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Bloch-wave interferometry of driven quasiparticles in bulk GaAs
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We show that the polarizations of sidebands emitted from bulk gallium arsenide driven by a strong terahertz
(THz) field while probed with a weak near-infrared laser can be viewed as interferograms from a Michelson-like
interferometer for Bloch waves. The fringe contrast of an interferogram is a measure of the nonequilibrium
dephasing of Bloch waves in this strongly driven system. An interferogram’s oscillation frequency is determined
by, among other factors, the THz field strength FTHz and the reduced masses of electron-hole pairs. A simple
analytic model brings all measured and calculated spectra into agreement with adjustment of only a single
dephasing constant, and predicts the scaling of interferograms with FTHz.
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I. INTRODUCTION

Since Thomas Young demonstrated the wave nature of
light through interference phenomena, physicists have in-
vented many kinds of interferometers to extract information
from the differences in phase between superimposed waves.
For example, A. A. Michelson invented the interferometer
that bears his name to reject the hypothesis of a stationary
luminiferous ether [1]. After the advent of quantum mechan-
ics, Thomson and Davisson used interference phenomena to
demonstrate the wave nature of free electrons [2,3]. Decades
later, a Young’s-type double-slit experiment demonstrated the
wave nature of cold atoms [4]. The dynamic phase of a matter
wave is sensitive to its acceleration, which has been exploited
to measure inertial forces by interfering atoms evolving over
two quantum paths in, for example, a Mach-Zehnder interfer-
ometer configuration [5].

Near thermal equilibrium, measurements in solids have
yielded observations of interference phenomena such as
standing electronic Bloch waves on metal surfaces [6–8]. Fur-
thermore, both electronic Young’s double-slit interferometers
[9] and Mach-Zehnder-type interferometers [10] have been re-
alized in quasi-2D electron gases in gallium arsenide (GaAs).
However, in these near-equilibrium systems the electrons do
not accelerate, and thus the inertial properties of quasiparti-
cles, which can be represented as packets of Bloch waves,
cannot be directly probed.

Charged quasiparticles accelerated by electric fields scatter
rapidly, complicating the observation of interference phenom-
ena far from equilibrium. The recent development of strong
laser fields addresses this problem by enabling coherent accel-
eration of quasiparticles on picosecond and sub-picosecond
time scales [11,12]. In high-harmonic generation (HHG) in
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solids, a single strong laser field creates and then accelerates
charged excitations [13–18]. HHG enables studies of quasi-
particle dynamics with attosecond resolution [19,20], and is
sensitive to many details of the interactions of quasiparti-
cles with their host crystals [19–24]. In 2015, time-resolved
interferences of quasiparticles were observed in HHG in a
semiconductor driven by strong terahertz pulses [18]. How-
ever, such quantum interferences in HHG cannot be easily
attributed to a small number of momentum-space trajectories
for the Bloch waves. A Huygens-Fresnel picture of HHG
has been recently proposed [25], in which each Bloch wave
created by the laser field is treated as a composition of an
infinite number of wavelets, and the HHG spectrum is cal-
culated by integrating over the interfering contributions from
all wavelets. This picture does not map onto a familiar inter-
ferometer, and thus it is not yet simple to extract information
about the inertial properties of quasiparticles from an HHG
spectrum.

In this paper, we demonstrate that a related process, high-
order sideband generation (HSG) [26–32], can be viewed as
the output of a Michelson interferometer for Bloch waves
associated with electron-hole pairs. In HSG, two lasers with
different frequencies are used. A relatively weak laser tuned
near the band gap of a semiconductor—bulk GaAs for the
experiments presented here—creates electron-hole pairs, and
a second, stronger, lower-frequency laser accelerates them
to higher energy. The use of two frequencies separates the
contributions of intraband excitations and interband dynamics
to the final HSG signal [33]. The Bloch-wave interferograms
are sideband polarizations as functions of sideband photon
energy. We show that these Bloch-wave interferograms can
be calculated by using a simple analytic model whose only
inputs are (a) the THz field strength FTHz and frequency and
(b) inertial properties of the electrons and holes, namely their
effective masses along the direction of the THz field, and a
single nonequilibrium dephasing rate. The latter determines
the fringe contrast of the observed interferograms. Using a

2469-9950/2024/109(5)/054308(11) 054308-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7650-8589
https://orcid.org/0000-0002-7764-2701
https://orcid.org/0000-0002-6218-3338
https://orcid.org/0000-0002-3869-1893
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.054308&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevB.109.054308


SEAMUS D. O’HARA et al. PHYSICAL REVIEW B 109, 054308 (2024)

FIG. 1. Description of high-order sideband generation (HSG) in bulk GaAs as a Michelson interferometer for Bloch waves. (a) An example
of a sideband spectrum taken at THz field strength FTHz = 70 kV/cm with NIR laser frequency at red dashed line. (Inset) The crystal orientation
of the GaAs crystal with respect to the THz field. (b) A representation of HSG in momentum space showing electron (E), heavy-hole (HH),
and light-hole (LH) bands. (c) A Michelson interferometer for Bloch waves. The Roman numerals in (b) and (c) label the following processes.
(i) A NIR laser is incident on the bulk GaAs. (ii) The bulk GaAs acts like a beam-splitter, converting the NIR laser beam into E-HH and E-LH
pairs. (iii) In the two interferometer arms, Bloch waves of E-HH and E-LH pairs propagate along different k-space trajectories and acquire
different phases. (iv) These Bloch waves merge at the beam-splitter and (v) sidebands are emitted. Bloch-wave interferograms of sideband
polarizations are recorded by Stokes polarimetry with a quarter-wave plate (QWP) and a polarizer. (d) Stokes polarimetry and a Bloch-wave
interferogram. (Top) Three normalized Stokes parameters S̃1, S̃2, and S̃3 corresponding to the sideband spectrum in (a). (Bottom) a Bloch-wave
interferogram that is the sideband polarization as a function of sideband order n. The polarization of the nth-order sideband is represented as a
normalized state in the basis of circular polarizations, |ESB,n〉 = l (n)eiφ(n)|L〉 + r(n)|R〉, where l (n), r(n), and φ(n) are real functions of n (see
Appendix C 2 for definitions of the basis states).

scaling relation predicted by our model, we show that Bloch-
wave interferograms recorded with different FTHz collapse
onto a single curve.

