmetry.” We say that an operator Q is a strong
symmetry of a Lindblad system if Q commutes with the
Hamiltonian H and all jump operators individually. In this
case, L†Q = LQ = 0 and thus Q is also a NESS. Of special
interest are those strong symmetries which are represented
by extensive operators, i.e., Q = ∑

j q( j), where q( j) is the
operator density of the conserved charge.

B. The Hubbard Lindbladian

An example for a Lindblad system with such a strong sym-
metry was considered in [19]. Using the notation Xj,Yj, Zj for
the Pauli matrices acting on site j of the spin chain, we can
write the Hamiltonian and the jump operators of the model of
[19] as

H =
∑

j

XjXj+1 + YjYj+1, �( j) = Zj . (2)

The system is homogeneous with a global coupling
constant U .

Here the Hamiltonian describes the so-called XX model,
while the jump operators describe local dephasing effects.
Substituting (2) into (1), the resulting Lindblad superoperator
can be seen as the Hubbard model with imaginary coupling
constant [19], which implies that the superoperator is Yang-
Baxter integrable, and the Lindblad superoperator can be
diagonalized using the Bethe ansatz technique.

This model has an extensive strong symmetry given by

Q0 =
∑

j

Z j, (3)

which is the global magnetization. Accordingly, in this model,
the NESS is not unique and, in a finite volume L, the null space
of the superoperator L is L + 1 dimensional. Representative
NESS can be chosen as the L + 1 projectors PN to the different
sectors of the Hilbert space with a given total magnetization
N . Alternatively, an overcomplete basis for the null space can

be chosen as

ρ(α) ∼ eαQ0 =
∏

j

eαZ j , α ∈ R. (4)

These density matrices are linear combinations of PN . They
are product operators in real space: their operator space en-
tanglement is zero.

III. PRESENTATION OF THE MODEL

We consider a deformation of the model given by (2). In
our case, the Hamiltonian is

H =
∑

j

XjYj+1 − YjXj+1, (5)

which is known as the Dzyaloshinskii-Moriya interaction
term. It can be related to the XX Hamiltonian (2) by applying
a homogeneous twist along the chain [20]. We have a global
coupling constant U , and the jump operators are given by

�( j) = 1

1 + γ 2
[Zj+1 + γ (Xj + Xj+2)Xj+1 − γ 2XjZ j+1Xj+2],

(6)

where γ ∈ R is seen as a deformation parameter, such that
γ = 0 describes the original model (2) treated in [19]. The
jump operator (6) acts nontrivially on three neighboring sites
and simple computation shows that it satisfies the special
relations

[�( j)]† = �( j), [�( j)]2 = 1, (7)

neighboring jump operators do not commute, but
[�( j), �(k)] = 0 if | j − k| � 2.

For simplicity, we consider the regime 0 < γ < 1 through-
out this paper. Other regimes can be treated by special
similarity and duality transformations. Furthermore, the
points γ = ±1 require special care due to extra U(1) charges,
which enlarge the null space of the Lindbladian. The other
regimes and the special points deserve a separate study.

The model can also be formulated in terms of fermion
operators, following the usual Jordan-Wigner transformation
[21]. Introducing the Majorana operators ψ2 j−1 = Xj

∏
l< j Zl ,

ψ2 j = Yj
∏

l< j Zl , which satisfy {ψa, ψb} = 2δa,b, we have

H =
∑

k

ψk−1ψk+1, (8)

where the sum is now over twice the number of sites of the
original spin model. Considering the spin chain defined on
L sites with periodic boundary conditions translates, in the
Majorana language, into ψL+k = Zψk , where Z ≡ (−1)F ≡∏

j Z j is the fermion number parity. The jump operators take
the form

�( j) = i

1 + γ 2
(ψ2 j+2 − γψ2 j )(ψ2 j+1 − γψ2 j+3). (9)

The jump operators break the U(1) symmetry of the origi-
nal model: they induce particle creation and annihilation, but
due to conservation of Z , the creation and annihilation happen
in pairs.

While the Hamiltonian (8) is bilinear in terms of the
Majorana operators and can therefore be diagonalized using
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free-fermion techniques [21], the jump operators (9) introduce
quartic terms in the Lindblad equation (1), and our model is
therefore truly interacting.

A. Integrability properties

The work in Ref. [19] initiated the study of integrable Lind-
bladians: these are models where the superoperator is one of
the conserved charges on an integrable model and it originates
from solutions of the Yang-Baxter equation. Recently, a sys-
tematic search was initiated to find integrable Lindbladians by
using the boost operator [22] (see also [23]), and the present
model was discovered with the same method. We refer to
Appendix A and Ref. [24] for a review of the method. The
model given by (2) can be related to the Hubbard model,
whereas our Lindblad superoperator is related to the defor-
mation of the Hubbard model treated in the recent work [25].
Therefore, our model is also Yang-Baxter integrable. Interest-
ingly, the derivations below do not make use of this property.
They will, however, make use of the “superintegrability” prop-
erty of the Hamiltonian (5), namely, the fact that it allows for
non-Abelian families of conserved charges, which commute
with H but not necessarily with one another [20,26,27] (see
Appendix B 1 for a detailed discussion).

B. Construction of the NESS space

We find that our Lindbladian possesses a null space which
is L + 1 dimensional in a finite volume L. The existence of
the degenerate NESS is explained by an unexpected strong
symmetry in the system. This symmetry and the associated
conserved charge are obtained from the original Q0 (3) of
the undeformed model via a nonlocal transformation, which
is performed by a matrix-product operator (MPO).

More specifically, let us define the MPO T (γ ) as

T (γ ) = TrA[AL(γ )AL−1(γ ) . . . A1(γ )]. (10)

Here, A is a two-dimensional ancillary space, and the tensor
A(γ ) is written with respect to this space as

Aj (γ ) = 1

2

(
g− + g+Zj g+Xj − ig−Yj

g−Xj + ig+Yj g+ − g−Zj

)
, (11)

where g± = √
1 ± γ . The operators T (γ ) form a mu-

tually commuting family, namely, [T (γ ), T (γ ′)] = 0: In
Appendix B 2, we show that they can be recast as a series
expansion in powers of γ , whose coefficients are expressed in
terms of a family of mutually commuting conserved charges
of H . It will be crucial for the following to note that while
these charges [and hence the operators T (γ )] commute with
one another, they do not commute with the U(1) charge Q0,
a sign of the superintegrability of the Hamiltonian H . We
further show that the operators T (γ ) and T (γ )† obey the
property

T (γ )T (γ )† = T (γ )†T (γ ) = 1 + γ LZ. (12)

Hence, in the L → ∞ limit, they become the inverse of each
other.

