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Stability via symmetry breaking in interacting driven systems
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Photonic and bosonic systems subject to incoherent, wide-bandwidth driving cannot typically reach stable
finite-density phases using only nondissipative Hamiltonian nonlinearities; one instead needs nonlinear losses,
or a finite pump bandwidth. We describe here a very general mechanism for circumventing this common
limit, whereby Hamiltonian interactions can cut-off heating from a Markovian pump, by effectively breaking
a symmetry of the unstable, linearized dynamics. We analyze two concrete examples of this mechanism. The
first is a new kind of PT laser, where Hermitian Hamiltonian interactions can move the dynamics between
the PT broken and unbroken phases and thus induce stability. The second uses on-site Kerr or Hubbard type
interactions to break the chiral symmetry in a topological photonic lattice, inducing exotic phenomena from
topological lasing to the stabilization of Fock states in a topologically protected edge mode.

DOI: 10.1103/PhysRevB.109.054309

I. INTRODUCTION

The competition between pumping, loss, and interac-
tions are a ubiquitous feature of both classical and quantum
nonlinear dynamics. The often complex interplay between
incoherent pumping (which tends to drive a system towards
an infinite temperature state) and a nonlinearity that can cut
off heating instabilities leads to a rich variety of physics.
Examples include classical limit cycles and lasers in the few
body regime [1,2], classical synchronization [3,4], and driven-
dissipative phase transitions in many body systems [5–8] (e.g.,
effective Mott insulator to superfluid transitions in driven
bosonic lattice systems [9–12]).

The simplest form of the above interplay arises when the
incoherent pumping has a finite bandwidth. In this case, in-
stability can be prevented with Hamiltonian interactions or
nonlinearities that shift system excitation energies with in-
creasing density. This naturally cuts off heating and stabilizes
a finite density state, as higher excited states will become non-
resonant with the pump, see Fig. 1(a). Such bandwidth-limited
pumping has been exploited to realize an effective chemical
potential for light, and requires coupling to a non-Markovian
(or finite bandwidth) dissipative reservoir [10,13,14]. Realiz-
ing such setups in many-body settings is generally challenging
(though see Ref. [12] for a recent experiment). If one instead
is restricted to completely broadband (Markovian) pumping,
then conventional wisdom dictates that Hamiltonian inter-
actions are irrelevant, as pumping is insensitive to system
energies [c.f., Fig. 1(b)]. In this case, one expects that a
heating instability can only be prevented by nonlinear loss.
Paradigmatic examples here are the van der Pol oscillator [15],
as well standard oscillator/laser gain-saturation mechanisms
[1,2].
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The two above routes would seem to exhaust the set of
generic mechanisms for having nonlinearities (either Hamil-
tonian or dissipative) cut off pumping-induced instabilities.
Here, we show that this is surprisingly not the case: there
is a third extremely generic mechanism that allows Hamil-
tonian interactions to stabilize systems driven by a broadband
(Markovian) pump. The trick here is not to make use of energy
shifts (as the pump is insensitive to energies in this limit),
but instead exploit symmetry, see Fig. 1. As we demonstrate
in detail, by making use of symmetries that can be effec-
tively broken as a function of excitation density, Hamiltonian
interactions combined with incoherent broadband pumping
can stabilize finite-density states. More concretely, we show
that certain systems are sensitive to incoherent pumping only
because of symmetries of the effective low-density dynamics.
By adding a nonlinearity that breaks these symmetries as
particle density increases, we obtain a highly effective mech-
anism for stabilizing finite density states, one that is distinct
from more standard approaches.

To illustrate our ideas, we first analyze a quantum ver-
sion of the well-studied parity-time (PT ) symmetric gain-loss
dimer [16,17]. While stabilization here is usually achieved via
nonlinear dissipation, we show that a purely Hamiltonian ap-
proach is also possible: a finite density phase can be stabilized
by introducing non-dissipative quartic nonlinearities. The re-
sult is a new kind of PT laser, e.g., [18–22]. We then turn to
more complex many-body bosonic lattice systems subject to
Markovian pumping, showing that the combination of a chiral
sublattice symmetry and standard on-site Kerr (or Hubbard)
interactions allows one to stabilize finite-density states. This
mechanism is especially interesting for systems supporting
topological edge modes [23], as it enables a new kind of topo-
logical lasing [24–28] and the stabilization of nonclassical,
topological light [29,30], e.g., single-photon Fock states in a
topological edge mode [31]. Surprisingly, this can occur even
in the limit of very weak interactions.
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FIG. 1. (a) Standard mechanism for obtaining stable states in
interacting bosonic systems subject to a finite-bandwidth, incoher-
ent pump: transition frequencies increase with increasing excitation
number, eventually having no overlap with the pump spectrum
(blue). (b) This mechanism fails for a Markovian, infinite-bandwidth
pump. (c) A set of orbitals/normal modes, where one mode is guaran-
teed by some symmetry to experience only pumping (red arrow, â1),
while the remaining modes are lossy (blue arrows). The low-density
phase is thus unstable. (d) A symmetry-breaking interaction forces
the modes to hybridize at high photon density, leading to a stable
finite-density state. (e) By subjecting a topological SSH chain to
staggered pumping and loss, symmetry breaking interactions can
induce topological lasing, with an exponentially localized steady
state photon density.

II. PT SYMMETRY

We first consider a parity-time (PT ) symmetric dimer: two
bosonic modes â, b̂ with a tunnel Hamiltonian Ĥ0 = J (â†b̂ +
b̂†â), with â (b̂) experiencing Markovian loss (gain) at a rate
κa (κb). The quantum dynamics of the system’s density matrix
ρ̂ is described by a Lindblad master equation [32,33]:

˙̂ρ = −i[Ĥ0, ρ̂] + κaD[â]ρ̂ + κbD[b̂†]ρ̂, (1)

where D[L̂]ρ̂ ≡ L̂ρ̂L̂† − 1
2 {L̂†L̂, ρ̂}. This system has been

studied extensively in both classical [16,22] and quantum
[34,35] settings, and undergoes a PT breaking transition
when J drops below Jc = 1

4 (κa + κb), becoming dynamically
unstable when J � 1

2

√
κaκb. This has a simple intuitive expla-

nation: for small J , PT is broken and eigenmodes localize,
hence the eigenmode localized on b can become unstable as it
primarily experiences gain. When instead J � κa, κb, PT is
unbroken and eigenmodes delocalize. Assuming that κa > κb,
this means both eigenmodes experience net loss, making them
dynamically stable.