II. EXPERIMENT: HIGH-ORDER
SIDEBAND GENERATION

An example spectrum of high-order sideband generation
(HSG) is displayed in Fig. 1(a). Each peak represents a side-
band with a photon energy h̄�NIR + nh̄ω, where h̄�NIR and
h̄ω are respectively the photon energies of the near-infrared
(NIR) and terahertz (THz) lasers, and the sideband order n

is an even integer. Sidebands were generated from a 500-
nm-thick bulk gallium arsenide (GaAs) epilayer grown via
molecular beam epitaxy. We tune the NIR laser close to the
estimated bandgap of the GaAs sample at 35 K with a wave-
length of 820.6 nm (see Appendix A for a discussion). The
THz field has a frequency fTHz = 447 ± 1 GHz [31] and a
pulse duration of 40 ns.

The GaAs epilayer came from the same GaAs wafer used
in Ref. [34] and the sample was prepared in the same way
as described in Ref. [34]. One goal of the sample fabrication
was to make sure that the GaAs epilayer was uniformly and
minimally strained. Another goal was to make the sample

054308-2



BLOCH-WAVE INTERFEROMETRY OF DRIVEN … PHYSICAL REVIEW B 109, 054308 (2024)

transmissive to sidebands in the NIR spectral range while
maximizing the THz field strength at the GaAs epilayer (see
Appendix B for a discussion of the THz field strength).
To provide mechanical support while allowing the transmis-
sion of NIR sidebands, following the method described in
Refs. [35–38], we transferred the GaAs epilayer to a clean
488 µm thick c-axis grown sapphire wafer, which was chosen
because its in-plane thermal expansion coefficient is close to
that of GaAs. In order to enhance the THz field strength at the
GaAs epilayer, an indium tin oxide (ITO) layer was deposited
onto the back of the sapphire to create a cavity by using
electron-beam deposition, as detailed in Ref. [34]. Before the
HSG experiment, the sample was mounted in the cryostat,
attached to the cold finger with a thermally conductive and
vacuum-safe adhesive, and cooled down to 35 K. Cooling
down to cryogenic temperatures can induce some strain in the
GaAs epilayer. The NIR laser was focused on a sample spot
over which the small strain is uniform (see Appendix A for a
discussion).

III. MICHELSON INTERFEROMETER
FOR BLOCH WAVES

Like HHG, HSG is summarized in three steps [26],
displayed in a momentum-space, semiclassical picture in
Fig. 1(b). First, a NIR laser creates an electron-hole pair,
where the hole is in a superposition of heavy-hole (HH) and
light-hole (LH) states. Second, a linearly-polarized THz field
drives the electron-hole (E-H) pairs towards higher quasimo-
menta. Third, the electron and hole recombine to generate
a sideband photon. The microscopic processes of HSG in
GaAs described in Fig. 1(b) have been labeled i to v to
map them onto different components of a Michelson inter-
ferometer for Bloch waves, shown in Fig. 1(c). The NIR
laser is incident on the bulk GaAs (i), which acts like a
beam splitter (ii), creating E-H states in one or both arms.
Under the THz field, the E-HH and E-LH Bloch waves prop-
agate along different k-space trajectories (iii). Because the
E-HH and E-LH reduced masses determine the dispersion
relations for Bloch waves, they are analogous to refractive
indices that determine the dispersion relations for light waves
in the arms of a conventional Michelson interferometer. In
the Michelson interferometer for Bloch waves, the effec-
tive arm lengths, which determine the quantum mechanical
phases acquired by E-HH and E-LH pairs, increase with
increasing sideband order for a fixed THz field. Upon side-
band emission, the E-HH and E-LH Bloch waves merge at
the beam splitter (iv), coupling out of the interferometer.
Bloch-wave interferograms of the outgoing sideband electric
field (v) consist of the sideband polarizations as functions of
sideband order.

We record our Bloch-wave interferograms using Stokes
polarimetry, where all four Stokes parameters for each side-
band are measured (see Appendix C 1 for details). The top
frame of Fig. 1(d) shows three Stokes parameters, S1, S2,

and S3 normalized as S̃ j = S j/

√
S2

1 + S2
2 + S2

3 ( j = 1, 2, 3).
The corresponding Bloch-wave interferograms are shown in
the bottom frame, where the data points for n = 0 represent
the polarization of the NIR laser. The polarization of the

nth-order sideband is represented as a normalized state in
the basis of circular polarizations, |ESB,n〉 = l (n)eiφ(n)|L〉 +
r(n)|R〉. The functions l (n), r(n), and φ(n) are real and satisfy

φ(n) = tan−1

(
S̃2(n)

S̃1(n)

)
− 2θ − π

2
, (1)

l2(n) = 1 − S̃3(n)

2
= 1 − r2(n), (2)

where θ is the angle between the crystal axis [110] and the
linear polarization of the THz field. The angle θ was mea-
sured as 88◦ [inset of Fig. 1(a)].The left- and right-handed
circularly polarized states, |L〉 and |R〉, are defined with re-
spect to the crystal axes of bulk GaAs [see Appendix C 2 for
the details].

Following Ref. [34], the relation between the electric fields
of the nth-order sideband and the NIR laser, ESB,n and ENIR,
can be written as

ESB,n ∝
∑
s=1,2

(
dE−HH,s

dE−LH,s

)†(
ςHH

n 0
0 ςLH

n

)(
dE−HH,s

dE−LH,s

)
· ENIR,

(3)

where s labels the twofold degeneracy in the electron-hole
states, dE−HH,s (dE−LH,s) is the dipole vector associated
with the E-HH (E-LH) states labeled by s, and ςHH

n (ςLH
n )

is a propagator describing the acceleration of the E-HH
(E-LH) pairs. The elements i–v of the Michelson interfer-
ometer for Bloch waves shown in Fig. 1(c) can be directly
identified with the five terms of Eq. (3), reading from
right to left.

IV. SEMICLASSICAL THEORY OF
BLOCH-WAVE PROPAGATION

In order to better understand the sideband polarizations,
and inspired by a semiclassical description of the quasiparticle
trajectories [34], we model the propagators ςν

n (ν = HH, LH)
with the expression

ςν
n = exp

[
i

(
nωt f ,n,ν + An,ν + (i	d + 
NIR)

τn,ν

h̄

)]
, (4)

where h̄ is the reduced Planck constant, τn,ν ≡ t f ,n,ν − to,n,ν

is the time required for an E-H pair to be accelerated by
the THz field to gain an energy offset nh̄ω, with to,n,ν and
t f ,n,ν being the creation and recombination times associ-
ated with a shortest recollision pathway, ω is the angular
frequency of the THz field, 	d is the dephasing constant
of the E-H pairs, 
NIR ≡ h̄� − Eg is the NIR detuning
from the bandgap energy Eg, and An,ν is the dynamic phase
of the E-H pair accumulated during the acceleration time τn,ν .
Equation (4) has an oscillating term ei�ν (n), where �ν (n) =
An,ν + nωt f ,n,ν + 
NIRτn,ν h̄−1, so these propagators oscillate
as a function of sideband order with a phase that depends on
An,ν . The presence of exp(−	dτn,ν h̄−1) in Eq. (4) damps the
oscillations of the propagators.