The operators T (γ ) can be used to relate our model to
another family of Lindbladians, which have the original U(1)
charge Q0 as a strong symmetry. In Appendix B 3, we prove

the following identity:

T (γ )�( j)T (γ )† = (1 + γ LZ )�̃( j), (13)

or, equivalently,

T (γ )�( j)T (γ )−1 = �̃( j), (14)

where

�̃( j) ≡ 1

1 + γ 2
[Zj+2

+ γ (Xj+1Xj+2 + Yj+1Yj+2) + γ 2Zj+1]. (15)

The modified jump operators �̃( j) act nontrivially on two
neighboring sites and all square to one and commute
with the global charge Q0 = ∑

j Z j . Since, furthermore,
T (γ )HT (γ )−1 = H , we can readily conclude that all powers
of Q0 or, equivalently, all exponentials of the form eαQ0 are
(unnormalized) NESS of the Lindbladian defined from the
Hamiltonian H and the jump operators �̃( j). These form a
basis for a (L + 1)-dimensional space, including the identity.

Conversely, we now define the deformation of Q0 as

Qγ = T (γ )†Q0T (γ ), (16)

which, in the L → ∞ limit, corresponds to a conjugation
relation. This conjugation can be understood as a quasilo-
cal deformation of Q0, involving the non-Abelian conserved
charges of the Hamiltonian (5). Qγ remains an extensive oper-
ator, but its operator density qγ ( j) = T (γ )†ZjT (γ ) becomes
quasilocal; details are given in Appendix B 2.

From the preceding discussion, it is clear that the operator
Qγ is a strong symmetry of the Lindbladian: it commutes with
the Hamiltonian (5) and also with the jump operators (6). This
implies that it is a conserved charge for the Lindbladian time
evolution. More generally, the matrices

ργ (α) = T (γ )†eαQ0 T (γ ) = T (γ )†

⎡⎣∏
j

eαZ j

⎤⎦T (γ ) (17)

are (unnormalized) density matrices: they are Hermitian and
positive definite. They are also strong symmetries. It follows
that the matrices ργ (α), α ∈ R are NESS of the Lindbladian
with fixed deformation parameter γ and arbitrary coupling
strength U . Alternatively, we could consider the density ma-
trices ρ̃γ (α) = T (γ )−1eαQ0 T (γ ), which coincide with (17) up
to corrections of the order of γ L.

The operators ργ (α), α ∈ R form an overcomplete basis
for the null space of the Lindbladian, which has dimension
L + 1 in a finite volume L. This can be proven by expanding
ργ (α) into a power series in α: this produces the powers of Qγ

(up to corrections of the order γ L), which (together with the
identity) span a space of dimension L + 1.

Steady states in MPO form have been found earlier in
multiple instances in the literature (for systems with boundary
driving, see, for example, [12,28–30]). Our results are unique
because we treat a system locally driven in the bulk, and the
bond dimension of the MPO is a fixed small number.

It is also worth emphasizing that the transformation (14)
maps between two local families of jump operators, �( j) and
�̃( j), where, as mentioned, �( j) is acting nontrivially on three
neighboring site of the spin chain, while �̃( j) on two adjacent
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sites. Such a property is highly nontrivial and not true for
generic operators: for instance, the local densities Zj of the
charge Q0 are mapped onto quasilocal densities qγ ( j).

IV. FRUSTRATION-FREE PROPERTY
AND LINDBLADIAN SCARS

The density matrices ργ (α) can be written as an MPO with
bond dimension 4. Therefore, their operator space entangle-
ment satisfies an area law. Interestingly, the ργ (α) are related
to frustration-free Hamiltonians.

To see this, we define an auxiliary Hermitian superoperator
M, which acts on any ρ as

Mρ =
∑

j

�( j)ρ�†( j). (18)

In our case, the strong symmetry and the relations (7) imply
that ργ (α) are eigenvectors of M with eigenvalue L, and that
is the maximal possible eigenvalue of M. By definition, this
means that the superoperator M is frustration free.

A related model with the frustration-free property was in-
vestigated in [31] (see also [32,33]). Their Hamiltonian acts
on the spin-1/2 Hilbert space and it can be written as

K =
∑

j

�( j). (19)

It has two extremal states |�±〉 satisfying the frustration-free
condition, �( j)|�±〉 = ±|�±〉. It follows that the density ma-
trices ρ± = |�±〉〈�±| are frustration-free eigenstates of M.
Furthermore, they are NESS for our Lindbladian and they are
reproduced by ργ (α) in the α → ±∞ limit. Our procedure to
obtain the density matrices ργ (α) can be seen as a generaliza-
tion of the methods of [31] to the Lindbladian setting.

After renormalization and shifting by a matrix proportional
to the identity, the action of the full superoperator can be
written as

L̃ρ ≡ (U −1L + L)ρ = Mρ + i U −1[ρ, H]. (20)

The superoperator L̃ becomes Hermitian [34] for U = iu,
u ∈ R. In such a case ργ (α) are still eigenoperators of L̃, they
have low spatial entanglement, and they are in the middle
of the spectrum for a generic real u. Therefore, they can be
seen as quantum many-body scars of L̃ [9,16]. In light of
the rescaling (20), we suggest to call the ρ eigenoperators
Lindbladian scars for our original superoperator L [35]. In
the standard scenario, a scar is a state of the Hilbert space
which breaks ergodicity, but in the Lindbladian setting, it is
very natural to see the density matrix corresponding to the
NESS as a scar in the Hermitian setting.