In the regime 2J <
√

κaκb, the system is dynamically un-
stable, and a nonlinearity is needed to restore stability. In a
standard PT laser, this would be done by adding nonlinear
dissipation which causes the gain to saturate at a large photon
number (see, e.g., Refs. [18,34]). Here, we propose an alter-
native stabilization mechanism that only uses a Hamiltonian
interaction which restores PT as the number of excitations
increases. This requires a nonlinear hopping J → J̃ (n) where
the hopping strength grows monotonically with the total pho-
ton number n. We consider Ĥint = J

2
n̂
n∗ (â†b̂ + b̂†â) where n̂ ≡

â†â + b̂†b̂, and n∗ a dimensionless constant setting the scale
of the nonlinearity. The total Hamiltonian is thus

Ĥ ≡ Ĥ0 + Ĥint = J

(
1 + 1

2

n̂

n∗

)
(â†b̂ + b̂†â). (2)

Note that similar density-dependent tunneling interactions
have been studied in a variety of different contexts (e.g.,
Refs. [36–38]).

We study the resulting master equation dynamics using a
standard mean-field decomposition, see Appendix A 1. This
yields the equations of motion:

ṅa = J̃c − κana, ṅb = −J̃c + κbnb + κb, (3)

ċ = 2J̃ (nb − na) − κa − κb

2
c, (4)

where we have defined the density dependent hopping
J̃ (na, nb) = J[1 + 1/(2n∗)] + J (na + nb)/n∗, the local densi-
ties na ≡ 〈â†â〉, nb ≡ 〈b̂†b̂〉, and the current c ≡ i〈a†b − b†a〉.
Note that in this mean-field approximation, the interaction
acts exactly as expected, where the coupling strength in-
creases linearly with the total number of photons in the
cavity. The bare coupling strength is increased by a factor of

1
2n∗ which are related to the zero point fluctuations coming
from the canonical commutation relations. The equations can
be solved self-consistently, and show that as expected, our
Hamiltonian nonlinearity always stabilizes the system in
regimes where the linear dynamics is unstable. Making a
Gross-Pitaevskii approximation, one can solve for the ex-
pected coherent state amplitudes a, b = |〈â〉|2, |〈b̂〉|2 in the
steady state as (see Appendix A 2)

|a|2 + |b|2
2n∗ = 0 J � 1

2

√
κaκb,

|a|2 + |b|2
2n∗ =

√
κaκb

2J
− 1 J � 1

2

√
κaκb, (5)

indicating a lasing transition when 2J = √
κaκb. We give an

analytic expression for the stability conditions, as well as
phase diffusion in the finite density regime in Appendix A 2.
We also find that the mean-field description gives a good ap-
proximation to exact master equation numerics in the regime
of large density, see Appendix A 4.

We stress that there are significant qualitative and quantita-
tive differences between our Hamiltonian stabilization route
to PT lasing versus approaches based on standard gain
saturation [1,34]. In a conventional PT laser [18,21], the
gain is naturally cutoff at large photon values, i.e. the gain
rate depends on the number of photons in the gain mode,
κb ≡ κ (1 + 〈n̂b〉/ncrit )−ν for some ν > 0 [34]. Such a dissi-
pative nonlinearity can of course stabilize almost any kind
of pumping-induced instability (i.e., one is effectively just
turning down the pumping strength with increasing density).
As such, for this conventional route to stability, the presence
or absence of PT is largely irrelevant.

In marked contrast to this, the PT symmetry of the lin-
earized dynamics is critical to stabilization in our nonlinear
hopping model. When κa = κb ≡ κ , if one breaks the PT
symmetry by adding a relative detuning δ, Ĥ → Ĥ + δ(â†â −
b̂†b̂), a standard PT laser with gain saturation experiences al-
most no qualitative changes, see Appendix A 3. Alternatively,
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the nonlinear hopping model introduced here immediately
becomes unstable when there is a nonzero detuning. This
behavior is independent of the nonlinearity strength, and re-
flects the fact that with a nonzero δ, it is no longer possible
to dynamically tune the system between the PT broken and
unbroken phases by varying density. This stark difference is
shown in Fig. 5. The strong sensitivity to δ in our setup could
potentially be harnessed for a new kind of non-Hermitian
sensing modality [39–45].

III. CHIRAL SYMMETRY

We now consider a more general version of our stabi-
lization mechanism, where the relevant interactions break a
purely Hamiltonian symmetry at nonzero densities. We will
consider the example of photons hopping on a lattice with
a chiral symmetry, and use on-site Kerr nonlinearities (i.e.,
Hubbard interactions U ) to provide the requisite symmetry
breaking. Note that this is distinct from previous studies ex-
ploring the consequences of squeezed dissipation in chiral
bosonic lattices having linear dynamics [46–50]. Our work
involves no squeezing, and is focused on nonlinear dynamics
(something not treated in these previous works).

Let Ĥ0 be a quadratic Hamiltonian that has a chiral
sublattice symmetry Û : ÛĤ0Û† 	→ −Ĥ0. Examples include
nearest-neighbor tight-binding models on any bipartite lat-
tice. A particularly simple example is a 1D lattice Ĥ0 =∑

i Jiâ
†
i âi+1 + H.c. The chiral symmetry here is Û : Û âiÛ† 	→

(−1)iâi. More generically, such a chiral symmetry defines two
sublattices A, B. If we have local annihilation operators âi ∈ A
and b̂i ∈ B, then

Û âiÛ† = âi, Û b̂iÛ† = −b̂i. (6)

We consider a setup where we apply very weak incoherent
pumping (gain) with a rate η2κ (η � 1) on the A sublattice,
and loss with a rate κ on the B sublattice. This is described by
the Lindblad master equation:

˙̂ρ = −i[Ĥ, ρ̂] + κ

(∑
i

η2D[â†
i ] + D[b̂i]

)
ρ̂ (7)

with Ĥ = Ĥ0 + Ĥint. The hopping Hamiltonian Ĥ0 can be
diagonalized as Ĥ0 = ∑

α εα d̂†
α d̂α . By making suitable unitary

rotations of the jump operators, we can rewrite the dissipative
part of the master equation as∑

i

D[â†
i ] = 1

4

∑
α

D[d̂†
α + Û d̂†

αÛ†], (8)

∑
i

D[b̂i] = 1

4

∑
α

D[d̂α − Û d̂αÛ†], (9)

using nothing more than the chiral symmetry Appendix B 2.
Note that Û d̂αÛ† is necessarily also an eigenmode annihila-
tion operator with energy −εα .

Consider first the case where there are no interactions,
and Ĥ0 has a nonzero spectral gap 	 (|εα| > 	 > 0) such
that κ � 	. We can then approximate D[d̂ (†)

α ± Û d̂ (†)
α Û†] ∼

D[d (†)
α ] + D[Û d̂ (†)

α Û†]. Each mode thus experiences a net de-
cay rate κ (1 − η2)/2 ∼ κ/2, and the dissipative steady state
is simple: each mode will be in a thermal state with average

photon number

nth = η2

1 − η2
� 1. (10)

The physics is more interesting in the case where Ĥ0 has
n > 0 zero energy eigenmodes d̂0,i, i = 1, . . . , n, that are
mapped to themselves by the chiral symmetry, Û d̂0,iÛ† = d̂0,i.
Eqs. (8) and (9) imply that these modes will only experience
incoherent pumping and not any loss. These modes are thus
unstable regardless of how small η is, with a gain rate of η2κ .
Intuitively, this is a consequence of the zero modes’ wave
functions only having support on the A sublattice.