Even with this expression for ςν
n , for a sinusoidal THz

field, ETHz(t ) = FTHz sin(ωt ), there is no analytic solution for
to,n,ν and t f ,n,ν . For experiments reported here, it is reasonable
to approximate the THz field as linear in time (LIT) [33],
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FIG. 2. Bloch-wave interferograms for different NIR polarizations and THz field strengths. (Top row) The left-handed circularly polarized
component [l2(n)] [see Eq. (2)]. (Bottom row) The relative phase φ(n) between the left-handed and right-handed circularly polarized
components of the sideband photons. Columns from left to right: four different polarization states of the NIR laser (cartoons in upper corners
of top row), right-handed circularly polarized (first), left-handed circularly polarized (second), diagonal (third), and antidiagonal (fourth). The
data were taken with three THz field strengths, 70.0 kV/cm (blue symbols), 52.5 kV/cm (green symbols), and 35.0 kV/cm (red symbols). The
dashed lines represent the results calculated under the linear-in-time (LIT) approximation, with the bands representing a ±7% experimental
error in THz field strength.

because all sidebands arise from E-H pairs accelerated within
less than 300 fs of a zero crossing of the THz field, which
has a period of 2.2 ps. We may also approximate the electron
and hole bands as parabolic because, even for our highest
THz fields of 70 kV/cm, the electron-hole pairs explore only
about 5% of the Brillouin zone. With the bands approximated
as parabolic and the THz field approximated as LIT, ETHz =
FTHzωt , the following analytic expression for to,n,ν and t f ,n,ν

can be derived from simple kinematics,

−2ωto,n,ν = ωt f ,n,ν = 2√
3

(
8nh̄μνω

3

e2F 2
THz

)1/4

. (5)

Here, n is the sideband order, μν is the reduced mass of
the E-H pair in bulk GaAs, e is the elementary charge, and
FTHz is the peak THz field strength (see Appendix D for the
details). The inverse dependence on field strength means for
lower FTHz, the quasiparticles need to be accelerated for longer
times, and thus the E-H pair creation and annihilation times
will be farther away from the nodes of the THz field. Because
of this, we expect the LIT approximation to be more accurate
for higher FTHz [33].

In the LIT approximation, we can calculate values for
the position, energy, and dynamic phase of a quasiparticle
during its acceleration by the THz field (see Appendix D for
mathematical details). In this limit, the expression for An,ν

becomes

An,ν = −2
√

3

15

(
8n5h̄ω3μν

e2F 2
THz

)1/4

, (6)

which illustrates the dynamic phase’s explicit dependence
on different experimental variables, and allows us to
calculate the dynamics of the Bloch waves in our system.

Using Eqs. (3)–(6), we can predict the outgoing sideband
polarization from an arbitrary NIR electric field.

V. MEASURED AND CALCULATED
BLOCH-WAVE INTERFEROGRAMS

In Fig. 2, we display polarization data, or Bloch-wave
interferograms, taken with different THz field strengths and
NIR polarization conditions. The top [bottom] row is the
measured l2(n) [φ(n)] recorded at each sideband order. A
different NIR polarization is used in each column, depicted
with a cartoon in the upper corner. Data were taken at FTHz

= 70.0, 52.5, and 35.0 kV/cm. Qualitatively, the data demon-
strate the behavior predicted by Eq. (3), with l2(n) and φ(n)
changing with sideband order like a damped sine wave. We
define one oscillation of l2(n) as a fringe in the interferogram,
and the amplitude of the first fringe as the fringe contrast. The
lower-field-strength data curves oscillate more rapidly with
sideband order, following the F−1/2

THz dependence of τn,ν and
An,ν of Eqs. (5) and (6). For the 35-kV/cm data, we observe
about half a fringe, and the fringe contrast is about 0.8. The
dashed lines in each of the plots are the sideband polarizations
predicted from Eq. (3), which can be written as Jones vectors
connected by a dynamical Jones matrix [39] Tn in the form,

(
r(n)

l (n)eiφ(n)

)
∝

(
T++,n T+−,n

T−+,n T−−,n

)(
rNIR

lNIReiφNIR

)
, (7)

where (r(n), l (n)eiφ(n))T and (rNIR, lNIReiφNIR )T are the Jones
vectors for the nth order sideband and the NIR laser, re-
spectively (see Appendix C 2 for how the electric fields are
represented as Jones vectors). The dynamical Jones matrix
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FIG. 3. Scaled Bloch-wave interferograms. The experimental data for l2(n) and φ(n) shown in Fig. 2 are plotted as functions of a rescaled
sideband order, n × λ−2/5 [λ = FTHz/(70 kV/cm)], with the scaling factor predicted from Eq. (6).

elements T±±,n are related to the propagator ςν
n (ν =

HH, LH) through the following equations [34]:

T++,n = T−−,n = 2 + nz

3
ςHH

n + 2 − nz

3
ςLH

n , (8)

T+−,n = nx + iny√
3

(
ςHH

n − ςLH
n

)
, (9)

T−+,n = nx − iny√
3

(
ςHH

n − ςLH
n

)
, (10)

where n̂ = (nx, ny, nz ) is a unit vector along the vector
((

√
3/2) sin 2θ,−(

√
3γ3/2γ2) cos 2θ,−1/2) that is defined

by the angle θ and the two Luttinger parameters, γ2 and
γ3. Since we can have an analytical form of the propagator
ςν

n from Eqs. (5) and (6) (see Appendix D for an explicit
expression), the dynamical Jones matrix elements can also
be calculated analytically. In the calculation, the unit vector
n̂ and the reduced mass μν were determined by the Luttinger
parameters [40], γ1 = 6.85, γ2 = 2.10, and γ3 = 2.90, and the
effective mass for the electron band, me = 0.067m0, where m0

is the electron rest mass [41]. The NIR detuning 
NIR was set
to 0 (see Appendix A for a discussion). Only the parameter
	d was adjusted to calculate the dashed lines. In principle,
the dephasing constants for the E-HH and E-LH pairs could
be different and depend on the sideband order. Surprisingly,
quantitative agreement between the calculated and measured
sideband polarizations can already be achieved by assuming
a single dephasing constant with an optimal value of 	d =
4.8h̄ω, which was used to calculate all 24 dashed lines in
Fig. 2. The positive and negative bands of error represent the
±7% error in THz field strength present in experiment.