V. MEAN VALUES

The physical properties of ργ (α) can be demonstrated
by computing the mean values of local observables in these
states, which can be done using standard MPO techniques;
see Appendix C. First we compute the mean value of the local
operator Z placed at any site j. We find

〈Zj〉 = Tr[ργ (α)Zj]

Trργ (α)
= (1 − γ 2) tanh(α)

[γ tanh(α)]L + 1
. (21)

In the large volume limit, this gives

〈Zj〉L→∞ = (1 − γ 2) tanh(α). (22)

In the undeformed model (γ = 0), the mean value is tanh(α),
and thus the transformation (17) decreases the mean value by
a factor that depends only on γ .

It is also useful to consider a measure for the breaking of
the standard U(1) symmetry. We choose the two-site operator

XjXj+1 − YjYj+1 = 2(σ+
j σ+

j+1 + σ−
j σ−

j+1), (23)

which is sensitive to the creation/annihilation of pairs of par-
ticles. For the mean value, we find

[γ tanh(α)]L−1 − γ (γ 2 − 2) tanh(α)

[γ tanh(α)]L + 1
. (24)

The infinite volume limit becomes

〈XjXj+1 − YjYj+1〉L→∞ = γ (2 − γ 2) tanh(α). (25)

Having a nonzero mean value for the deformed model is a
clear sign of the breaking of the original U(1) symmetry.

VI. DYNAMICS AND GIBBS ENSEMBLE

We consider real-time evolution from selected initial states,
focusing on

ρ(t = 0) = ρ0(β ) ≡ eβQ0

(2 cosh β )L
. (26)

These are steady states of the undeformed model (γ = 0).
They are product operators in real space and, in the limit
β → ±∞, they also include pure states obtained from the
reference states with all spins up/down.

Due to the conserved charge Qγ , we expect that the system
has memory: the long-time limit of the observables will de-
pend on the initial state. On the other hand, since the emerging
NESS are strong symmetries of the model, they are inde-
pendent from the coupling U , and therefore we expect that
U influences only the speed of convergence towards them.
This is confirmed by numerical computation of the real-time
dynamics for small volumes, with the results presented in
Fig. 1.

It is important to clarify the nature of the emerging steady
states. Our Lindblad system has a single extensive conserved
charge Qγ . In analogy with thermalization in an isolated sys-
tem, we postulate that in large volumes, the emerging steady
states can be described by a Gibbs ensemble of the form

ρG ∼ e−λQγ , (27)

such that λ should be determined by the initial mean value,

Tr(ρGQγ ) = Tr(ρ0Qγ ). (28)

For the initial density matrices (26), this computation can
be performed easily in the infinite volume limit, yielding
tanh(λ) = −(1 − γ 2) tanh(β ). This result can be used to com-
pute mean values of local observables in the Gibbs ensemble.
We obtain, for example, the prediction

lim
t→∞〈Zj (t )〉 = Tr(ρGZj ) = (1 − γ 2)2 tanh(β ). (29)
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FIG. 1. Time evolution of 〈Z1(t )〉 from a selected initial density
matrix ρ0(β ) (26) with β = 0.5, in a finite volume L = 7. We choose
two different deformation parameters γ and three coupling strengths
U . It is seen that the asymptotic values depend only on γ and not
on U , which influences only the speed of convergence. The asymp-
totic values agree with those predicted by the exact formula (30);
therefore, they also confirm our postulate about the emergence of the
Gibbs ensemble.

Remarkably, we also performed an exact finite volume
computation to find the asymptotic mean values. Details are
given in Appendix C. For the observable Zj , we find

lim
t→∞〈Zj〉 = (γ 2 − 1)2 tanh β(1 − 2γ L tanhL−2 β + γ 2L )

(1 − γ 2L )2
.

(30)

These values are confirmed by the numerics at finite L. Fur-
thermore, it is easy to take the large volume limit, and for
0 < γ < 1, we always recover (29), thus also confirming our
postulate about the Gibbs ensemble.

VII. CONCLUSIONS

We demonstrated that a Lindblad system with local jump
operators can have quasilocal symmetries, crucially affecting
the real-time dynamics. The steady states of our model were
obtained from those of the “Hubbard Lindbladian” after a
similarity transformation with an MPO. Surprisingly, this sim-
ilarity transformation is compatible with local jump operators,
in particular the jump operators of range three get mapped to
the jump operator of range two. Curiously, we did not use the
integrability of the Lindbladian, but the superintegrability of
the Hamiltonian did play a crucial role. Perhaps integrability
plays a hidden role in the derivation of (30).

Additional physical properties of the model, such as the
Lindbladian gap, could be computed from a full Bethe ansatz
solution, which is not yet available. Also, it would be interest-
ing to consider analogous models with discrete-time evolution
[36,37]. This would open up the way towards the experimental
realization of our findings.
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APPENDIX A: INTEGRABLE LINDBLADIANS

Here we review the key statements about integrable Lind-
bladians, based on our recent work [22]. Consider a Lindblad
equation with one family of jump operators in the bulk,

ρ̇ ≡ Lρ = i[ρ, H] +
∑

j

[
� jρ�

†
j − 1

2
{�†

j� j, ρ}
]
. (A1)

L is the Lindblad superoperator, which acts on the Hilbert
space of density matrices. We assume that � j = �( j) are short-
range operators localized at site j, and H = ∑

j h( j) is a
local nearest-neighbor interacting Hamiltonian. We will first
consider the case when �( j) acts on two sites only and we
identify it as � j, j+1.