We now introduce on-site Kerr (Hubbard) interactions:

Ĥint = U

2

∑
i

(â†
i â†

i âiâi + b̂†
i b̂†

i b̂ib̂i ). (11)

This interaction explicitly breaks the chiral sublattice sym-
metry. Hence, at a mean-field level (where we describe
the system with a self-consistent quadratic Hamiltonian),
the interaction will cause the unstable, symmetry protected
zero modes to hybridize with the stable lossy modes as the
dynamics drives the system from low to high density. This hy-
bridization will induce loss into the original unstable modes,
leading ultimately to a stable, finite-density state. In what
follows, we give a specific example of this mechanism in a
lattice with a protected topological edge mode, showing that
the mean-field picture sketched here is accurate at large pho-
ton density and predicts topological lasing. We further show
that the mechanism also works in non-mean-field low den-
sity regimes, leading to edge states stabilized in non-classical
states.

IV. TOPOLOGICAL LASING

Generating a lasing transition in a photonic lattice where
only a topological edge lases is a difficult engineering
challenge. Many solutions often require injecting extremely
narrowband pumping at the edge-mode frequency [25,51].
Our symmetry-breaking stabilization mechanism opens a new
pathway for realizing this goal using completely broadband,
Markovian pumping. We will consider a concrete example
of a 1D bosonic Su-Schrieffer-Heeger (SSH) chain [52,53],
something that has been realized in a variety of experi-
mental platforms, including superconducting circuits [54],
micropillar polariton cavities [26], photonic cavities [55],
ring resonators [27,28,56], and optomechanics [57]. With an
odd number of sites, this lattice has a single, topologically
protected, zero energy edge mode, where the topology is pro-
tected by the chiral sublattice symmetry. The noninteracting
Hamiltonian is

ĤSSH = −J
N−1∑
i=1

(1 − δ)â†
i b̂i + (1 + δ)b̂†

i âi+1+, (12)

where −1 < δ < 1. This system is in a topological regime
when δ > 0, and there exists a single zero energy edge mode
that lives on only the A sublattice (i.e., n = 1).

Following our general recipe, we apply incoherent pump-
ing to the A sublattice and loss to the B sublattice. Such
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FIG. 2. Left. Spectrum (solid black lines) and edge-mode overlap
with the B sublattice (solid red) for a mean-field description of our
driven-dissipative SSH model, where the effective Hamiltonian is
density dependent. Interactions and pumping generate self-consistent
on-site energies 	i, modifying the spectrum and wave functions.
When the B-lattice overlap matches the gain to loss ratio η2, the
dynamics achieves stability. This then determines the steady state
photon density (dashed red lines). Right: Wave-function profile of
the edge mode in mean-field theory when U |d0|2 = 0 (upper) and
U |d0|2 = 1.4 (lower). When the steady state density is 0 chiral sym-
metry is unbroken, and the edge-mode wave function vanishes on the
B sublattice. As the density increases, the chiral symmetry is broken,
causing the edge mode to have overlap with both sublattices. In all
plots we have taken N = 21 sites, and δ = 0.4.

localized, incoherent pumping can be achieved experimen-
tally by, e.g., coupling a site âi to a lossy auxilliary reservoir
ĉ via a coherent squeezing interaction (Ĥ = gâiĉ + H.c.). If
the auxilliary cavity has a loss rate 
 � g, tracing out the
auxilliary cavity gives the effective dynamics 4g2



D[â†

i ], as
desired.

We will again consider an interaction Ĥint =
U
2

∑
i â†

i â†
i âiâi + b̂†

i b̂†
i b̂ib̂i. The full master equation is then

given by Eq. (7) with Ĥ = ĤSSH + Ĥint. This corresponds to
a specific example of a driven-dissipative SSH Bose-Hubbard
chain, with alternating gain and loss.

The semiclassical (Gross-Pitaevskii) equations for the dy-
namics of ai ≡ 〈âi〉, bi ≡ 〈b̂i〉 are given by

ȧi = −iJ (1 + δ)bi − i(1 − δ)bi−1 − iU |ai|2ai + κη2

2
ai,

ḃi = −iJ (1 + δ)ai − i(1 − δ)ai+1 − iU |bi|2bi − κ

2
bi. (13)

We can then define a set of self-consistent on-site potentials
	i and a real space wave-function ψi (see Appendix B 1 for
more details):

	i = U |ψi|2|d0|2, (14)∑
j

[(HSSH)i j + 	iδi j]ψ j = λψi. (15)

d0 is the self-consistent edge mode amplitude (which depends
on the local on-site energy 	i), and (HSSH)i j the single-
particle SSH Hamiltonian matrix. As can be seen in Fig. 2, as
the self-consistent on-site energy U |d0|2 ≡ ∑

i 	i is increased
from zero (i.e., the photon density increases), the overlap
of the self-consistent edge mode on the lossy B sublattice

FIG. 3. (a) Exact steady-state photon density for a five- site
driven-dissipative interacting SSH chain [c.f., Eqs. (7) and (12)] with
U = κ = J , ξ = 10−2, and η = ξ 2. Despite the global, Markovian
pumping in the system, the photonic density is strongly localized
at the left edge. The inset depicts the first five sites of an SSH
chain where solid (dashed) lines represent strong (weak) bonds. Even
(odd) numbered sites experience loss shown with blue arrows (gain,
red arrows), and each site has a local Kerr nonlinearity. (b) Steady
state total photon number versus the pump to loss ratio η obtained
from mean-field theory (red) and from exact numerics (blue). Ex-
act numerics asymtote to 1 photon in the weak pump limit as it
approaches a Fock state in the edge mode for η � ξ 2 (dashed ver-
tical line). Here, U = 0.1, ξ = 10−3, κ = J = 1. (c) (In)fidelity to a
single photon Fock state in the topological edge mode for ξ = 10−1

(black), 10−2 (blue), and 10−3 (red) versus the nonlinearity U . Here,
κ = J = 1, η = ξ 2.

also increases, reflecting the breaking of chiral symmetry and
inducing stability in this mode. This delocalization leads to
a finite-density steady state. For weak κ , the corresponding
density is found by the value of U |d0|2 that makes the spatial
overlap of the edge mode on the B-lattice exactly η2 (the
pumping to loss ratio). The breaking of chiral symmetry also
causes the edge mode to acquire a nonzero energy [c.f. Fig. 2].
As a result, we obtain a stable limit cycle where the zero
mode oscillates at the self-consistent frequency generated by
the Kerr nonlinearity, see Appendix B 1.