VI. A SCALING LAW FOR BLOCH-WAVE
INTERFEROGRAMS

In the Michelson interferometer for Bloch waves, both
the species-dependent recollision times t f ,n,ν and dynamic
phases An,ν contribute to the phase difference acquired

between Bloch-waves associated with E-LH and E-HH pairs
during the acceleration process. The E-LH pairs, because of
their smaller reduced mass, take less time to reach the same
kinetic energy as the heavier E-HH pairs [see Eq. (5)], and
also acquire a smaller dynamic phase [see Eq. (6)].

To illustrate the roles of dynamic phase and recollision
time in the Bloch-wave interferograms, we rescale the data in
Fig. 3 so that each point on the x-axis is proportional to �ν (n),
independent of THz field strength. For 
NIR = 0, �ν (n) =
An,ν + nωt f ,n,ν . Examination of Eqs. (5) and (6) shows that
both An,ν and nωt f ,n,ν scale as (n5/FTHz

2)1/4. Thus, if the LIT
approximation holds, and the NIR laser is tuned sufficiently
close to the bandgap such that 
NIR ≈ 0, we expect that
�ν (n) should also scale as (n5/FTHz

2)1/4. To check this on
data sets taken with different THz field strengths, we multiply
the sideband order n for each sideband by λ−2/5, where λ ≡
FTHz/(70 kV · cm−1). Figure 2 shows that the Bloch-wave
interferograms measured with different FTHz collapse onto a
single curve, in agreement with the predicted LIT scaling law.

VII. DISCUSSION

For the circularly polarized NIR excitations, the calculated
value of l2(n) agrees better with the experimental data than
φ(n), and the l2(n) curves collapse more completely upon
scaling than the φ(n) curves (see Fig. 3). The opposite is true
for the calculated and scaled l2(n) and φ(n) for the diagonal
and antidiagonal excitation. In fact, the sideband polariza-
tions for different NIR laser polarizations are closely related
through Eq. (7). From Eq. (7), we can explicitly calculate l (n)
and φ(n), which define the sideband polarization state, as

l2(n) =
(

1 +
∣∣∣∣T++,nrNIR + T+−,nlNIReiφNIR

T−+,nrNIR + T−−,nlNIReiφNIR

∣∣∣∣
2
)−1

, (11)

φ(n) = arg

[
T−+,nrNIR + T−−,nlNIReiφNIR

T++,nrNIR + T+−,nlNIReiφNIR

]
(mod 2π ). (12)
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As shown by these expressions, for a fixed polarization state of
the NIR laser, the polarization state of the nth-order sideband
is fully determined by the three ratios of the dynamical Jones
matrix elements, T++,n/T−−,n, T+−,n/T−−,n, and T−+,n/T−−,n.
For unstrained or weakly strained bulk GaAs sample, with the
relations discovered in Ref. [34],

T++,n = T−−,n, (13)

T+−,n

T−+,n
≡ χn(θ ) = γ2 sin(2θ ) − iγ3 cos(2θ )

γ2 sin(2θ ) + iγ3 cos(2θ )
, (14)

we can further simply Eqs. (11) and (12) as

l2(n) =
(

1 +
∣∣∣∣ρnrNIR + χn(θ )lNIReiφNIR

rNIR + ρnlNIReiφNIR

∣∣∣∣
2
)−1

, (15)

φ(n) = arg

[
rNIR + ρnlNIReiφNIR

ρnrNIR + χn(θ )lNIReiφNIR

]
(mod 2π ). (16)

Here, we have defined ρn ≡ T++,n/T−+,n, which is now the
only complex parameter that fully determine the polarization
state of the nth-order sideband. From Eqs. (15) and (16),
one can easily see that, by measuring l2(n) and φ(n) for a
certain polarization state of the NIR laser, the ratio ρn can
be determined and used to predict the polarization states of
sidebands for any other NIR laser polarizations.

To be specific, using a right-handed circularly polarized
(RHCP) NIR laser, we have rNIR = 1 and lNIR = 0 so that

l2
RHCP(n) = 1

1 + |ρn|2 , (17)

φRHCP(n) = − arg[ρn](mod 2π ), (18)

which give

ρn =
√

1 − l2
RHCP(n)

l2
RHCP(n)

exp[−iφRHCP(n)]. (19)

Therefore, the results presented in the first column of Fig. 2
can be used to predict the data in the rest of the figure. In
particular, the discrepancies between theory and experiment
in the first column of Fig. 2 can be used to predict the discrep-
ancies in other columns.

For simplicity, we now approximate the angle θ to be 90
degrees such that χn(θ ) = −1. For a left-handed circularly
polarized (LHCP) NIR laser, we have rNIR = 0 and lNIR = 1
so that

l2
LHCP(n) = |ρn|2

1 + |ρn|2 , (20)

φLHCP(n) = arg[ρn] + π (mod 2π ), (21)

which are consistent with the observation from the first two
columns of Fig. 2 that

l2
RHCP(n) + l2

LHCP(n) ≈ 1, (22)

φRHCP(n) + φLHCP(n) ≈ π (mod 2π ). (23)

For the diagonal (D+) and antidiagonal (D−) NIR excitations
(last two columns of Fig. 2), we have rNIR = 1/

√
2 and lNIR =

∓1/
√

2 so that

l2
D± (n) = |1 ∓ ρn|2

|1 ∓ ρn|2 + |1 ± ρn|2 , (24)

φD± (n) = arg

[
1 ∓ ρn

ρn ± 1

]
(mod 2π ), (25)

which are consistent with the results shown in the last two
columns of Fig. 2. For example, we observe the relations

l2
D+ (n) + l2

D− (n) ≈ 1, (26)

φD+ (n) + φD− (n) ≈ π (mod 2π ). (27)

The deviation between theory and experiment for the
RHCP NIR excitation can also be used to infer those devi-
ations for other NIR excitations. For example, consider why
theory and experiment agree better in φD+ (n) than l2

D+ (n) for a
sideband, say 22th order sideband produced by a 35.0 kV/cm
THz field (the third column of Fig. 2). Using the fact that the
value of l2

RHCP(22) is about 0.5 for both theory and experiment
(the first column of Fig. 2), we can predict that φD+ (22) should
be about π/2, insensitive to the value of φRHCP(22), since
(1 − ρ22)/(ρ22 + 1) is close to a pure imaginary number with
|ρ22| ≈ 1 [see Eq. (25)]. In contrast, as can be seen from
Eqs. (24) and (19), l2

D+ (n) is sensitive to the deviation in
φRHCP(n), which is a finite value of about 0.5 rad at n = 22
(the first column of Fig. 2). For all sidebands of orders n > 20
for the RHCP NIR excitation, l2

RHCP(n) ranges from about 0.2
to 0.8 for both theory and experiment (the first column of
Fig. 2), corresponding to the value of ρn going from about 2 to
0.5, which implies that the φD+ (n) curves for n > 20 should
lie around π/2 for both theory and experiment as shown in the
third column of Fig. 2. The analysis for the anti-diagonal NIR
excitation is similar.