We perform a standard operator-state correspondence: the
Hilbert space of the density matrices is related to the space
of a spin ladder of the form H = H(1) ⊗ H(2), where H(1,2)

correspond to the bra/ket “sides” of the density matrices.
Then one can transform the superoperator into an operator
that acts on a spin ladder. In this way, we obtain a spin ladder
(non-Hermitian) superoperator L = ∑

j L j, j+1 with operator
density

L j, j+1 = −ih(1)
j, j+1 + ih(2)∗

j, j+1 + �
(1)
j, j+1�

(2)∗
j, j+1 − 1

2�
(1)†
j, j+1�

(1)
j, j+1

− 1
2�

(2)T
j, j+1�

(2)∗
j, j+1. (A2)

Here, the superscript T denotes transpose and the asterisk
denotes the complex conjugation of each of the components
of the matrix. For any operator A, the notation A(1) or A(2)

means that the operator acts nontrivially only on H(1) or H(2).
Now one can apply techniques of integrability to find and

classify those Lindbladians, where the spin ladder operator is
integrable. For a nearest-neighbor operator Q(2) = ∑

j q( j),
the Reshetikhin condition states that if a model is integrable,
then there is an extensive operator Q(3) satisfying

[Q(3), Q(2)] = 0 (A3)

in every volume L, such that the operator density of Q(3) is

q(3)( j) = [q( j), q( j + 1)] + q̃( j), (A4)

where q̃( j) is a two-site operator.
It is conjectured that if q( j) and q̃( j) are such that the

commutativity relation above holds, then the model is Yang-
Baxter integrable: it has a commuting set of transfer matrices
and it is associated to a so-called R matrix which is a solution
to the Yang-Baxter equations. The above condition is cubic in
q( j) and linear in q̃( j) and it can be used to find and classify
integrable models.

In our case, we used this condition to find integrable
Lindblad superoperators: we identified Q(2) with the ladder
operator L given by (A2). A number of solutions with local
U(1) symmetry were presented in [22]. Our current model was
found by continuing the classification started in [22], allowing
for the breaking of U(1) symmetry. The model was found first
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in a two-site version, but it was transformed into the three-site
formulation using a duality transformation (for details, see
[25]).

In our three-site model, the ladder operator still takes the
form (A2), with the only modification that now �( j) acts on
three sites instead of two. Specializing the model to γ = 0, we
obtain �( j) = Zj and the ladder operator becomes identical to
the Hubbard model with an imaginary coupling constant [19].

APPENDIX B: CONSTRUCTION OF THE NESS USING
THE CONSERVED CHARGES OF THE HAMILTONIAN

In this Appendix, we show how the deformed Lindbladian
considered in the main text as well as the corresponding L + 1
NESS can be constructed as a deformation of the γ = 0 case
(imaginary coupling Hubbard model) using the conserved
charges of the Hamiltonian (5) in the main text.

1. Conserved charges of the Hamiltonian

The Hamiltonian (5) commutes with an extensive set of
charges which we label as [ab]m, where a and b can take the
label X or Y , and for m � 0,

[ab]m ≡
L∑

j=1

a j

⎛⎝ ∏
1�k<m

Zj+k

⎞⎠b j+m, (B1)

where Xj , Yj , and Zj are the Pauli matrices acting on site j of
the spin chain.

In the fermionic formulation of the model, detailed in the
main text, the corresponding charges are the set of all possible
translationally invariant fermion bilinears.

An extensive set of local charges usually signals integra-
bility, and indeed the Hamiltonian (5) can be related to the
well-known integrable XX Hamiltonian [see Eq. (2) in the
main text] by a homogeneous twist along the chain. It is,
in fact, superintegrable, as the charges [ab]m form various
families which, in turn, do not commute with one another.
For instance, the sets of charges {[XY ]m} and {[Y X ]n} com-
mute with one another, but only the combinations {[XY ]m −
[Y X ]m} commute with the charges {[XX ]n} or {[YY ]n}. We
also introduce the charge

Z =
L∏

j=1

Zj, (B2)

which commutes with the Hamiltonian as well as with all the
charges [ab]m.

2. The operator T (γ )

As usual when dealing with quantum integrable models,
families of mutually conserved charges can be generated by
a matrix-product operator (MPO) called the transfer matrix.
Introduce the following MPO:

T (γ ) = TrA[AL(γ )AL−1(γ ) . . . A1(γ )], (B3)

where the ancillary space A has dimension 2, and where the
matrices Aj (γ ) are defined as

Aj (γ ) =
⎛⎝ √

1−γ+√
1+γ Zj

2

√
1+γ Xj−i

√
1−γYj

2√
1−γ Xj+i

√
1+γYj

2

√
1+γ−√

1−γ Zj

2

⎞⎠. (B4)

The matrices T (γ ) commute with one another for different
γ , as can be traced back to the known integrability properties
of the XX chain [more precisely, they correspond to transfer
matrices based on cyclic representations of the quantum group
Uq(sl2) at q = i], and admit the following series expansion
around γ = 0 :

T (γ ) = U exp[G(γ )], (B5)

where U is the one-site discrete translation operator, and

G(γ ) = i
∑
m�1

γ m

2m
[Y X ]m. (B6)

We emphasize that the expansion (B6) holds at all orders, even
for a system for finite size L, as can be checked by explicitly
computing the successive logarithmic derivatives of T (γ ) at
γ = 0. For L → ∞, the series (B6) defines a quasilocal op-
erator for |γ | < 1. For finite L, it can be further rearranged
using the properties [Y X ]m+L = −Z[Y X ]m for m � 1, and
[Y X ]L = −iLZ . A practical expression is

G(γ ) = 1

2
ln(1 + γ LZ ) + i

∑
m�1

m/∈LZ

γ m

2m
[Y X ]m, (B7)

which splits between a first term, which is Hermitian, and an
anti-Hermitian part. From there, see, in particular,

T (γ )T (γ )† = 1 + γ LZ, (B8)

or, equivalently,

T (γ )−1 = 1 − γ LZ
1 − γ 2L

T (γ )†. (B9)

The result of Eq. (B8) can be seen directly in the MPO formal-
ism. We can write T (γ )T (γ )† as a MPO of bond dimension
4, with ancillary space A ⊗ A, namely,

T (γ )T (γ )† = TrA⊗A[ML(γ )ML−1(γ ) . . .M1(γ )],

(B10)

where the M j (γ ) are 4 × 4 matrices with entries expressed in
terms of Xj,Yj, Zj . The MPO is invariant under any change of
basis performed in the ancillary space. Defining V = e

iπ
4 Y ⊗X ,

where X and Y are now Pauli matrices acting in each copy of
the ancillary space A, Eq. (B10) can therefore be recovered
by replacing the matrices M j (γ ) with VM j (γ )V −1, which
take the form

VM j (γ )V −1 =

⎛⎜⎜⎜⎝
1

√
1 − γ 2Xj −iYj −

√
1 − γ 2Zj

0 γ Zj 0 γ Xj

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠.