V. TOPOLOGICAL FOCK STATES

In parameter regimes we are able to test numerically, the
semiclassical analysis of Eq. (7) is accurate if the stabilized
photon number is large. However, the stabilization mecha-
nism is not limited to these parameter regimes. Consider our
driven SSH chain in the regime where U ∼ J ∼ κ , and the
dimensionless pumping parameter η is chosen so that semi-
classics would predict a steady state with O(1) photons in
the edge mode. In this regime, we show that it is possible
to instead stabilize a single photon Fock state in the edge,
where the steady state density matrix can be approximated
as ρ̂ss ∼ d̂†

0 |0〉〈0|d̂0 ≡ ρ̂1, with |0〉 the vacuum and d̂0 the
annihilation operator of the symmetry-protected edge mode,
see Fig. 3(a). It has been a long-standing challenge to engi-
neer nonclassical light in a topological edge mode [31], and
the proposed stabilization mechanism provides an alternative
method.

To understand the origin of this effect, we first define
the ratio between weak and strong bonds ξ ≡ (1 − δ)/(1 +
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δ), which is related to the localization length ξL by ξL =
−[log ξ ]−1. We write the pumping rate parameter η in Eq. (7)
as η ≡ η′ξ 2. Consider the physics in the strong localization
case where ξ → 0 while η′ = O(1) stays fixed. To leading
order in ξ 2, we find that the steady state is exactly a Fock
state, that is

ρ̂ss = d̂†
0 |0〉〈0|d̂0 + O(ξ 2), (16)

see Appendix B 4 for a derivation. This is shown in Fig. 3(c).
This is intimately related to the stabilization mechanism: be-
cause the linear dynamics are unstable, and the discreteness of
the nonlinearity means that it only acts nontrivially when there
are at least two photons in the lattice, the quantum dynamics
can never stabilize fewer than a single photon in the steady
state Appendix B 4, see Fig. 3(b). The upshot is that one can
stabilize a Fock state to arbitrary accuracy in this regime by
choosing ξ appropriately.

Despite the fact that the steady state in this case only has
density in a single mode, we stress the fact that the physics
here cannot be captured by any simple effective single-mode
theory, e.g., single photon pumping and two-photon loss (see
Appendix B 4). The stabilization mechanism is completely re-
liant on the fact that the edge mode is able to weakly hybridize
with the stable bulk modes as the photon density increases.
Furthermore, our numerically exact master equation simu-
lations show that our Fock state stabilization mechanism is
extremely robust against variations. The nonlinearity can be
an order of magnitude weaker than the loss rate and the
quadratic Hamiltonian (U � κ, J) with little impact on the
final fidelity, see Fig. 3(c). This is a further potential advantage
of our method: it can generate Fock states with extremely
weak nonlinearities.

VI. CONCLUSION

In this paper, we have both introduced and analyzed a new
generic method that allows nondissipative Hamiltonian inter-
actions and nonlinearities to stabilize finite density phases in
bosonic systems subject to broadband, incoherent pumping.
The mechanism does not rely on energetics, but instead uses
the ability of interactions to effectively break symmetries at
finite density. Our method is highly adaptable, and represents
a generic mechanism for using incoherent, Markovian pump-
ing and Hamiltonian nonlinearities to stabilize finite density
phases of matter in bosonic lattices (including nonclassical
states such as Fock states). This would not be possible using
previously known mechanisms, which require nonlinear loss
to stabilize infinite bandwidth pumping. While we focused
here on chiral symmetry, we expect that our mechanism can
also be used to stabilize topological lasing in lattice models
protected by different kinds of symmetry.

Note added: During the final preparation of this work,
we became aware of Ref [58], which identified a related
mechanism for selectively populating edge modes in a non-
interacting fermionic model. Note that the physics in the
fermionic case is very different, as unlike bosons, there is
no possibility of dynamical instabilities, hence finite density
states of driven setups emerge generically even without inter-
actions or nonlinearity.
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APPENDIX A: PT SYMMETRY

1. Mean field solution

Consider the model proposed in the main text, given by

Ĥ = J

(
1 + n̂

2n∗

)
(â†b̂ + b̂†â), (A1)

L̂1 = √
κaâ, L̂2 = √

κbb̂†. (A2)

We can calculate the time evolution of operator av-
erages using the adjoint Liouvillian ∂t 〈Ô〉 = 〈i[Ĥ, Ô] +
1
2

∑
i[L̂

†
i , Ô]L̂i + L̂†

i [Ô, L̂i]〉. We define photon number opera-
tors n̂a = â†â, n̂b = b̂†b̂, and the current operator ĉ ≡ i(â†b̂ −
b̂†â). Note that the operator â†b̂ + h.c. is conserved by the
Hamiltonian dynamics, and so it decays to zero in the steady
state. We can calculate that

∂t 〈n̂a〉 = −J

〈(
1 + n̂

2n∗

)
ĉ

〉
− κa〈n̂a〉, (A3)

∂t 〈n̂b〉 = J

〈(
1 + n̂

2n∗

)
ĉ

〉
+ κb〈n̂b〉 + κb, (A4)

∂t 〈ĉ〉 = −2J

〈(
1 + n̂

2n∗

)
(n̂a − n̂b)

〉
− κa − κb

2
〈ĉ〉. (A5)

At this point, what we have is exact, but the equations do
not close on themselves (i.e., the RHS involves three- and
four-point averages). To make progress, we make a Gaussian
approximation, and evaluate correlators on the RHS by ignor-
ing higher cumulants (i.e., we assume that Wick’s theorem
holds). This yields

〈n̂ĉ〉 = i〈â†ââ†b̂〉 + i〈b̂†b̂â†b̂〉 − i〈â†âb̂†â〉 − i〈b̂†b̂b̂†â〉
= (2〈n̂〉 + 1)〈ĉ〉, (A6)

and

〈n̂(n̂a − n̂b)〉 = 〈
n̂2

a

〉 − 〈
n̂2

b

〉 = (2〈n̂〉 + 1)〈n̂a − n̂b〉. (A7)

Putting everything together, this gives us the result quoted in
the main text:

∂t 〈n̂a〉 = −J

〈
1 + n̂ + 1/2

n∗

〉
〈ĉ〉 − κa〈n̂a〉, (A8)

∂t 〈n̂b〉 = J

〈
1 + n̂ + 1/2

n∗

〉
〈ĉ〉 + κb〈n̂b〉 + κb, (A9)

∂t 〈ĉ〉 = −2J

〈
1 + n̂ + 1/2

n∗

〉
〈n̂a − n̂b〉 − κa − κb

2
〈ĉ〉. (A10)

2. Semiclassical stability analysis and phase noise

The mean-field analysis above allowed us to derive an
equation of motion that corresponded to a density dependent
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hopping. We can similarly consider a semiclassical equa-
tion of motion for the field operators a ≡ 〈â〉, b ≡ 〈b̂〉 starting
from Eqs. (A1) and (A2). This gives

ȧ = iJ

(
1 + |a|2 + |b|2

2n∗

)
b + iJa

2n∗ (a∗b + b∗a) − κa

2
a,

(A11)

ḃ = iJ

(
1 + |a|2 + |b|2

2n∗

)
a + iJb

2n∗ (a∗b + b∗a) + κb

2
b.