VIII. CONCLUSIONS

The success of the scaling demonstrated in Fig. 3, together
with the agreement between calculated and measured Bloch-
wave interferograms shown in Fig. 2, strongly support our
assertion that the HSG process in bulk GaAs can be viewed
as a Michelson interferometer for Bloch waves.

By taking into account the effects of quantum fluctuations
and going beyond the LIT approximation as in Ref. [33],
and by allowing additional free parameters—for example,
detuning 
NIR, μν different from those predicted by literature
values of the Luttinger parameters, dephasing varying with
sideband order, and the influence of unavoidable small strain
lifting the degeneracy between HH and LH at the center of
the Brillouin zone (see Appendix A for a discussion)—future
analysis will increase the agreement of the other variables
measured in experiment, and reveal some physics left out in
the simplest nontrivial approximations made in this paper.

By leveraging the flexibility of HSG to create carefully
selected superpositions of charged quasiparticles by control-
ling the polarization and frequency of the NIR laser while
independently choosing the field strength and frequency of
the THz laser, we have been able to create a Michelson
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interferometer for Bloch waves. Given the frequency and field
strength of the THz laser, the analytic model we presented
directly connects the experimentally observed sideband polar-
izations with the inertial properties of charged quasiparticles.
We note that the values of effective masses extracted via Bloch
wave interferometry are those associated with the direction
of electron and hole motion—they are not averaged over all
directions, as are those extracted from cyclotron resonance
[42]. Nonequilibrium dephasing of electron-hole pairs can be
used to probe their interactions with phonons [43], disorder
and, if sufficiently high NIR powers are used, correlations
with other electron-hole pairs. Finally, future experiments
could be used to measure other important materials parame-
ters with increased precision and specificity. For example, the
bandgap of a direct-gap semiconductor is difficult to extract
directly from an absorption measurement because of excitonic
features. Equation (4) includes the detuning 
NIR as a param-
eter, which we have set to zero in this paper. By allowing
this parameter to vary in a systematic study, a more precise
value of the semiconducting bandgap could be determined.
Bloch-wave interferometry thus has the potential to become
an important new tool for determining the electronic structure
of strongly driven quantum condensed matter.
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APPENDIX A: STRAINS IN THE SAMPLE

Strain can distort the band structure of GaAs and introduce
non-Abelian Berry curvatures into the dynamics of electron-
hole pairs in the HSG experiment [34]. Minimizing the strain
in the sample is important to minimize Berry curvatures,
which are not included in the Bloch-wave interferometry pic-
ture presented here. Making the strain uniform over the size
of the NIR beam spot is important to ensure that sideband
polarization does not vary across the beam spot.

To ensure that the NIR beam spot covers an area with a
sufficiently uniform and minimal strain, absorbance measure-
ments were performed with a white light source to examine
the local strain environment of the GaAs epilayer under
the conditions for the HSG experiment. Figure 4 shows an
example of an absorbance spectrum, where there are two
absorbance peaks associated with different hole spins. The
peak splitting arises from the lifting of degeneracy between
the heavy-hole (HH) and light-hole (LH) bands due to strain.
Such strain-induced exciton splittings were observed in all
low-temperature measurements of the absorbance of bulk
GaAs films glued or bonded to substrates as far as we know
from the literature—see, for example, Ref. [44]. After one
absorbance spectrum was recorded, the sample was translated
by a fraction of the size of the white light beam spot and the
absorbance was measured again. This process was repeated
over a 7 mm×3 mm section of the sample to find a region with
the highest absorbance peak and the most uniform absorbance
peak splitting compared to its nearby regions. The region

FIG. 4. An absorbance spectrum of the GaAs epilayer. The pur-
ple dashed line indicates the NIR wavelength used in experiments
reported in this paper. The measurement was taken at the spot illu-
minated by a white light source (inset).

chosen for the HSG experiment is displayed in the inset of
Fig. 4, along with the absorbance spectrum.

As a result of the small strain-induced splitting between
LH and HH bands (δHH−LH < 3 meV) shown in Fig. 4, the
detunings 
NIR are different for electron-hole (E-H) pair ex-
citations associated with different hole spins. The magnitude
of such differences are on the same scale as δHH−LH, much
less than typical sideband offset energies. For this reason, in
this paper, we simply set 
NIR = 0. In a future paper, we
will attempt to separately extract the gaps for the E-HH and
E-LH pairs.

APPENDIX B: THZ FIELD STRENGTH
AT GaAs EPILAYER

Because of the importance of the THz field strengths to our
results, care was taken to track the THz field strength during
the HSG experiment. The THz field strength was constantly
monitored by a pyroelectric detector, whose response was
calibrated by a Thomas-Keating (TK) absolute power/energy
meter before HSG experiment each day. A beam splitter
directed 10% of the THz power into the pyroelectric de-
tector, allowing for pulse-by-pulse monitoring while HSG
experiments were performed. After the THz beam passed the
position at which the TK meter was placed, the THz field
was reflected by a flat mirror, a gold-coated off-axis parabolic
mirror, and an ITO slide, then transmitted though the cryostat
window, and reflected by the ITO coating on the sapphire
substrate to build up field enhancement at the GaAs epilayer.
In the calculation of the THz field strength, we assume the
gold-coated off-axis parabolic mirror and flat mirror are 100%
reflective, the ITO slide 70% reflective, the cryostat window
95% transmissive, and the ITO coating on the sapphire pro-
vides a 150% field enhancement at the GaAs epilayer. This
gives a relative field strength of 99.75% at the GaAs epilayer
with respect to that deduced from the pyroelectric detector
signal (see Ref. [34] for details).

Two wire grid polarizers were used to attenuate the THz
field at the GaAs epilayer to 75% and 50% of the peak field
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strength FTHz,0 = 70 kV/cm by adjusting the relative angle,
�, between the two wire grids, while maintaining the hori-
zontal polarization of the THz field. The equation FTHz(�) =
FTHz,0 cos2(�) was used to calculate the THz field strength at
the GaAs epilayer for an angle � set by a motorized rotation
mount. Prior to the HSG experiment, the TK power detector,
placed downstream of the wire grid polarizers, was used to
calibrate the motor settings and determine the configuration
for � = 0.