(B11)
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From the block-diagonal form of (B11), it is clear that after
taking the trace in (B10), only the two diagonal terms con-
tribute, which give rise to the two terms in (B8).

3. Construction of the NESS

As we will now see, the transfer matrix T (γ ) can be used to
construct the jump operators and NESS described in the main
text. Let us study the transformation of the jump operators
�( j) [defined in Eq. (2) of the main text] under conjugation
by T (γ ). For this, it will be useful to introduce the following
MPOs:

T (γ )BjT (γ )† = TrA⊗A
[
ML(γ ) . . .MB

j (γ ) . . .M1(γ )
]
,

(B12)

where B ∈ {X,Y, Z}. We find, similarly,

VMX
j (γ )V −1 =

⎛⎜⎜⎜⎜⎝
0 γ Zj 0 γ Xj

1
√

1 − γ 2Xj −iYj −
√

1 − γ 2Zj

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎠,

(B13)

VMY
j (γ )V −1 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0

i
√

1 − γ 2 iXj

√
1 − γ 2Yj −iZ j

γYj 0 −iγ 0

⎞⎟⎟⎟⎠,

(B14)

VMZ
j (γ )V −1 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0

iγYj 0 γ 0

−
√

1 − γ 2 −Xj i
√

1 − γ 2Yj Z j

⎞⎟⎟⎟⎠. (B15)

It will also be useful, for practical calculations, to introduce M(α)
j = cosh αM j + sinh αMZ

j . After rotation, we have,
similarly,

VM(α)
j (γ )V −1 =

⎛⎜⎜⎜⎝
cosh α cosh α

√
1 − γ 2Xj −i cosh αYj − cosh α

√
1 − γ 2Zj

0 γ cosh αZj 0 γ cosh αXj

iγ sinh αYj 0 γ sinh α 0

− sinh α
√

1 − γ 2 − sinh αXj i sinh α
√

1 − γ 2Yj sinh αZj

⎞⎟⎟⎟⎠. (B16)

For any three consecutive sites j, j + 1, j + 2, we then
have

T (γ )�( j)T (γ )†

= TrA⊗A[ML(γ ) . . .M�
j, j+1, j+2(γ ) . . .M1(γ )], (B17)

where

M�
j, j+1, j+2(γ ) ≡ 1

1 + γ 2

[
M j+2MZ

j+1M j

+ γ
(
MX

j+2MX
j+1M j

+ M j+2MX
j+1MX

j

)
− γ 2MX

j+2MZ
j+1MX

j

]
, (B18)

which can be brought to the following form after rotation in
ancillary space:

VM�
j, j+1, j+2(γ )V −1

=

⎛⎜⎜⎝
�̃( j) . . . . . . . . .

0 γ 3ZjZ j+1Zj+2�̃( j) 0 . . .

0 0 0 0
0 0 0 0

⎞⎟⎟⎠. (B19)

Here we have defined

�̃( j) ≡ 1

1 + γ 2
[Zj+2 + γ (Xj+1Xj+2 + Yj+1Yj+2) + γ 2Zj+1],

(B20)

and the . . . denote other combinations of the Pauli matrices,
which we will not need to consider. Indeed, from the triangu-
lar structure of (B19), we see again that only the two nonzero
diagonal entries give a nonzero contribution to the trace (B17).
As a result, we find

T (γ )�( j)T (γ )† = (1 + γ LZ )�̃( j), (B21)

or, equivalently,

T (γ )�( j)T (γ )−1 = �̃( j). (B22)

The modified jump operators �̃( j) all square to one and
commute with the global charge Q0 = ∑

j Z j . Since, further-
more, T (γ )HT (γ )−1 = H , we can readily conclude that all
powers of Q0 or, equivalently, all exponentials of the form
eαQ0 are (unnormalized) NESS of the Lindbladian defined
from the Hamiltonian H and the jump operators �̃( j). These
form a basis for a (L + 1)-dimensional space, including the
identity.

Undoing the similarity transformation, this shows that the
matrices T (γ )−1eαQ0 T (γ ) are (unnormalized) NESS for the
Lindbladian constructed out of the Hamiltonian H and jump
operators �( j). Since Z commutes with both the Hamiltonian
and jump operators, we can further replace T (γ )−1 by T (γ )†,
and conclude that the density matrices (14) in the main text
are a family of NESS.

054311-7



DE LEEUW, PALETTA, POZSGAY, AND VERNIER PHYSICAL REVIEW B 109, 054311 (2024)

APPENDIX C: MEAN VALUES IN NESS

In this Appendix, we compute mean values of local ob-
servables in states of the form ργ (β ) = T (γ )†eβQ0 T (γ ). In
particular, we derive Eqs. (21) and (24) of the main text.

1. Expectation values of matrix product operators

We start by computing the following objects:

G(α, β ) = Tr[eαQ0 T (γ )†eβQ0 T (γ )], (C1)

G̃(α, β ) = Tr[eαQ0 T (γ )−1eβQ0 T (γ )], (C2)

in terms of which we will see that all quantities of interest can
be expressed.

Let us start with G(α, β ). Using the MPO formalism above,
we can rewrite it as

G(α, β ) = TrA⊗A

1∏
j=L

tr j
[
M(α,β )

j (γ )
]
, (C3)

where M(α,β )
j (γ ) ≡ M(α)

j (γ )eβZ j . After rotation in ancillary
space [see Eq. (B16)], we have

tr j
(
VM(α,β )

j (γ )V −1
) =

⎛⎜⎜⎝
2 cosh α cosh β 0 0 −2

√
1 − γ 2 cosh α sinh β

0 2γ cosh α sinh β 0 0
0 0 2γ sinh α cosh β 0

−2
√

1 − γ 2 sinh α cosh β 0 0 2 sinh α sinh β

⎞⎟⎟⎠.