(A12)

We can simplify this significantly by recalling that in the full
quantum system, we know that 〈â†b̂ + b̂†â〉 is always zero
in the steady state and conserved by the Hamiltonian. We
therefore will neglect the term (a∗b + b∗a) in the equations of
motion (which does not affect the fixed point or stability), to
get the much simpler dynamical system of equations

∂t a = −iJ

(
1 + |a|2 + |b|2

2n∗

)
b − κa

2
a, (A13)

∂t b = −iJ

(
1 + |a|2 + |b|2

2n∗

)
a + κb

2
b. (A14)

Note that in this form, the nonlinearity acts identically to the
mean-field case, where the coupling J scales with density. We
can calculate the steady state populations analytically, which
gives two solutions, recovering the result from the main text:

n

2n∗ = 0,
n

2n∗ =
√

κaκb

2J
− 1. (A15)

It is trivial to observe that below threshold, when
√

κaκb <

2J , the first solution is dynamically stable, as in this case the

nonlinearity does not affect the linear stability analysis. We
will next show that in the lasing regime

√
κaκb > 2J , the other

solution is dynamically stable.
It is worth noting that the absolute phase of the modes is

unconstrained by the fixed point equations, reflecting the U (1)
symmetry inherent in the problem. In a real laser, noise would
cause this free phase to diffuse, which we can model using the
Langevin equations

∂t a = −iJ

(
1 + |a|2 + |b|2

2n∗

)
b − κa

2
a + √

κaξa, (A16)

∂t b = −iJ

(
1 + |a|2 + |b|2

2n∗

)
a + κb

2
b + √

κbξb, (A17)

where 〈ξa,b(t )ξ ∗
a,b(t ′)〉 = δ(t − t ′) are complex white noise op-

erators. We will expand the equations of motion about the
fixed point and define

a = (ρa + δρa)eiφ, ρ2
a = 2n∗ κb

κa + κb

(√
κaκb

2J
− 1

)
,

(A18)

b = i(ρb + δρb)ei(φ+δφ), ρ2
b = 2n∗ κa

κa + κb

(√
κaκb

2J
− 1

)
.

(A19)

Here, δρa,b are the fluctuating densities of the a, b modes,
respectively, which we will show are constrained to be zero in
the steady state without any noise. The relative phase δφ = 0
as well in the steady state, with φ the free absolute phase.
Making the approximation that δρa,b/ρa,b, δφ � 1, we can
linearize the equations of motion about the stable fixed point
to get:

e−iφ ȧ = ˙δρa + iφ̇(ρa + δρa)

= J

(
1 + (ρa + δρa)2 + (ρb + δρb)2

2n∗

)
(ρb + δρb)eiδφ − κa

2
(ρa + δρa) + √

κae−iφξa, (A20)

−ie−i(φ+δφ)ḃ = ˙δρb + i(φ̇ + ˙δφ)(ρb + δρa)

= −J

(
1 + (ρa + δρb)2 + (ρb + δρb)2

2n∗

)
(ρa + δρa)e−iδφ + κb

2
(ρb + δρb) + √

κbe−i(φ+δφ)ξb. (A21)

From here, it is simple to define the new (real valued) white noise variables ξ ′
a = Im e−iφξa, ξ ′′

a = Re e−iφξa and ξ ′
b =

Im e−i(φ+δφ)ξb, ξ ′′
b = Re e−i(φ+δφ)ξb. By taking the real part of Eqs. (A20) and (A21), we can show that, to linear order, the

densities will be stable around the fixed point by looking at the linearized dynamics:

˙δρa =
(√

κaκb

2
+ κa

κa + κb
(
√

κaκb − 2J )

)
δρb +

( √
κaκb

κa + κb
(
√

κaκb − 2J ) − κa

2

)
δρa + √

κaξ
′′
a , (A22)

˙δρb = −
(√

κaκb

2
+ κb

κa + κb
(
√

κaκb − 2J )

)
δρa −

( √
κaκb

κa + κb
(
√

κaκb − 2J ) − κb

2

)
δρb + √

κbξ
′′
b . (A23)

This corresponds to a dynamical matrix whose eigenvalues are

−κ2
a − κ2

b

4κaκb

⎛
⎝1 ±

√
1 + 16

√
κaκb

(κa − κb)2
(2J − √

κaκb)

⎞
⎠, (A24)

which are negative definite if and only if 2J − √
κaκb < 0 as desired. Similarly, we can take the imaginary part of Eqs. (A20)

and (A21) to show that

φ̇ = κa

2
δφ +

√
κa

ρa
ξ ′

a, (A25)

˙δφ = −κa − κb

2
δφ +

√
κb

ρb
ξ ′

b −
√

κa

ρa
ξ ′

a. (A26)
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Note that this also shows linear stability for δφ since κa − κb > 0. Now, we can go to Fourier space and solve these explicitly as
in terms of the unitless susceptibility χ (ω) ≡ ( κa/2

iω+(κa−κb)/2 ) and the pump/loss ratio r ≡ κb/κa:

δφ(ω) =
√

κa

ρa

χ (ω)

κa/2
(rξ ′

b − ξ ′
a), (A27)

⇒ φ(ω) =
√

κa

ρa

1

iω
[rχ (ω)ξ ′

b + (1 − χ (ω))ξ ′
a]. (A28)

From here, we can finally extract the diffusion constant by considering the long time behavior of the correlation function 〈(φ(t ) −
φ(0))2〉, where 〈·〉 represents a noise average:

〈(φ(t ) − φ(0))2〉 =
∫ ∞

−∞
(eiωt − 1)(eiω′t − 1)〈φ(ω)φ(ω′)〉 dω dω′

= 2πκa

ρ2
a

∫ ∞

−∞

(eiωt − 1)(eiω′t − 1)

−ωω′ [r2χ (ω)χ (ω′)δ(ω + ω′) + (1 − χ (ω))(1 − χ (ω′))δ(ω + ω′)] dω dω′

= 4πκa

ρ2
a

∫ ∞

−∞

1 − cos(ωt )

ω2
[r2|χ (ω)|2 + |1 − χ (ω)|2] dω

= 8π2κa

ρ2
a

r2

(1 − r)2
|t | as t → ∞. (A29)

This gives us the standard Schawlow-Townes phase diffusion
constant, modified by the pump/loss ratio. Note that when
r � 1, then

κa

ρ2
a

r2

(1 − r)2
≈ κa

ρ2
a

r2 = κb

ρ2
b

, (A30)

which tells us that when r � 1 (and the number of photons in
the b mode is much larger than the a mode), then the phase
diffusion of the a mode is essentially locked to the Schawlow-
Townes value of the b mode.