APPENDIX C: STOKES POLARIMETRY

The polarization of the sideband electric fields were mea-
sured by using Stokes polarimetry. We obtained, for each
sideband, four Stokes parameters, from which the sideband
electric field was represented in a basis of circularly polarized
fields, as shown in Fig. 1(d).

1. Stokes parameters

The optical setup is detailed in Refs. [34,39]. The NIR and
THz lasers were simultaneously and collinearly focused onto
the GaAs sample, leading to generation of high-order side-
bands. The sidebands were transmitted out of the cryostat and
propagated through the Stokes polarimeter, which consists of
a quarter-wave plate (QWP) mounted on a rotation stage and
a horizontal linear polarizer.

The sidebands were then coupled into a grating spec-
trometer and detected with an electron-multiplied CCD
(charge-coupled device) camera. The lowest orders of side-
bands were cut off by a short-pass optical filter to filter out
the NIR laser, which was about 105 more intense than the
strongest sideband fields. For the experiments reported in this
paper, the 10th-order sideband is the lowest-order sideband to
be resolved, and the 36th-order is the highest.

The relative intensities of the sidebands measured through
the CCD camera S0,out are dependent on the Stokes parame-
ters Si (i = 0, 1, 2, 3), and the orientation angle of the QWP
fast axis with respect to the horizontal θQWP following the
expression

S0,out (θQWP) = S0

2
+ S1

4
− S3

2
sin 2θQWP

+ S1

4
cos 4θQWP + S2

4
sin 4θQWP. (C1)

In the Stokes polarimetry experiment, S0,out of each sideband
was measured with the angle θQWP sweeping from 0 to 360
degrees in 22.5-degree steps. The four Stokes parameters were
then calculated from Fourier transforms of S0,out with respect
to the angle θQWP, as detailed in Ref. [34].

2. Representation of the sideband electric field

To conveniently make a comparison between theory and
experiment, we choose the basis of circular polarization
fields as

|R〉 = X̂ + iŶ√
2

, (C2)

|L〉 = − X̂ − iŶ√
2

, (C3)

x
THz

y
αn

γn <0
>0
k
γ
γ

[100]

φ

α[010]

FIG. 5. Definition of the orientation angle αn and ellipticity angle
γn. The sign of the ellipticity angle γn is defined with respect to the
wave vector k.

with X̂ (Ŷ ) being a unit vector along [001] ([010]) crystal axis
of bulk GaAs, and write the polarization state of the nth-order
sideband as

|ESB,n〉 = l (n)eiφ(n)|L〉 + r(n)|R〉, (C4)

where the functions l (n), r(n), and φ(n) are all real, and
satisfy l2(n) + r2(n) = 1.

The polarization state |ESB,n〉 can be determined by the
Stokes parameters through the orientation angle αn and el-
lipticity angle γn defined with respect to the horizontal
polarization of the THz field (see Fig. 5 for the definition).
The Jones vector associated with the polarization state |ESB,n〉
can be written as(

Ex,n

Ey,n

)
∝

(
cos αn cos γn − i sin αn sin γn

sin αn cos γn + i cos αn sin γn

)
, (C5)

with the x axis defined by the horizontal polarization of the
THz field. The Jones vector in the basis {|R〉, |L〉} can be
related to the Jones vector (Ex,n, Ey,n)T through a unitary
transformation,

(
r(n)

l (n)eiφ(n)

)
∝ 1√

2

(
eiϕ −ieiϕ

−e−iϕ −ie−iϕ

)(
Ex,n

Ey,n

)
, (C6)

where ϕ is the angle between the [100] crystal axis and the
linear polarization of the THz field. After some algebra, we
obtain

r2(n) = 1 + sin 2γn

2
, (C7)

l2(n) = 1 − sin 2γn

2
, (C8)

φ(n) = 2(αn − ϕ) + π (mod 2π ). (C9)

Using the relations connecting the Stokes parameters with
the angles αn and γn [34],

sin 2γn = S3

S2
1 + S2

2 + S2
3

, (C10)

tan 2αn = S2

S1
, (C11)
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we arrive at the equations

r2(n) = 1 + S̃3

2
, (C12)

l2(n) = 1 − S̃3

2
, (C13)

φ(n) = arctan
S̃2

S̃1
− 2θ − π/2 (mod 2π ), (C14)

where θ is the angle between the [110] crystal axis and the
linear polarization of the THz field, and the Stokes parameters,

S1, S2, and S3, are normalized as S̃ j = S j/

√
S2

1 + S2
2 + S2

3 ( j =
1, 2, 3).

APPENDIX D: THEORY OF SIDEBAND POLARIZATION

To calculate the sideband polarization, we need a model for
the propagators describing recollisions of the E-HH and E-LH
pairs. Following Ref. [34], we start with the expression for the
propagators,

ςHH(LH)
n =

∫ 2π
ω

0
dtei(�+nω)t ·

×
∫ t

−∞
dt ′ei[−Eg(t−t ′ )/h̄+AHH(LH)(t,t ′ )]−(	d /h̄)(t−t ′ )

× e−i�t ′
, (D1)

where � and ω are the angular frequencies of the NIR laser
and THz field, respectively, 	d is the dephasing constant, h̄ is
the reduced Planck constant, and

AHH(LH)(t, t ′) = −
∫ t ′

t
dt ′′ h̄k2(t ′′)

2μHH(LH)
(D2)

is the dynamic phase acquired by the E-HH (E-LH) pairs from
the time t to t ′ with the contribution from the bandgap Eg

subtracted, and μHH (μLH) is the reduced mass of the E-HH
(E-LH) pairs. The integral includes all recollision pathways
starting from k = 0.

1. Semiclassical Theory of SB Polarization

Inspired by the semiclassical description given in Ref. [34]
and Ref. [33], we assume that, for each species of E-H pair,
there is one shortest recollision pathway that dominantly de-
termines the polarization of a sideband. Taking the integration
variables t ′ and t as the creation and recombination times
associated with a shortest recollision pathway, to,n,ν and t f ,n,ν

(ν = HH, LH), and neglecting all quantum fluctuations, we
model the propagators as

ςν
n = ei[nωt f ,n,ν+An,ν+(i	d +
NIR )τn,ν/h̄], (D3)

where τn,ν ≡ t f ,n,ν − to,n,ν is the time duration,

NIR = h̄� − Eg is the detuning of the NIR laser, and
An,ν = Aν (t f ,n,ν , to,n,ν ). Here, the recollision processes are

FIG. 6. Dynamical quantities calculated by using the LIT ap-
proximation (dashed line) and the numerical solutions with a
sinusoidal (solid line) THz field for the E-H pairs, which pro-
duce a 32nd-order sideband. The results for different field strengths
used in the experiment, 70 kV/cm (blue), 52.5 kV/cm (green),
and 35 kV/cm (red), are all displayed. The left and right columns
show quantities calculated for the E-HH and E-LH pairs, respec-
tively. The top row shows the calculated x position for the holes
(dark colors) and electrons (light colors). The second row shows
the calculated wave vectors for the electrons (downward parabo-
las, associated with the left y axis, a = 5.56 Å) and the THz
fields (lines, associated with the right y axis). The third row shows
the calculated kinetic energies of the E-H pairs. The bottom row
shows the calculated absolute values of the dynamic phases of the
E-H pairs.

considered to be fully classical. We set 
NIR = 0 for
simplicity as mentioned earlier.