(C4)

The computation of G(α, β ) can be performed by diago-
nalizing (C4) in ancillary space, leading to

G(α, β ) = [λ1(α, β )]L + [λ2(α, β )]L

+ [λ3(α, β )]L + [λ4(α, β )]L, (C5)

where

λ1(α, β ) = cosh(α + β )

+
√

cosh2(α + β ) − γ 2 sinh(2α) sinh(2β ),

λ2(α, β ) = cosh(α + β )

−
√

cosh2(α + β ) − γ 2 sinh(2α) sinh(2β ),

λ3(α, β ) = 2γ sinh α cosh β,

λ4(α, β ) = 2γ cosh α sinh β, (C6)

are the eigenvalues of (C4). For later use, we evaluate the
function G(α, β ) and its derivatives at particular points,

G(0, β ) = 2L[cosh βL + (γ sinh β )L],

1

L
∂αG(α, β )|α=0 = (1 − γ 2)2L tanh β coshL(β ),

G(−iπ/2, β ) = (−2i)L(γ L coshL β + sinhL β ),

1

L
∂αG(α, β )|α=−iπ/2 = (1 − γ 2)(−2i)L coth β sinhL β.

(C7)

We now turn to G̃(α, β ). Using (B9), we have

G̃(α, β ) = Tr

[
eαQ0

1 − γ LZ
1 − γ 2L

T (γ )†eβQ0 T (γ )

]
= G(α, β ) − (iγ )LG(α − iπ/2, β )

1 − γ 2L
, (C8)

where, in the last equality, we have used the identity ZjeαZ j =
ie(α−iπ/2)Zj .

2. Mean values in NESS

Now we compute the mean values of local operators Zj and
XjXj+1 − YjYj+1. Using translation invariance, we find

〈Zj〉β ≡ Tr[ZjT (γ )†eβQ0 T (γ )]

Tr[T (γ )†eβQ0 T (γ )]
=

1
L ∂αG(α, β )|α=0

G(0, β )

= (1 − γ 2) tanh β

1 + (γ tanh β )L
, (C9)

hence recovering Eq. (21) in main text, after the substitution
β → α.

The expectation of other local operators such as XjXj+1 −
YjYj+1 could be similarly obtained from suitably defined gen-
erating functions, but here we compute directly:

Tr[XjXj+1T (γ )†eβQ0 T (γ )]

= Tr
{
TrA⊗A

[
M(0,β )

L (γ ) . . .M(X,β )
j+1 (γ )M(X,β )

j (γ ) . . .

× M(0,β )
1 (γ )

]}
, (C10)

where M(X,β )
j = XjM(0,β )

j = MX
j eβZ j . A similar formula

holds with X → Y .
Using

tr j
(
VM(0,β )

j V −1
)

=

⎛⎜⎜⎝
2 cosh β 0 0 −2

√
1 − γ 2 sinh β

0 2γ sinh β 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠,

(C11)
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tr j
(
VM(X,β )

j V −1
)

=

⎛⎜⎜⎝
0 2γ sinh β 0 0

2 cosh β 0 0 −2
√

1 − γ 2 sinh β

0 0 0 0
0 0 0 0

⎞⎟⎟⎠,

(C12)

tr j (VM(Y,β )
j V −1)

=

⎛⎜⎜⎝
0 0 0 0
0 0 0 0

2i
√

1 − γ 2 cosh β 0 0 −2i sinh β

0 0 −2iγ cosh β 0

⎞⎟⎟⎠,

(C13)

we find

〈XjXj+1−YjYj+1〉β = Tr[(XjXj+1 − YjYj+1)T (γ )†eβQ0 T (γ )]

Tr[T (γ )†eβQ0 T (γ )]

= γ (2 − γ 2) tanh(β ) + [γ tanh(β )]L−1

γ L tanhL(β ) + 1
,

(C14)

which recovers (24) in the main text.

APPENDIX D: LATE-TIME EXPECTATION
VALUES—GIBBS ENSEMBLE

Here we consider real-time evolution in the Lindblad sys-
tem and the emergence of the Gibbs ensemble. We show how
to compute the Lagrange multiplier of the Gibbs ensemble,
which eventually leads to a prediction for the long-time limit
of local observables. The computations in this section are
performed in the infinite volume limit. Exact finite volume
computations confirming the general statements for specific
cases will be provided in the next Appendix.

The conservation of Qγ implies that if a Gibbs ensemble
ρG ∼ e−λQγ emerges during time evolution, then it has to
satisfy

Tr(ρ0Qγ ) = Tr(e−λQγ Qγ )

Tre−λQγ
. (D1)

This equation can be used to fix λ using knowledge of the
initial state.

Once λ is found, the predictions for the steady-state values
of observables can be given by results from the previous
Appendix. For example, for the mean value of Zj , we find

〈Zj〉 = Tr(e−λQγ Qγ )

Tre−λQγ
= −(1 − γ 2) tanh(λ). (D2)

Using the similarity transformation, the right-hand side is
actually found to be

− tanh(λ). (D3)

Furthermore, the left-hand side can be expressed as

Tr[T (γ )ρ0T †(γ )Q0]. (D4)

If the initial density matrix is chosen to be

ρ0 ∼ eβQ0 , (D5)

then, once again, we can use the results from the next Ap-
pendix to conclude

(1 − γ 2) tanh(β ) = − tanh(λ). (D6)

Combining everything, we obtain the prediction for the long-
time limit,

〈Zj〉 = (1 − γ 2)2 tanh(β ). (D7)

APPENDIX E: LATE-TIME EXPECTATION
VALUES—EXACT COMPUTATIONS

In this section, we detail the computation of the late-time
expectation values of local observables following a quantum
quench from initial states given by Eq. (26) in the main text.
In particular, we focus on the local observable 〈Zj〉.

Let us start by recalling that an overcomplete basis of
the (L + 1)-dimensional space of NESS can be generated by
the ρ̃γ (α) = T (γ )−1eαQ0 T (γ ). Since Q0 = ∑

j Z j has L + 1
distinct eigenvalues of the form 2n − L with n = 0, . . . , L, we
can alternatively define a basis of the space of NESS in terms
of the projectors P̃n = T (γ )−1PnT (γ ), where

Pn = 1

L + 1

L∑
k=0

ei 2πk
L+1 ( L+Q0

2 −n) (E1)

is the projector onto the subspace where Q0 has eigenvalue
2n − L.