3. Gain saturation

The more standard interaction to stabilize a PT dimer
that occurs often in experiments is gain saturation, where
the gain rate is dependent upon the number of photons in
the gain mode. This can be described using the semiclassical
equations of motion

∂t a = −iJb − κa

2
a, (A31)

∂t b = −iJa + κb

2

1

1 + |b|2/n∗ b. (A32)

We can similarly calculate that there are two solutions: either
a = b = 0, or

|a|2
n∗ = κaκb − 4J2

κ2
a

,
|b|2
n∗ = κaκb − 4J2

4J2
. (A33)

At this point, we remark that in this gain saturation model,
the PT symmetry breaking generates the instability at the
linear level, but is not critical to the actual stabilization mech-
anism. For example, consider the limit of Eqs. (A31) and
(A32) when κa = κb ≡ κ . We can now add a small detuning δ

between the two modes, explicitly breaking the PT symmetry

of the linear dynamics. This is given by the equations of
motion:

∂t a = −iJb − iδa − κ

2
a, (A34)

∂t b = −iJa + iδb + κ

2

1

1 + |b|2/n∗ b. (A35)

Defining the dynamical matrix to be

D(|b|) =
(−iδ − κ

2 −iJ
−iJ iδ + κ

2(1+|b|2/n∗ )

)
, (A36)

then whenever |J|, κ > 0, there exists a value of |b| such that
the real part of the spectrum is negative definite. This can be
observed by noting that when |b| → ∞ there is no gain at all
in the system, only loss, and so the real eigenvalues must be
negative semidefinite. However, for there to be an eigenmode
that is purely imaginary, then it would have to be completely
localized to the a mode, which is impossible if J �= 0. This
tells us that the magnitude in the b mode can never grow in an
unbounded way, as it will always eventually be cutoff. Thus,
the system will eventually stabilize to a fixed average density,
even though the PT symmetry is no longer present.

This is very different from the density-dependent hopping
dimer in Eqs. (A13) and (A14). Adding a detuning will again
explicitly break the PT symmetry, giving the equations of
motion

∂t a = −iJ

(
1 + |a|2 + |b|2

n∗

)
b − iδa − κ

2
a, (A37)

∂t b = −iJ

(
1 + |a|2 + |b|2

n∗

)
a + iδb + κ

2
b. (A38)
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FIG. 4. On the left panel, we can see that the steady state photon
number undergoes a second order transition at κ = J for both the
nonlinear hopping model [c.f., Eqs. (A37) and (A38) with δ = 0]
as well as the gain saturation model [c.f., Eqs. (A34) and (A35),
δ = 0]. On the right, when we add a detuning and break the single
particle PT symmetry, the gain saturation model remains stable with
a steady state photon density that is nearly unchanged (blue curves).
On the other hand, the nonlinear hopping model is immediately
unstable when |δ| > 0 (red shading) unless κ = 0 (red dot). In all
plots, n∗ = 5.

Defining the linear dynamical matrix in the analogous way,
we arrive at

D(n) =
( −iδ − κ

2 −iJ (1 + n/n∗)
−iJ (1 + n/n∗) iδ + κ

2

)
, (A39)

λ(n) = ±1

2

√
(2δ − iκ )2 − 4J2(1 + n/n∗)2, (A40)

with λ(n) the complex eigenvalues. Note that one of these
always has a positive real part, regardless of the density n,
meaning it is always unstable. This reflects the fact that the
PT symmetry was crucial in the stabilization mechanism, as
is highlighted in the main text, and shown in Fig. 4.

4. Beyond mean field

Exact diagonalization in systems of up to order 30 steady
state photons between the two modes shows that the mean
field theory accurately captures the steady state photon density
up to an error decaying inversely with the steady state photon
number. This can be observed in Fig. 5.

APPENDIX B: CHIRAL SYMMETRY

1. SSH limit cycle solution

We can identify the limit cycle of the semiclassical equa-
tions of motion in the SSH chain as the long term solution to
the dynamical equations

ȧi = −iJ (1 + δ)bi − i(1 − δ)bi−1 − iU |ai|2ai + κη2

2
ai,

(B1)

ḃi = −iJ (1 + δ)ai − i(1 − δ)ai+1 − iU |bi|2bi − κ

2
bi, (B2)

where there are N different real-space a site amplitudes (a1

through aN ) and N − 1 different real-space b site amplitudes
(b1 through bN−1). (To make the above consistent with the

FIG. 5. Using exact numerics, we calculate (blue) the deviation
in the number operator from the mean field solution. Further, we
calculate (red) the error in the Gaussian approximation, which we
define as |〈n̂ĉ〉 − (2〈n̂〉 + 1)〈ĉ〉|/〈n̂ĉ〉, c.f., Eq. (A6). We observe both
of them scale roughly as 1/〈n̂〉.

boundary conditions, simply define b0 = bN ≡ 0 to get the
correct equations of motion for a1 and aN ).

We can define the vector �v = (a1, b1, . . . , bN−1, aN )T , and
similarly the dynamical matrix D(�v) such that

�̇v = D(�v)�v, (B3)

where the diagonal elements of D include the nonlinearity

Dii = −iU |vi|2 + (1 − (−1)i )
κη2

4
− (1 + (−1)i )

κ

4
, (B4)

and the off diagonal elements are just the SSH coupling. As
in the main text, we can define the self-consistent edge mode
�d0, which satisfies the self-consistent eigenvalue equation

D( �d0) �d0 = iλ �d0, λ ∈ R. (B5)

From here, we can observe that the limit cycle solution is then
simply

�v(t → ∞) = eiλt �d0, (B6)

since D(�v) = D(eiφ�v) ∀φ ∈ R. Numerically, we find that this
solution is unique and dynamically stable, as is shown in
Fig. 6.

2. Gain and loss in mode basis

Recall that we can write a generic chiral symmetric Hamil-
tonian in the form

Ĥ =
∑

i∈A, j∈B

Hi j â
†
i â j + H.c. ≡

∑
α

εα d̂†
α d̂α, (B7)

where A, B are the sublattices. Then we can define the
chiral symmetry operator Û âiÛ† = âi, Û b̂iÛ† = −b̂i. We de-
fine the unitary transformation from real space operators to
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FIG. 6. This shows the time trace of the dynamical equation of
motion Eq. (B3) using J = 1,U = 0.001, δ = 0.65, κ = 1, η = 0.2.
The left plot shows the real part of the amplitude of the dynamical
vector �v, which begins oscillating periodiclaly time in the long time
limit. The right shows the same, but in the frame rotating at the
critical frequency λ defined in Eq. (B5).