2. Classical trajectories

To obtain the creation and recombination times, to,n,ν and
t f ,n,ν (ν = HH, LH), we start with the Newton’s equation of
motion, h̄k̇ = −eETHz(t ), with e being the elementary charge
and a sinusoidal THz field in the form ETHz(t ) = FTHz sin(ωt ).
Taking the initial condition k(to,n,ν ) = 0, we obtain the solu-
tion for the momentum,

h̄k(t ) = eFTHz

ω
[cos(ωt ) − cos(ωto,n,ν )]. (D4)
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The positions of the electrons and holes are then given by

x(t ) =
∫ t

to,n,ν

dt ′′ h̄k(t ′′)
m

= −eFTHz

mω2
[ω(t − to,n,ν ) cos(ωto,n,ν )

+ sin(ωto,n,ν ) − sin(ωt )], (D5)

where m is the effective mass. Using the energy conservation
equation, h̄2k2(t f ,n,ν )/(2μν ) = nh̄ω, and the condition that,
at recollision, the electrons and holes return to the origin,
x(t f ,n,ν ) = 0, one can solve the times to,n,ν and t f ,n,ν numer-
ically (see, for example, Ref. [33]).

3. The linear-in-time (LIT) approximation

To further simplify the analysis, we notice, from the
classical recollision picture that, all sidebands observed in
this paper can be attributed to electron-hole recollisions
occurring within less than 250 fs after a zero-crossing
of the THz field (see Fig. 6), whereas the THz field
used in HSG experiment has a period of 2.22 ps. Thus
we make the approximation that the THz field is linear
in time (LIT),

ETHz(t ) ≈ FTHzωt . (D6)

The LIT approximation has been applied to solve the
semiclassical trajectories of E-H pairs in HSG [33]. For
the special case of classical recollisions, the creation
and recombination times, to,n,ν and t f ,n,ν (ν = HH, LH)
satisfy [33]

−2ωto,n,ν = ωt f ,n,ν = 2√
3

(
2nEph

Uν

)1/4

, (D7)

where Eph is the THz photon energy, and Uν =
e2F 2

THz/(4μνω
2) is the ponderomotive energy. Within the

LIT approximation, the momentum h̄k(t ) and the positions

of the electron-hole pairs are all polynomials as functions of
time,

h̄k(t ) = eFTHz

2ω
[(ωto,n,ν )2 − (ωt )2], (D8)

x(t ) = −eFTHz

2mω2

[(
1

3
ωt

)3

− (ωto,n,ν )2ωt + 2

3
(ωto,n,ν )3

]
.

(D9)

The solution of to,n,ν and t f ,n,ν [Eq. (D7)] can be derived from
the conditions x(t f ,n,ν ) = 0 and h̄2k2(t f ,n,ν )/(2μν ) = nh̄ω.

4. Calculation of the propagators

With the linear-in-time approximation, using the solutions
of the creation and recombination times, to,n,ν and t f ,n,ν (ν =
HH, LH), we obtain the dynamic phase using Eq. (D2),

An,ν = −2
√

3

15

(
8n5h̄ω3μν

e2F 2
THz

)1/4

. (D10)

The propagators are then calculated by using Eq. (D3) as

ςν
n = exp

[
i

(
8n

15
+

(
i	d + 
NIR

h̄ω

))(
72nh̄ω3μν

e2F 2
THz

)1/4
]
.

(D11)

5. Accuracy of LIT approximation

We compare the values of position x(t ), wave vector
k(t ), kinetic energy Ee−ν (t ) = h̄2k2(t )/(2μν ), and dynamic
phase An,ν (ν = HH, LH), calculated by using the LIT ap-
proximation and the numerical solutions by using ETHZ(t ) =
FTHz sin(ωt ) (sinusoidal THz field). Figure 6 demonstrates the
accuracy of the LIT approximation for time domains relevant
to the sideband generation observed in the experiment.

[1] A. A. Michelson and E. W. Morley, Am. J. Sci. s3-34, 333
(1887).

[2] G. P. Thomson and A. Reid, Nature (London) 119, 890 (1927).
[3] C. J. Davisson and L. H. Germer, Proc. Natl. Acad. Sci. USA

14, 317 (1928).
[4] O. Carnal and J. Mlynek, Phys. Rev. Lett. 66, 2689 (1991).
[5] M. Kasevich and S. Chu, Appl. Phys. B 54, 321 (1992).
[6] Y. Hasegawa and P. Avouris, Phys. Rev. Lett. 71, 1071 (1993).
[7] M. F. Crommie, C. P. Lutz, and D. M. Elgler, Nature (London)

363, 524 (1993).
[8] E. J. Heller, M. F. Crommie, C. P. Lutz, and D. M. Elgler,

Nature (London) 369, 464 (1994).
[9] A. Yacoby, M. Heiblum, V. Umansky, H. Shtrikman, and D.

Mahalu, Phys. Rev. Lett. 73, 3149 (1994).
[10] Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H.

Shtrikman, Nature (London) 422, 415 (2003).
[11] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou,

H. G. Muller, and P. Agostini, Science 292, 1689 (2001).
[12] N. Dudovich, O. Smirnova, J. Levesque, Y. Mairesse, M. Y.

Ivanov, D. M. Villeneuve, and P. B. Corkum, Nat. Phys. 2, 781
(2006).

[13] G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré,
C. R. McDonald, T. Brabec, and P. B. Corkum, Nature (London)
522, 462 (2015).

[14] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan,
and E. Goulielmakis, Nature (London) 521, 498 (2015).

[15] E. Goulielmakis and T. Brabec, Nat. Photon. 16, 411 (2022).
[16] N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, Phys. Rev.

Lett. 121, 097402 (2018).
[17] L. Yue and M. B. Gaarde, J. Opt. Soc. Am. B 39, 535 (2022).
[18] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U.

Huntner, S. W. Koch, M. Kira, and R. Huber, Nature (London)
523, 572 (2015).