As a consequence, any density matrix in the space of NESS
can be decomposed as

ρNESS =
L∑

n=0

Tr(ρNESSP̃n)

Tr(P̃n)
P̃n. (E2)

Starting from an arbitrary ρ(t = 0), we therefore have, at late
times,

lim
t→∞ eLtρ(t = 0) =

L∑
n=0

Tr[ρ(t = 0)P̃n]

Tr(P̃n)
P̃n (E3)

and, therefore, for any observable O,

lim
t→∞〈O〉 =

L∑
n=0

Tr[ρ(t = 0)P̃n]

Tr(P̃n)
Tr(P̃nO). (E4)

All the traces involved in (E4) can be computed using the
matrix product operator techniques.

Focusing on the observable Zj , we need to compute

lim
t→∞〈Zj〉 =

L∑
n=0

Tr[ρ(t = 0)P̃n]

Tr(P̃n)
Tr(P̃nZ j ) (E5)

in the initial expression (E5) for limt→∞〈Zj〉.
The first trace Tr(P̃n) = Tr(Pn) can easily be computed

without resorting to MPO techniques, as it corresponds to the
dimension of the eigenspace of Pn with eigenvalue 2L − n;
however, as a warm-up, we present its computation using the

054311-9



DE LEEUW, PALETTA, POZSGAY, AND VERNIER PHYSICAL REVIEW B 109, 054311 (2024)

previously computed function G̃(α, β ). Using the decomposition (E1) of the projector Pn, we have

Tr(P̃n) = 1

L + 1

L∑
k=0

ei 2πk
L+1 ( L

2 −n)Tr[T (γ )−1ei πk
L+1 Q0 T (γ )]

= 1

L + 1

L∑
k=0

ei 2πk
L+1 ( L

2 −n)G̃
(

0,
ikπ

L + 1

)

= 2L

L + 1

L∑
k=0

ei 2πk
L+1 ( L

2 −n)

(
cos

kπ

L + 1

)L

=
(

L

n

)
. (E6)

The second trace can be similarly evaluated as

Tr(P̃nZ j ) = 1

L + 1

L∑
k=0

ei 2πk
L+1 ( L

2 −n) 1

L
∂αG̃

(
α,

ikπ

L+1

)
|α=0

= i2L 1 − γ 2

1 − γ 2L

1

L + 1

L∑
k=0

ei 2πk
L ( L

2 −n)

[
sin

kπ

L + 1

(
cos

kπ

L + 1

)L−1

+ (iγ )L cos
kπ

L + 1

(
sin

kπ

L + 1

)L−1]

= − 1 − γ 2

1 − γ 2L
[1 − (−1)L−nγ L]

L − 2n

n

(
L − 1

n − 1

)
. (E7)

We now move to the third trace, Tr[ρ(t = 0)P̃n]. Taking the normalized density matrix ρ(t = 0) = eαQ0/(2 cosh α)L,

Tr[ρ(t = 0)P̃n] = 1

(2 cosh α)L

1

L + 1

L∑
k=0

ei 2πk
L+1 ( L

2 −n)G̃
(

α,
ikπ

L + 1

)

= 1

(2 cosh α)L

1

L + 1

1

1 − γ 2L
[Fn(α) − (iγ )LFn(α − iπ/2)], (E8)

where, in the last line, we have used the expression (C8) of G̃ in terms of G, and introduced the functions

Fn(α) ≡
L∑

k=0

ei 2πk
L+1 ( L

2 −n)G̃
(

α,
ikπ

L + 1

)
(E9)

=
L∑

k=0

ei 2πk
L+1 ( L

2 −n)

[
λ1

(
α,

ikπ

L + 1

)L

+ λ2

(
α,

ikπ

L + 1

)L

+ λ3

(
α,

ikπ

L + 1

)L

+ λ4

(
α,

ikπ

L + 1

)L
]

(E10)

≡ F (1)
n (α) + F (2)

n (α) + F (3)
n (α) + F (4)

n (α). (E11)

Using the expressions (C6) of the eigenvalues λi, the contributions F (3) and F (4) are easily evaluated. We find

1

(2 cosh α)L

1

L + 1

1

1 − γ 2L
F (3)

n (α) = 1

2L

(γ tanh α)L

1 − γ 2L

(
L
n

)
, (E12)

1

(2 cosh α)L

1

L + 1

1

1 − γ 2L
F (4)

n (α) = 1

2L

γ L

1 − γ 2L
(−1)L−n

(
L
n

)
. (E13)

We now move to the contribution F (1) + F (2). Using the expression (C6),

λ1(α, β )L + λ2(α, β )L = 2
L∑

j=0
j even

(
L

j

)
[cosh(α + β )]L− j[cosh2(α + β ) − γ 2 sinh(2α) sinh(2β )] j/2. (E14)
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Hence,

F (1)
n (α) + F (2)

n (α) = 2

2L

L∑
k=0

L∑
j=0

j even

(
L

j

)
e−αLe

−2inkπ
L+1

(
1 + e

2ikπ
L+1 e2α

)L− j[(
1 + e

2ikπ
L+1 e2α

)2 − γ 2(1 − e
4ikπ
L+1

)(
1 − e4α

)] j/2
(E15)

= e−αL

2L−1

L∑
k=0

L/2∑
l=0

L−2l∑
a=0

∑
b1,b2�0
b1+b2�l

(
L

2l

)(
L − 2l

a

)(
l

b1, b2, l − b1 − b2

)
e

2i(a+b1+2b2−n)kπ

L+1 e2aα (2e2α )b1

× [e4α (1 − γ 2) + γ 2]b2

[1 − γ 2(1 − e4α )]b1+b2−l

= L + 1

eαL

2

2L

L/2∑
l=0

∑
b1,b2�0
b1+b2�l

L! e2nα[1 − γ 2(1 − e4α )]l−b1 2b1

(2l )!(n − b1 − 2b2)!(L − 2l − n + b1 + 2b2)!