Hamiltonian eigenmodes as

d̂α ≡
∑

i

ψA
α [i]âi + ψB

α [i]b̂i. (B8)

The chiral symmetry tells us that for every mode d̂α , there
is another mode d̂−α that is also a Hamiltonian eigenmode
with opposite energy. It’s expansion in real space then must
be defined by

d̂−α ≡
∑

i

ψA
α [i]âi − ψB

α [i]b̂i. (B9)

We can calculate the inverse of these maps as

âi =
∑
α>0

ψA
α [i]∗(d̂α + d̂−α ), (B10)

b̂i =
∑
α>0

ψB
α [i]∗(d̂α − d̂−α ), (B11)

from unitarity. We assume that we have dissipation in the form
of

L̂ = η2κ
∑

i

D[â†
i ] + κ

∑
i

D[b̂i]. (B12)

Recall that the Liouvillian is unchanged under a unitary trans-
formation of the jump operators, i.e.,

∑
i

D[L̂i] =
∑

j

D
[∑

i

UjiL̂i

]
, (B13)

where Ui j is a unitary matrix. Therefore, we can observe the
following identites:

η2κ
∑

i

D[â†
i ] + κ

∑
i

D[b̂i] (B14)

= η2κ
∑

i

D
[∑

α>0

ψA
α [i](d̂†

α + d̂†
−α )

]

+ κ
∑

i

D
[∑

α>0

ψB
α [i]∗(d̂α − d̂−α )

]
(B15)

= κ

2

∑
α>0

η2D[d̂†
α + d̂†

−α] + D[d̂α − d̂−α] (B16)

= κ

4

∑
α

η2D[d̂†
α + Û d̂†

αÛ ] + D[d̂α − Û d̂αÛ], (B17)

recovering the result in the main text.

3. Effective nonlinear hopping

We begin by considering the weakly interacting regime,
where we expect thresholdless lasing of the topological edge
mode. In the main text, we gave an intuitive picture that the
edge mode (localized to the A sublattice) begins to overlap
strongly with the B sublattice, the instability is cut off, gener-
ating a lasing regime.

This real space picture is useful for the mean-field treat-
ment. Alternatively, we could ask what the interaction looks
like in the mode picture. As before, we define quadratic SSH
Hamiltonian (but this time not distinguish between sublat-
tices)

ĤSSH = −J
N−1∑
i=1

(1 + (−1)iδ)â†
i âi+1 + H.c. ≡

∑
α

εα d̂†
α d̂α,

(B18)

d̂α =
∑

i

ψα[i]âi, (B19)

where we have defined the mode energy εα for the α mode,
and the real space wave function profile ψα[i]. Again taking
the chiral symmetry to be Û , it will be useful to define

d̂−α ≡ Û d̂αÛ† ⇒ ε−α = −εα, (B20)

where we will take N to be odd so there is a singular zero
mode, and let d̂0 = Û d̂0Û†. Thus, the quadratic master equa-
tion becomes

∂t ρ̂ = −i
∑

α

[εα d̂†
α d̂α, ρ̂]

+ κ

4
(D[d̂α − d̂−α] + η2D[d̂†

α + d̂†
−α])ρ̂. (B21)

Now, we want to expand the interaction term in this mode
basis:

Ĥint = U

2

∑
i

â†
i â†

i âiâi ∼ U
∑

i

〈â†
i âi〉â†

i âi

= U
∑
i,α,β

〈â†
i âi〉ψα[i]ψβ[i]d̂†

α d̂β. (B22)
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Again, letting η � 1, then 〈â†
i âi〉 ∼ |ψ0[i]|2〈d̂†

0 d̂0〉. Next,
since η � 1, in the steady state the bulk modes are nearly
in vacuum, and so d̂αρ̂ss ∼ 0 ∀α �= 0. Therefore, the only
relevant terms in the interaction are of the form

Ĥint ∼ U 〈d̂†
0 d̂0〉

∑
i,α

ψ∗
α [i]|ψ0[i]|2ψ0[i]d̂†

α d̂0, (B23)

and so this again reduces to just density dependent hopping,
this time instead of between modes in the dimer, it is between
the edge modes and the lossy bulk modes of the SSH chain.

4. Topological fock states

As observed in the main text, the semiclassics breaks down
when it predicts O(1) photons in the steady state. We will
show that the steady state should instead be a topological Fock
state, up to corrections that are perturbative corrections.

We will define the following quantity:

ξ ≡
(

1 + δ

1 − δ

)
, (B24)

where the localization length ξL = −[log ξ ]−1, and reparame-
terize η = η′ξ 2, where we will be taking ξ to be a small value
and η′ a dimensionless O(1) parameter.

The master equation is then

∂t ρ̂ = − i
∑

α

[εα d̂†
α d̂α + Ĥint, ρ̂]

+ κ

4
(D[d̂α − d̂−α] + η′2ξ 4D[d̂†

α + d̂†
−α])ρ̂. (B25)

Now, we first consider the scenario when η′ = 0. In this case,
we have only loss, and there are exactly two degenerate steady
states. These are the vacuum ρ̂0 ≡ |0〉〈0| and ρ̂1 ≡ d̂†

0 |0〉〈0|d̂0

the singly excited edge mode Fock state, which is a steady
state because it sees no loss. We cannot, however, add more
excitations because the interaction tells us these are no longer
eigenmodes of the Hamiltonian.

Now, we turn on η′. To zeroth order, we assume that the
perturbation does nothing except within the degenerate steady
space manifold. Limiting ourselves to just these two pure
states, all the gain wants to do it pump photons from the
vacuum into the single Fock state ρ̂1, which becomes now the
nondegenerate steady state.

To next order, we need to consider the possibility that
the pumping can push ρ̂1 into the doubly excited subspace.
However, because ρ̂2 ≡ d̂†

0 ρ̂1d̂0 does not commute with the
Hamiltonian, it has a finite lifetime. Now, we will calculate the
different decay rates and channels to leave the doubly excited
manifold. Before doing so, it is critical to observe that, by
making the localization length small, we make it difficult for
the edge mode to tunnel into any other mode:

ψ0[i] =
√

1 − ξ 2 sin(π i/2)ξ (i−1)/2, (B26)∑
α �=0

|〈0|d̂α d̂0Ĥd̂†
0 d̂†

0 |0〉|

= U

2

∑
α �=0,i

|ψα[i]ψ0[i]3|

4

4

4

2

FIG. 7. Scaling of the Fock fidelity versus the unitless hopping
asymmetry ξ , which is also related to the localization length, for
various values of U (left) or η′ (right). Note the predicted quadratic
scaling, as well as the strong robustness to parameters. Here, η ≡
η′ξ 2,U = J = κ = 1 unless otherwise specified in the plot. Inset:
Schematic depicting the Fock stabilization mechanism and scaling
properties.