[19] M. Garg, M. Zhan, T. T. Luu, H. Lakhotia, T. Klostermann, A.
Guggenmos, and E. Goulielmakis, Nature (London) 538, 359
(2016).

[20] A. J. Uzan, G. Orenstein, Á. Jiménex-Galán, C. McDonald,
R. E. F. Silva, B. D. Bruner, N. D. Klimkin, V. Blanchet,
T. Arusi-Parpar, M. Krüger et al., Nat. Photon. 14, 183
(2020).

[21] Y. S. You, D. A. Reis, and S. Ghimire, Nat. Phys. 13, 345
(2017).

054308-10

https://doi.org/10.2475/ajs.s3-34.203.333
https://doi.org/10.1038/119890a0
https://doi.org/10.1073/pnas.14.4.317
https://doi.org/10.1103/PhysRevLett.66.2689
https://doi.org/10.1007/BF00325375
https://doi.org/10.1103/PhysRevLett.71.1071
https://doi.org/10.1038/363524a0
https://doi.org/10.1038/369464a0
https://doi.org/10.1103/PhysRevLett.73.3149
https://doi.org/10.1038/nature01503
https://doi.org/10.1126/science.1059413
https://doi.org/10.1038/nphys434
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/s41566-022-00988-y
https://doi.org/10.1103/PhysRevLett.121.097402
https://doi.org/10.1364/JOSAB.448602
https://doi.org/10.1038/nature14652
https://doi.org/10.1038/nature19821
https://doi.org/10.1038/s41566-019-0574-4
https://doi.org/10.1038/nphys3955


BLOCH-WAVE INTERFEROMETRY OF DRIVEN … PHYSICAL REVIEW B 109, 054308 (2024)

[22] H. Liu, Y. Li, Y.-S. You, S. Ghimire, T. F. Heinz, and D. A. Reis,
Nat. Phys. 13, 262 (2017).

[23] N. Yoshikawa, T. Tamaya, and K. Tanaka, Science 356, 736
(2017).

[24] A. J. Uzan-Narovlansky, Á. Jiménex-Galán, G. Orenstein, R. F.
Silva, T. Arusi-Parpar, S. Shames, B. D. Bruner, B. Yan, O.
Smirnova, M. Ivanov, and N. Dudovich, Nat. Photon. 16, 428
(2022).

[25] L. Li, P. Lan, X. Zhu, and P. Lu, Phys. Rev. Lett. 127, 223201
(2021).

[26] B. Zaks, R. B. Liu, and M. S. Sherwin, Nature (London) 483,
580 (2012).

[27] B. Zaks, H. B. Banks, R. B. Liu, and M. Sherwin, Ap. Phys.
Lett. 102, 012104 (2013).

[28] H. B. Banks, B. Zaks, F. Yang, S. Mack, A. C. Gossard, R. B.
Liu, and M. S. Sherwin, Phys. Rev. Lett. 111, 267402 (2013).

[29] F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P.
Naggler, T. Korn, C. Schüller, M. S. Sherwin, U. Hunter, J. T.
Steiner, S. W. Koch, M. Kira, and R. Huber, Nature (London)
533, 225 (2016).

[30] F. Langer, C. P. Schmid, S. Schlauderer, M. Gmitra, J. Fabian, P.
Nagler, C. Schüller, T. Korn, P. G. Hawkins, J. T. Steiner et al.,
Nature (London) 557, 76 (2018).

[31] D. Valovcin, H. B. Banks, S. Mack, A. C. Gossard, K. West, L.
Pfeiffer, and M. S. Sherwin, Opt. Express 26, 29807 (2018).

[32] J. Freudenstein, M. Borsch, M. Meierhofer, D. Afanaslev,
C. P. Schmid, F. Sandner, M. Liebich, A. Girnghuber, M.

Knorr, M. Kira, and R. Huber, Nature (London) 610, 290
(2022).

[33] Q. Wu and M. S. Sherwin, Phys. Rev. B 107, 174308 (2023).
[34] J. B. Costello, S. D. O’Hara, Q. Wu, D. Valovcin, K. West, L.

Pfeiffer, and M. Sherwin, Nature (London) 599, 57 (2021).
[35] E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat,

Appl. Phys. Lett. 51, 2222 (1987).
[36] E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and

J. P. Harbison, Appl. Phys. Lett. 56, 2419 (1990).
[37] G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer,

Nat. Photon. 7, 644 (2013).
[38] G. D. Cole, W. Zhang, B. J. Bjork, D. Follman, P. Heu,

C. Deutsch, L. Sonderhouse, J. Robinson, C. Franz, A.
Alexandrovski et al., Optica 3, 647 (2016).

[39] H. B. Banks, Q. Wu, D. C. Valovcin, S. Mack, A. C. Gossard, L.
Pfeiffer, R. B. Liu, and M. S. Sherwin, Phys. Rev. X 7, 041042
(2017).

[40] J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
[41] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl.

Phys. 89, 5815 (2001).
[42] M. S. Skolnick, A. K. Jain, R. A. Stradling, J. Leotin, and J. C.

Ousset, J. Phys. C 9, 2809 (1976).
[43] J. B. Costello, S. D. O’Hara, Q. Wu, M. Jang, L. N. Pfeiffer,

K. W. West, and M. S. Sherwin, Phys. Rev. B 108, 195205
(2023).

[44] S. Glutsch, U. Siegner, M.-A. Mycek, and D. S. Chemla,
Phys. Rev. B 50, 17009 (1994).

054308-11

https://doi.org/10.1038/nphys3946
https://doi.org/10.1126/science.aam8861
https://doi.org/10.1038/s41566-022-01010-1
https://doi.org/10.1103/PhysRevLett.127.223201
https://doi.org/10.1038/nature10864
https://doi.org/10.1063/1.4773557
https://doi.org/10.1103/PhysRevLett.111.267402
https://doi.org/10.1038/nature17958
https://doi.org/10.1038/s41586-018-0013-6
https://doi.org/10.1364/OE.26.029807
https://doi.org/10.1038/s41586-022-05190-2
https://doi.org/10.1103/PhysRevB.107.174308
https://doi.org/10.1038/s41586-021-03940-2
https://doi.org/10.1063/1.98946
https://doi.org/10.1063/1.102896
https://doi.org/10.1038/nphoton.2013.174
https://doi.org/10.1364/OPTICA.3.000647
https://doi.org/10.1103/PhysRevX.7.041042
https://doi.org/10.1103/PhysRev.97.869
https://doi.org/10.1063/1.1368156
https://doi.org/10.1088/0022-3719/9/14/019
https://doi.org/10.1103/PhysRevB.108.195205
https://doi.org/10.1103/PhysRevB.50.17009