(
l

b1, b2, l − b1 − b2

)

×
[

1 − γ 2(1 − e−4α )

1 − γ 2(1 − e4α )

]b2

. (E16)

We further expand this expression to write it as a polynomial in γ (the deformation parameter) and we obtain (after proper
rearranging of the sum)

(L + 1) L! e2αn

2L−1eαL

∑ l! 2l−b3 (e−4α − 1)t (e4α − 1) f −t

(2l )! t! (b2 − t )!(l − b3)!( f − t )!(t − b2 + b3 − f )!(n − 2b2 + b3 − l )!(2b2 − b3 − l + L − n)!
γ 2 f ,

(E17)

where we used the shortcut ∑
→

L/2∑
f =0

L/2∑
l= f

l∑
b3= f

b3∑
b2=0

b2∑
t=0

. (E18)

We used the software Mathematica 12.3 to further simplify this expression and we obtain

F (1)
n (α) + F (2)

n (α) = κ

L/2∑
f =0

(e4α − 1) f γ 2 f (L − f )!

f !n! eα(L−2n) 2L−n 3F̃ 2

(
− f ,

1 − n

2
,−n

2
;

L − n − 2 f + 1

2
,

L − n − 2 f + 2

2
;

1

e4α

)
, (E19)

where κ = (L + 1)
√

πL and 3F̃ 2 is the hypergeometric function regularized.
Reporting the results (E12), (E13), and (E19) into (E8) [where the terms Fn(α − iπ/2) can just be obtained by shifting the

argument], we get

Tr[ρ(t = 0)P̃n] = 1

2L

(−1)nγ L

γ 2L − 1

(
L

n

)
{[−γ tanh(α)]L − (−1)n tanhL(α) + (−1)nγ L − (−1)L}

+ 1

(2 cosh α)L

1

1 − γ 2L

L/2∑
f =0

√
πL(1 − e4α ) f γ 2 f (−1) f +n2n−L(L − f )!e−α(L−2n)[(−1)L+1γ L + (−1)n]

f !n!

× 3F̃ 2

(
− f ,

1 − n

2
,−n

2
;

L − n − 2 f + 1

2
,

L − n − 2 f + 2

2
;

1

e4α

)
. (E20)

The three factors (E6), (E7), and (E20) can now be gathered in the initial expression (E5) for limt→∞〈Zj〉. Performing the
sum over n, we find that the contributions coming from F (3)

n and F (4)
n vanish. It remains to compute

lim
t→∞〈Zj〉 =

√
π (1 − γ 2)e−αL

2L(γ 2L − 1)2[sinh(2α)csch(α)]L

L∑
n=0

L/2∑
f =0

2n(e4α − 1) f γ 2 f (2n − L)e2αn(L − f )![(−1)n − (−γ )L]2

( f + 1)!(n + 1)!

× 3F̃ 2

(
− f ,

1 − n

2
,−n

2
;

L − n − 2 f + 1

2
,

L − n − 2 f + 2

2
;

1

e4α

)
. (E21)

This expression looks complicated at first sight, but we will now see that it is equivalent to the expression (30) in the main text.
Both expressions contain a prefactor 1−γ 2

(1−γ 2L )2 which we therefore omit in the following, and compare the remaining polynomials
in γ order by order. Starting from (30), the remaining polynomial takes the form

(1 − γ 2) tanh(α)(1 + γ 2L − 2γ L tanhL−2 α), (E22)
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in particular the exponents of γ that give a contribution different from 0 are 0, 2, L, 2L, L + 2, 2L + 2. We shall now demonstrate
that all other powers indeed vanish in the polynomial associated with expression (E21). In (E21), the coefficients are 2 f , 2 f +
L, 2 f + 2L, so the only nonzero contribution should come from f = 0, 1, L/2, the last one only for L even.

By direct computation, we found that to obtain (E22), it is enough to sum the contribution of f = 0 and f = 1. Let us show
that the other terms vanish. First, we consider the contribution of f = L/2 in (E21). This is proportional to

L∑
n=0

(L − 2n)e2αn[(−1)n − (−γ )L]2 sin(πn)

n
2F1

(
−L

2
,−n

2
; 1 − n

2
;

1

e4α

)
. (E23)

Since the function 2F1(− L
2 ,− n

2 ; 1 − n
2 ; e−4α ) is finite for n odd, (E23) vanishes due to sin(nπ ), while for n even,

2F1

(
−L

2
,−n

2
; 1 − n

2
; x

)
=

L/2∑
k=0

(−1)kn
(L/2

k

)
xk

n − 2k
, (E24)

and if we substitute this into (E23), we get

L/2∑
k=0

L∑
n=0

(−1)k (L − 2n) sin(πn)
( L

2
k

)
e2α(n−2k)

n − 2k
=

L∑
n=0

in(L − 2n)

( L
2
n
2

)
= 0, (E25)

where, since sin(nπ ) is zero, we need to only keep the singular term.
It remains to show that all the terms with f > 1 do not contribute. Removing the irrelevant terms and considering e−α = z,

we should prove that the following term vanishes:

L∑
n=0

(L − 2n)zL−2n

(n + 1)!(1 − 2 f + L − n)!
3F2

(
− f ,

1 − n

2
,−n

2
;

L − n − 2 f + 1

2
,

L − n − 2 f + 2

2
; z4

)
. (E26)

Expanding as a series in z and reshifting the sum over n, we obtain

∞∑
m=0

L−2m∑
n=−2m

(−1)m
( f

m

)
(L − 4m − 2n)zL−2n

(n + 1)! (1 − 2 f + L − n)!
=

∞∑
m=0

L∑
n=0

(−1)m
( f

m

)
(L − 4m − 2n)zL−2n

(n + 1)! (1 − 2 f + L − n)!
. (E27)

We can now sum over m and we are left with
L∑

n=0

(L − 2n) 1F0(− f ; ; 1) + 4 f 1F0(1 − f ; ; 1). (E28)

Considering that

1F0(a; ; x) = (1 − x)−a, (E29)

each of the terms of (E28) is zero for f > 1, as stated at the beginning.
To summarize, we proved that (E5) is equivalent to the expression (30) given in the main text.
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