= U

2
|ψ0[0]3|

∑
α �=0

|ψα[0]| + O(ξ 3)

= O(ξ ). (B27)

Where the key observation is that the overlap of the edge
mode on the first lattice site is |ψ0[1]|2 = 1 − ξ 2, and so by
the unitarity of the transformation,

∑
α �=0 |ψα[1]|2 = ξ 2, and

so
∑

α �=0 |ψα[0]| = O(ξ ). Now, we can begin to do power
counting in powers of ξ . For the Liouvillian to map ρ̂2 → ρ̂1,
the nonlinearity must act on both sides of the density matrix
to move density from the zero mode to any other eigenmodem
making it an O(ξ 2) process. The linear loss dissipation can
then move this population back to vacuum. Alternatively, the
nonlinearity must act twice on both sides of the density matrix
to transfer population from the doubly excited state so having
no density on the edge mode, which can then decay back to
vacuum, which is therefore an O(ξ 4) process. Denoting ρi

to be the probability to be in state ρ̂i, we can define the rate
equations (just keeping power of ξ )

ρ̇0 = −ξ 4ρ0 + ξ 4ρ2, (B28)

ρ̇1 = ξ 4ρ0 + ξ 2ρ2 − ξ 4ρ1, (B29)

ρ̇2 = ξ 4ρ1 − (ξ 4 + ξ 2)ρ2. (B30)

These three equations sum to zero (as expected by the conser-
vation of probability). Solving them gives

ρ1 = ξ 2 + ξ 4

ξ 2 + 3ξ 4
= 1 − 2ξ 2 + O(ξ 4), (B31)

ρ0 = ρ2 = ξ 4

ξ 2 + 3ξ 4
= ξ 2 + O(ξ 4). (B32)

This somewhat heuristic argument is sufficient to perfectly
capture the scaling with ξ (c.f., Fig. 7).

We now wish to show that this cannot be reduced to any
simple effective, Markovian, single-mode dynamics. There-
fore, one cannot use any combination of single-photon pump-
ing, single- or two-photon loss, or any number-conserving
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FIG. 8. This shows the fidelity of the steady state of the master
equation in Eq. (B34) as a function of γ /κg for varying values of
κl/κg. Note the optimal value of κl = 0, and γ ∼ κg, which gives a
fidelity of around 0.6.

Hamiltonian nonlinearity to stabilize a single photon Fock
state. Consider the single-mode quantum master equation

˙̂ρ = L̂ρ̂, (B33)

L̂ = −i

[
	n̂ + U

2
n̂2, •

]
+ κgD[â†] + κlD[â] + γD[â2],

(B34)

with n̂ ≡ â†â. Firstly, we can observe that we have a U (1)
weak symmetry generated by total photon number n̂ [59].
Hence, the steady state ρss defined by L̂ρss = 0 commutes
with n̂. Because the Hamiltonian Ĥ = 	n̂ + U

2 n̂2 is only a
function of n̂, this means the steady state is completely in-
dependent of the parameters 	,U , and so without loss of
generality we can set them to be zero. Thus, we only need
consider the dissipative part of the dynamics. There are two
dimensionless parameters γ /κg and κl/κg, and we can observe
that, after optimizing over these, the fidelity to a single photon
Fock state never reaches above ∼0.6, see Fig. 8.

FIG. 9. Fock state infidelity 1 − F as a function of additional
loss on the B sublattice [c.f., Eq. (B35)]. This shows a fixed value
of the nonlinearity U = J = 1, and optimizing over the A-sublattice
loss rate κ , the gain/loss ratio η, and the hopping asymmetry ξ . The
dotted line is a guide to the eye, showing power law decay (γ /U )1/3.

FIG. 10. We look at mean-field dynamics of pairs of SSH chains
of length N and N + 1. We define neven (neven) to be the steady
state photon total photon number of the chain of length N (N + 1),
for N = 16, 20, 24, 28. We find that as the localization length ξL/N
becomes small compared to system size, the results converge to give
the same result, as expected. Parameters used here are κ = J = 1 and
η = U = 0.1, but the results are general across parameter regimes.

5. Robustness to additional loss

In this section, we will consider the robustness of the topo-
logical edge mode Fock state stabilization to unwanted loss
on the B sublattice. We will model this as

˙̂ρ = −i[ĤSSH + Ĥint, ρ̂] + κ
∑
i∈A

D[âi]ρ̂

+ κη2
∑
i∈B

D[â†
i ]ρ̂ + γ

∑
i∈B

D[âi]ρ̂, (B35)

where ĤSSH is defined in Eq. (B19) and Ĥint = U
2

∑
i â†

i â†
i âiâi

is the same on-site Kerr nonlinearities we have been consider-
ing throughout. If we hold the nonlinearity U = J = 1 fixed
and optimize over the remaining parameters (κ, η, ξ ), we can
see that the Fock state infidelity grows monotonically with
the B lattice loss rate γ with a power law that appears to scale
roughly as (γ /U )1/3 see Fig. 9.

6. Even-length SSH chains

Throughout the manuscript and Supplemental Material,
we have considered SSH chains of an odd number of sites
because they have an exact zero mode localized to a single
sublattice, simplifying both calculations and our intuition. For

FIG. 11. This is a recreation of the data shown in Fig. 6, except
now we look at the case of an even length (N = 6) and odd length
(N = 5) chain. We take values η = ξ 2, U = J = κ = 1 as before,
and observe the same scaling. Note that the even length chain has
slightly lower fidelity than odd.
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an SSH chain with an even number of lattice sites, there
exist two edge modes that live on opposite sides of the chain.
They hybridize extremely weakly under the Hamiltonian,
so that the symmetric and antisymmetric combinations are
the true Hamiltonian eigenmodes, which technically live on
both sublattices. The strength of this hybridization decays
exponentially with the edge mode localization length, as the
Hamiltonian is local, and so the edge modes become degener-
ate zero modes in the thermodynamic limit. More concretely,
if the localization length ξL is much smaller than the system
size,

ξL

N
= −

[
N log

(
1 − δ

1 + δ

)]−1

� 1, (B36)

then we claim that the even and odd chain lengths should
be indistinguishable. This is because the relaxation dynamics
occur exponentially faster than the system can realize that the
edge is no longer a true eigenmode. We confirm this with
mean-field dynamics in Fig. 10.

Similarly, we can ask how the even and odd length chains
differ in the Fock state regime. We can run exact diagonaliza-
tion on small systems to see how the fidelity to a Fock state
varies as we tune ξ = (1 − δ)/(1 + δ). Here, we see that both
even and odd chains have the same scaling parameter where
the (in)fidelity scales proportionally to ξ 2. However, the odd
numbered chain has a larger prefactor, indicating that it does
slightly poorer than the odd numbered case (as expected), but
that it scales asymptotically in the same manner. This is shown
in Fig. 11.
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